File size: 20,019 Bytes
67fb03c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
import os, numpy as np, pyvista as pv, trimesh, matplotlib.pyplot as plt
from scipy.spatial import cKDTree
from functools import wraps
import time
from scipy.ndimage import gaussian_filter
from vtk.util import numpy_support as nps
from scipy.spatial.distance import cosine


def _to_vertex_colors(values):
    v = np.asarray(values, dtype=float)
    vmin, vmax = float(np.nanmin(v)), float(np.nanmax(v) + 1e-12)
    norm = (v - vmin) / (vmax - vmin)
    return (plt.get_cmap("viridis")(norm)[:, :3] * 255).astype(np.uint8)

def _pv_to_trimesh(poly: pv.PolyData, colors=None):
    V = np.asarray(poly.points)
    F = poly.faces.reshape(-1, 4)[:, 1:4] if poly.faces.size else None
    m = trimesh.Trimesh(vertices=V, faces=F, process=False)
    if colors is not None and len(colors) == len(V):
        if colors.dtype != np.uint8:
            colors = (np.clip(colors, 0, 1) * 255).astype(np.uint8)
        m.visual.vertex_colors = colors
    return m

def vtp_to_glb(in_vtp: str, out_glb: str, scalar: str | None = None, point_size_frac=0.004, decimation_config=None):
    """Read a .vtp, produce a fast-to-load .glb for Gradio/three.js."""
    poly = pv.read(in_vtp)

    # Apply decimation if enabled
    if decimation_config and decimation_config.get("enabled", True):
        try:
            original_faces = poly.n_cells
            target_faces = int(original_faces * (1 - decimation_config["target_reduction"]))
            target_faces = max(decimation_config["min_faces"], min(target_faces, decimation_config["max_faces"]))
            
            if original_faces > target_faces and poly.faces.size > 0:
                print(f"🔧 Decimating VTP mesh: {original_faces}{target_faces} faces")
                poly = poly.decimate(
                    target_reduction=decimation_config["target_reduction"],
                    preserve_topology=decimation_config["preserve_topology"]
                )
                print(f"✅ VTP decimation successful: {poly.n_cells} faces")
        except Exception as e:
            print(f"⚠️ VTP decimation failed: {e}, using original mesh")

    # If it's a triangle mesh: compute normals & color (optional), export GLB
    if poly.faces.size > 0:
        poly2 = poly.compute_normals(consistent_normals=True, auto_orient_normals=True,
                                     point_normals=True, cell_normals=False, inplace=False)
        colors = _to_vertex_colors(poly2.point_data[scalar]) if (scalar and scalar in poly2.point_data) else None
        tm_mesh = _pv_to_trimesh(poly2, colors)
        trimesh.exchange.gltf.export_glb(tm_mesh, out_glb)
        return out_glb

    # If it's a point cloud: glyph to small spheres so points are visible
    pc = pv.PolyData(poly.points)
    if scalar and scalar in poly.point_data:
        pc.point_data[scalar] = np.asarray(poly.point_data[scalar])

    # pick radius relative to bbox diagonal (tweak if needed)
    xmin, xmax, ymin, ymax, zmin, zmax = pc.bounds
    diag = np.linalg.norm([xmax - xmin, ymax - ymin, zmax - zmin])
    radius = max(1e-8, point_size_frac * diag)

    sphere = pv.Sphere(radius=radius, theta_resolution=16, phi_resolution=16)
    glyphs = pc.glyph(geom=sphere, scale=False)

    colors = None
    if scalar and scalar in glyphs.point_data:
        colors = _to_vertex_colors(glyphs.point_data[scalar])

    tm_mesh = _pv_to_trimesh(glyphs, colors)
    trimesh.exchange.gltf.export_glb(tm_mesh, out_glb)
    return out_glb


import matplotlib.pyplot as plt
from matplotlib.cm import ScalarMappable
from matplotlib.colors import Normalize

def save_colorbar_png(vmin, vmax, out_path, cmap_name="jet", units="", variable_name=""):
    # Create figure with transparent background
    fig, ax = plt.subplots(figsize=(0.1, 8.0), facecolor='none')   # transparent background
    ax.set_facecolor('none')  # transparent axis background
    
    norm = Normalize(vmin=vmin, vmax=vmax)
    sm = ScalarMappable(norm=norm, cmap=cmap_name)

    cb = plt.colorbar(sm, cax=ax, orientation="vertical")
    
    # Customize colorbar appearance
    cb.ax.set_facecolor('none')  # transparent colorbar background
    cb.ax.tick_params(colors='white', labelsize=16)  # larger font size for better visibility
    
    # Custom format function to show mantissa values only
    def format_func(x, pos):
        # Convert to scientific notation to get mantissa and exponent
        if x == 0:
            return "0.00"
        
        # Get the exponent
        exponent = int(np.floor(np.log10(abs(x))))
        # Get the mantissa
        mantissa = x / (10 ** exponent)
        
        # Format mantissa to 2 decimal places
        return f"{mantissa:.2f}"
    
    from matplotlib.ticker import FuncFormatter
    cb.ax.yaxis.set_major_formatter(FuncFormatter(format_func))
    
    # Add exponent label at the top
    if vmax != 0:
        exponent = int(np.floor(np.log10(abs(vmax))))
        if exponent != 0:
            cb.ax.text(0.5, 1.05, f"×10^{exponent}", transform=cb.ax.transAxes, 
                      ha='center', va='bottom', fontsize=18, color='white', fontweight='bold')
    
    # Add units to the label if provided
    if units:
        label_text = f"{variable_name} ({units})" if variable_name else f"Value ({units})"
    else:
        label_text = variable_name if variable_name else "Value"
    
    cb.set_label(label_text, color='white', fontsize=20, fontweight='bold')
    cb.ax.yaxis.label.set_color('white')

    # Save with transparent background
    fig.savefig(out_path, bbox_inches="tight", dpi=200, facecolor='none', edgecolor='none', transparent=True)
    plt.close(fig)
    return out_path


def create_visualization_points(viz_data):
    # Apply point cloud decimation if enabled
    points = viz_data["points"]
    pred_values = viz_data["pred"]
    
    cloud = trimesh.points.PointCloud(points)
    cmap = plt.get_cmap("jet")
    v = pred_values
    vmin, vmax = float(np.min(v)), float(np.max(v))
    norm = Normalize(vmin=vmin, vmax=vmax)
    rgb = (cmap(norm(v))[:, :3] * 255).astype(np.uint8)
    cloud.visual.vertex_colors = rgb

    center = cloud.centroid
    rot_x = trimesh.transformations.rotation_matrix(np.radians(-90), [1, 0, 0], center)
    rot_z = trimesh.transformations.rotation_matrix(np.radians(180), [0, 1, 0], center)
    cloud.apply_transform(rot_z @ rot_x)
    return cloud, vmin, vmax

def create_visualization_stl(viz_data, stl_path):

    v = viz_data["pred"]
    vmin, vmax = float(np.min(v)), float(np.max(v))
    cmap = plt.get_cmap("jet")
    norm = Normalize(vmin=vmin, vmax=vmax)
    stl_mesh = trimesh.load(stl_path)
    
    stl_points = np.asarray(stl_mesh.vertices, dtype=np.float32)
    
    # Build KDTree to interpolate output on stl coordinate system
    tree = cKDTree(viz_data["points"])
    _, idx = tree.query(stl_points, k=1)  # nearest neighbor
    stl_points_pred = viz_data["pred"][idx]  
    stl_mesh.visual.vertex_colors = (cmap(norm(stl_points_pred))[:, :3] * 255).astype(np.uint8)

    # fix the orientation of the stl mesh
    center = stl_mesh.centroid
    rot_x = trimesh.transformations.rotation_matrix(
        angle=np.radians(-90),
        direction=[1, 0, 0],
        point=center
    )
    rot_z = trimesh.transformations.rotation_matrix(
        angle=np.radians(180),
        direction=[0, 1, 0],
        point=center
    )
    rotation_total = rot_z @ rot_x
    stl_mesh.apply_transform(rotation_total) 

    return stl_mesh, vmin, vmax


def create_visualization_vtp(viz_data, variable_name):
    """Create a VTP file from visualization data with scalar field"""
    # Create a PyVista point cloud
    points = viz_data["points"]
    pred_values = viz_data["pred"]
    
    # Create PyVista PolyData from points
    point_cloud = pv.PolyData(points)
    
    # Add the predicted values as scalar data
    point_cloud[variable_name] = pred_values
    
    # # Also add target values if available
    # if "tgt" in viz_data:
    #     point_cloud[f"{variable_name}_target"] = viz_data["tgt"]
    
    return point_cloud


def camera_from_bounds(bounds, distance_scale=2.2):
    xmin, xmax, ymin, ymax, zmin, zmax = bounds
    center = np.array([(xmin+xmax)/2, (ymin+ymax)/2, (zmin+zmax)/2], dtype=float)
    ext = np.array([xmax-xmin, ymax-ymin, zmax-zmin], dtype=float)
    diag = float(np.linalg.norm(ext) or 1.0)
    dir_vec = np.array([1.0, 1.0, 1.0]) / np.sqrt(3.0)
    return (center + distance_scale * diag * dir_vec).tolist()


def bounds_from_points(points: np.ndarray):
    mins = points.min(axis=0)
    maxs = points.max(axis=0)
    return (mins[0], maxs[0], mins[1], maxs[1], mins[2], maxs[2])


# ========================== Example Loading Handlers ==========================
def convert_vtp_to_glb(vtp_path, output_dir):
    """Convert VTP file to GLB format"""
    try:
        # Read VTP file with pyvista
        mesh = pv.read(vtp_path)
        mesh = mesh.triangulate()
        
        
        # Convert to trimesh format
        print(" 🔄 Converting VTP to GLB...")
        if mesh.n_points == mesh.n_cells or mesh.get_cell(0).type == 1:
            # Point cloud -> GLB via trimesh
            print(" 🔄 Point cloud -> GLB via trimesh")
            tmesh = trimesh.points.PointCloud(mesh.points)
            tmesh.visual.vertex_colors = np.tile([190, 190, 190], (mesh.n_points, 1))      
            center = tmesh.centroid
            rot_x = trimesh.transformations.rotation_matrix(np.radians(-90), [1, 0, 0], center)
            rot_z = trimesh.transformations.rotation_matrix(np.radians(180), [0, 1, 0], center)
            tmesh.apply_transform(rot_z @ rot_x)
            # Save as GLB
            glb_path = os.path.join(output_dir, f"{os.path.basename(vtp_path)}.glb")
            tmesh.export(glb_path)
            return glb_path
        else:
            # Triangular mesh -> GLB via trimesh
            print(" 🔄 Triangular mesh -> GLB via trimesh")
            mesh = mesh.triangulate()
            mesh_fixed = mesh.compute_normals(
                consistent_normals=True, auto_orient_normals=True,
                point_normals=True, cell_normals=False, inplace=False
            )
            tmesh = _pv_to_trimesh(mesh_fixed)
            glb_path = os.path.join(output_dir, f"{os.path.basename(vtp_path)}.glb")
            tmesh.export(glb_path)
            return glb_path
        
    except Exception as e:
        print(f"Error converting VTP to GLB: {str(e)}")
        return None


def convert_vtp_to_stl(vtp_path, output_dir, decimation_config=None):
    """Convert VTP file to STL format"""
    try:
        # Read VTP file with pyvista
        mesh = pv.read(vtp_path)
        mesh = mesh.triangulate()
        
        # Apply decimation if enabled
        if decimation_config and decimation_config.get("enabled", True):
            try:
                original_faces = mesh.n_cells
                target_faces = int(original_faces * (1 - decimation_config["target_reduction"]))
                target_faces = max(decimation_config["min_faces"], min(target_faces, decimation_config["max_faces"]))
                
                if original_faces > target_faces and mesh.faces.size > 0:
                    print(f"🔧 Decimating VTP mesh: {original_faces}{target_faces} faces")
                    mesh = mesh.decimate(
                        target_reduction=decimation_config["target_reduction"]
                        # preserve_topology=decimation_config["preserve_topology"]
                    )
                    print(f"✅ VTP decimation successful: {mesh.n_cells} faces")
            except Exception as e:
                print(f"⚠️ VTP decimation failed: {e}, using original mesh")
        
        # Convert to trimesh format 
        mesh_fixed = mesh.compute_normals(
            consistent_normals=True, auto_orient_normals=True,
            point_normals=True, cell_normals=False, inplace=False
        )
        
        geom_path = os.path.join(output_dir, f"{os.path.basename(vtp_path)}.stl")
        mesh_fixed.save(geom_path)
        return geom_path

    except Exception as e:
        print(f"Error converting VTP to STL: {str(e)}")
        return None


# ========================== Unit Conversion Utilities ==========================
def mph_to_ms(mph):
    """Convert miles per hour to meters per second"""
    return mph * 0.44704  # 1 mph = 0.44704 m/s

def ms_to_mph(ms):
    """Convert meters per second to miles per hour"""
    return ms / 0.44704

def time_function(func_name=None):
    """Decorator to time function execution"""
    def decorator(func):
        @wraps(func)
        def wrapper(*args, **kwargs):
            name = func_name or func.__name__
            start_time = time.time()
            print(f"⏱️  Starting {name}...")
            try:
                result = func(*args, **kwargs)
                elapsed = time.time() - start_time
                print(f"✅ {name} completed in {elapsed:.3f} seconds")
                return result
            except Exception as e:
                elapsed = time.time() - start_time
                print(f"❌ {name} failed after {elapsed:.3f} seconds: {str(e)}")
                raise
        return wrapper
    return decorator

def print_timing(message, start_time=None):
    """Print timing information"""
    if start_time is None:
        return time.time()
    else:
        elapsed = time.time() - start_time
        print(f"⏱️  {message}: {elapsed:.3f} seconds")
        return time.time()


def vtk_to_np(arr):
    if isinstance(arr, np.ndarray):
        return arr
    try:
        return np.asarray(arr)
    except Exception:
        return nps.vtk_to_numpy(arr)



def mesh_get_variable(mesh: pv.DataSet, var_name: str, npts: int):
    if var_name in mesh.point_data:
        v = vtk_to_np(mesh.point_data[var_name]).reshape(-1)
    elif var_name in mesh.cell_data:
        mesh2 = mesh.cell_data_to_point_data()
        v = vtk_to_np(mesh2.point_data[var_name]).reshape(-1)
    elif var_name in mesh.field_data:
        v0 = vtk_to_np(mesh.field_data[var_name]).ravel()
        v = np.full(npts, float(v0[0]), dtype=np.float32) if v0.size == 1 else np.zeros(npts, np.float32)
    else:
        v = np.zeros(npts, np.float32)
    return v.astype(np.float32, copy=False)




def get_boundary_conditions_text(dataset):
    """Generate boundary conditions display text for the UI"""
    if dataset == "Incompressible flow inside artery":
        return ""
    elif dataset == "Incompressible flow over car":
        return """
**Reference Density:** 1.225 kg/m³

**Reference Viscosity:** 1.789e-5 Pa·s

**Operating Pressure:** 101325 Pa"""
    elif dataset == "Compressible flow over plane":
        return """
**Reference Density:** 0.36 kg/m³

**Reference viscosity:** 1.716e-05 kg/(m·s)

**Operating Pressure:** 23842 Pa

---

**Ambient Temperature:** 218 K

**Cruising velocity:** 250.0 m/s or 560 mph
"""
    elif dataset == "Vehicle crash analysis":
        return ""
    else:
        return "**📋 Boundary Conditions:** Not specified"

def get_boundary_conditions_left(dataset):
    """Generate left column boundary conditions for plane dataset"""
    if dataset == "Compressible flow over plane":
        return """
**Reference Density:** 0.36 kg/m³

**Reference viscosity:** 1.716e-05 kg/(m·s)

**Operating Pressure:** 23842 Pa
"""
    else:
        return ""

def get_boundary_conditions_right(dataset):
    """Generate right column boundary conditions for plane dataset"""
    if dataset == "Compressible flow over plane":
        return """
**Ambient Temperature:** 218 K

**Cruising velocity:** 250.0 m/s or 560 mph
"""
    else:
        return ""


### utils to compute cosine score
def get_points(mesh, max_points=5000):
    """Extract and subsample point cloud from VTP file."""
    try:
        points = mesh.points
        if len(points) > max_points:
            indices = np.random.choice(len(points), max_points, replace=False)
            points = points[indices]
        return points
    except Exception as e:
        raise ValueError(f"Error reading {mesh}: {e}")



def compute_cosine_score(mesh, dataset, smooth_sigma=1):
    """
    Compute Cosine similarity score for a single VTP file against saved training distribution.
    
    Args:
        mesh: PyVista mesh
        dataset: Dataset name
        smooth_sigma: Gaussian smoothing parameter
    
    Returns:
        float: Cosine similarity score (0-1), higher means closer to training distribution
    """
    # Load the saved training distribution
    train_dist_path = os.path.join("configs/app_configs/" , dataset, "train_dist.npz")
    if not os.path.exists(train_dist_path):
        raise ValueError(f"Training distribution file not found: {train_dist_path}")
    
    data = np.load(train_dist_path)
    train_hist = data['hist']
    bin_edges = [data['edges0'], data['edges1'], data['edges2']]
    
    
    # Get test points from VTP file
    test_points = get_points(mesh)
    
    # Create 3D histogram for test points using same bins as training
    test_hist, _ = np.histogramdd(test_points, bins=bin_edges, density=True)
    test_hist = gaussian_filter(test_hist, sigma=smooth_sigma)
    
    # Flatten and normalize
    test_hist = test_hist.flatten()
    test_hist /= test_hist.sum()
    
    # Add small epsilon to avoid zero values
    epsilon = 1e-12
    train_hist_safe = train_hist + epsilon
    test_hist_safe = test_hist + epsilon
    
    # Compute Cosine similarity (1 - cosine distance)
    cosine_distance = cosine(train_hist_safe, test_hist_safe)
    cosine_similarity = 1 - cosine_distance
    
    print(f"Cosine Score for {dataset}: {cosine_similarity:.6f}")
    return cosine_similarity


js_func = """
function refresh() {
    const url = new URL(window.location);

    if (url.searchParams.get('__theme') !== 'dark') {
        url.searchParams.set('__theme', 'dark');
        window.location.href = url.href;
    }
}
"""




# ========================== Mesh Decimation Utilities ==========================
def decimate_mesh(mesh, config=None):
    """
    Decimate a PyVista mesh for faster visualization while preserving important features.
    
    Args:
        mesh: PyVista mesh object
        config: Decimation configuration dict (uses DECIMATION_CONFIG if None)
    
    Returns:
        Decimated PyVista mesh
    """
    
    try:
        # Skip decimation for point clouds
        if mesh.n_cells == 0 or mesh.n_points == mesh.n_cells or mesh.get_cell(0).type == 1:
            print("☁️ Skipping decimation for point cloud")
            return mesh
        

        ## triangulate mesh
        mesh = mesh.triangulate()

        original_faces = mesh.n_cells
        original_points = mesh.n_points
        
        # Calculate target number of faces
        target_faces = int(original_faces * (1 - config["target_reduction"]))
        target_faces = max(config["min_faces"], min(target_faces, config["max_faces"]))
        
        # Skip if already small enough
        if original_faces <= target_faces:
            print(f"📊 Mesh already small enough: {original_faces} faces")
            return mesh
        
        print(f"🔧 Decimating mesh: {original_faces}{target_faces} faces ({original_points} → ~{target_faces*2} points)")
        
        # Use PyVista's decimation
        decimated = mesh.decimate(
            target_reduction=config["target_reduction"]
            # preserve_topology=config["preserve_topology"]
        )
        
        # Ensure we don't go below minimum faces
        if decimated.n_cells < config["min_faces"]:
            print(f"⚠️ Decimation resulted in too few faces ({decimated.n_cells}), using original mesh")
            return mesh
        
        print(f"✅ Decimation successful: {decimated.n_cells} faces, {decimated.n_points} points")
        return decimated
        
    except Exception as e:
        print(f"⚠️ Decimation failed: {e}, using original mesh")
        return mesh