AnsysLPFMTrame-App / models /ansysLPFMs.py
udbhav
Add CPU fallback for segment_csr to run on HF Space
8c96afb
from timm.models.layers import trunc_normal_
from einops import rearrange, repeat
import math
import torch
from torch import nn
import einops
import torch
from torch import nn
from torch_geometric.nn.pool import radius_graph
from torch_scatter import segment_csr
import torch.nn.functional as F
ACTIVATION = {'gelu': nn.GELU, 'tanh': nn.Tanh, 'sigmoid': nn.Sigmoid, 'relu': nn.ReLU, 'leaky_relu': nn.LeakyReLU(0.1),
'softplus': nn.Softplus, 'ELU': nn.ELU, 'silu': nn.SiLU}
class ContinuousSincosEmbed(nn.Module):
"""Embedding layer for continuous coordinates using sine and cosine functions as used in transformers.
This implementation is able to deal with arbitrary coordinate dimensions (e.g., 2D and 3D coordinate systems).
Args:
dim: Dimensionality of the embedded input coordinates.
ndim: Number of dimensions of the input domain.
max_wavelength: Max length. Defaults to 10000.
assert_positive: If true, assert if all input coordiantes are positive. Defaults to True.
"""
def __init__(
self,
dim: int,
ndim: int,
max_wavelength: int = 10000,
assert_positive: bool = True,
):
super().__init__()
self.dim = dim
self.ndim = ndim
# if dim is not cleanly divisible -> cut away trailing dimensions
self.ndim_padding = dim % ndim
dim_per_ndim = (dim - self.ndim_padding) // ndim
self.sincos_padding = dim_per_ndim % 2
self.max_wavelength = max_wavelength
self.padding = self.ndim_padding + self.sincos_padding * ndim
self.assert_positive = assert_positive
effective_dim_per_wave = (self.dim - self.padding) // ndim
assert effective_dim_per_wave > 0
arange = torch.arange(0, effective_dim_per_wave, 2, dtype=torch.float32)
self.register_buffer(
"omega",
1.0 / max_wavelength**(arange / effective_dim_per_wave),
)
self.surface_bias = nn.Sequential(
nn.Linear(dim, dim),
nn.GELU(),
nn.Linear(dim, dim),
)
def forward(self, coords: torch.Tensor) -> torch.Tensor:
"""Forward method of the ContinuousSincosEmbed layer.
Args:
coords: Tensor of coordinates. The shape of the tensor should be
(batch size, number of points, coordinate dimension) or (number of points, coordinate dimension).
Returns:
Tensor with embedded coordinates.
"""
if self.assert_positive:
# check if coords are positive
assert torch.all(coords >= 0)
# fp32 to avoid numerical imprecision
coords = coords.float()
with torch.autocast(device_type=str(coords.device).split(":")[0], enabled=False):
coordinate_ndim = coords.shape[-1]
assert self.ndim == coordinate_ndim
out = coords.unsqueeze(-1) @ self.omega.unsqueeze(0)
emb = torch.concat([torch.sin(out), torch.cos(out)], dim=-1)
if coords.ndim == 3:
emb = einops.rearrange(emb, "bs num_points ndim dim -> bs num_points (ndim dim)")
elif coords.ndim == 2:
emb = einops.rearrange(emb, "num_points ndim dim -> num_points (ndim dim)")
else:
raise NotImplementedError
if self.padding > 0:
padding = torch.zeros(*emb.shape[:-1], self.padding, device=emb.device, dtype=emb.dtype)
emb = torch.concat([emb, padding], dim=-1)
emb = self.surface_bias(emb)
return emb
class MLP(nn.Module):
def __init__(self, n_input, n_hidden, n_output, n_layers=0, res=False):
super(MLP, self).__init__()
act = nn.GELU
self.n_input = n_input
self.n_hidden = n_hidden
self.n_output = n_output
self.n_layers = n_layers
self.res = res
self.linear_pre = nn.Sequential(nn.Linear(n_input, n_hidden), act())
self.linear_post = nn.Linear(n_hidden, n_output)
self.linears = nn.ModuleList([nn.Sequential(nn.Linear(n_hidden, n_hidden), act()) for _ in range(n_layers)])
def forward(self, x):
x = self.linear_pre(x)
for i in range(self.n_layers):
if self.res:
x = self.linears[i](x) + x
else:
x = self.linears[i](x)
x = self.linear_post(x)
return x
class MultiHeadAttention(nn.Module):
def __init__(self, d_model, num_heads, dropout=0.0):
super().__init__()
assert d_model % num_heads == 0, "d_model must be divisible by num_heads"
self.d_model = d_model
self.num_heads = num_heads
self.head_dim = d_model // num_heads
# Separate projections for Q, K, V
self.q_proj = nn.Linear(d_model, d_model)
self.k_proj = nn.Linear(d_model, d_model)
self.v_proj = nn.Linear(d_model, d_model)
self.out_proj = nn.Linear(d_model, d_model)
self.dropout = nn.Dropout(dropout) ## Effect of this?
def forward(self, q, k=None, v=None):
if k is None:
k = q
if v is None:
v = k
batch_size = q.size(0)
# Project inputs to Q, K, V
q = self.q_proj(q).view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2)
k = self.k_proj(k).view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2)
v = self.v_proj(v).view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2)
# with torch.backends.cuda.sdp_kernel(
# enable_flash=True,
# enable_math=False,
# enable_mem_efficient=False
# ):
# output = F.scaled_dot_product_attention(q, k, v)
output = F.scaled_dot_product_attention(q, k, v)
output = output.transpose(1, 2).contiguous().view(batch_size, -1, self.d_model)
output = self.out_proj(output)
return output
class TransformerSelfBlock(nn.Module):
def __init__(self, n_hidden, n_heads, mlp_ratio = 1, dropout=0.0):
super().__init__()
self.self_attn = MultiHeadAttention(n_hidden, n_heads, dropout)
self.ffn = MLP(n_hidden, n_hidden*mlp_ratio, n_hidden)
self.norm1 = nn.LayerNorm(n_hidden)
self.norm2 = nn.LayerNorm(n_hidden)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
normx = self.norm1(x)
self_output = self.self_attn(
q=normx,
k=normx,
v=normx
)
x = x + self.dropout(self_output)
# Feedforward network
ffn_output = self.ffn(self.norm2(x)) ## 2 layer 128 -> 256 ->128 (expansion) mlp ratio = 2
x = x + self.dropout(ffn_output)
return x ## Dees head dimension matter? or n_heads matter? whats the intution?
class ansysLPFMs(nn.Module):
def __init__(self, cfg):
super().__init__()
in_dim = cfg.indim
out_dim = cfg.outdim
self.n_decoder = cfg.n_decoder
n_hidden = cfg.hidden_dim
n_heads = cfg.n_heads
mlp_ratio = cfg.mlp_ratio
self.save_latent = getattr(cfg, "save_latent", False)
if cfg.pos_embed_sincos:
self.pos_embed = ContinuousSincosEmbed(dim=n_hidden, ndim=in_dim)
else:
self.pos_embed = MLP(in_dim, n_hidden * 2, n_hidden, n_layers=0, res=False)
self.decoders = nn.ModuleList([TransformerSelfBlock(n_hidden, n_heads, mlp_ratio) for _ in range(self.n_decoder)])
self.linear_proj_out = nn.Linear(n_hidden, out_dim)
# Initialize weights properly for stability
self.initialize_weights()
def initialize_weights(self):
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=0.02) ## and between std deviation of -2 and 2
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
if isinstance(m, (nn.LayerNorm, nn.BatchNorm1d)):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
# def _init_weights(self, m):
# if isinstance(m, nn.Linear):
# nn.init.xavier_uniform_(m.weight, gain=1.0)
# if m.bias is not None:
# nn.init.constant_(m.bias, 0)
# elif isinstance(m, nn.LayerNorm):
# nn.init.constant_(m.bias, 0)
# nn.init.constant_(m.weight, 1.0)
def forward(self, data):
input_pos = data['input_pos']
x = self.pos_embed(input_pos)
for i, decoder in enumerate(self.decoders):
x = decoder(x)
if i == self.n_decoder // 2:
mid = x
out = self.linear_proj_out(x)
if self.save_latent:
return out, mid
return out