from timm.models.layers import trunc_normal_ from einops import rearrange, repeat import math import torch from torch import nn import einops import torch from torch import nn from torch_geometric.nn.pool import radius_graph from torch_scatter import segment_csr import torch.nn.functional as F ACTIVATION = {'gelu': nn.GELU, 'tanh': nn.Tanh, 'sigmoid': nn.Sigmoid, 'relu': nn.ReLU, 'leaky_relu': nn.LeakyReLU(0.1), 'softplus': nn.Softplus, 'ELU': nn.ELU, 'silu': nn.SiLU} class ContinuousSincosEmbed(nn.Module): """Embedding layer for continuous coordinates using sine and cosine functions as used in transformers. This implementation is able to deal with arbitrary coordinate dimensions (e.g., 2D and 3D coordinate systems). Args: dim: Dimensionality of the embedded input coordinates. ndim: Number of dimensions of the input domain. max_wavelength: Max length. Defaults to 10000. assert_positive: If true, assert if all input coordiantes are positive. Defaults to True. """ def __init__( self, dim: int, ndim: int, max_wavelength: int = 10000, assert_positive: bool = True, ): super().__init__() self.dim = dim self.ndim = ndim # if dim is not cleanly divisible -> cut away trailing dimensions self.ndim_padding = dim % ndim dim_per_ndim = (dim - self.ndim_padding) // ndim self.sincos_padding = dim_per_ndim % 2 self.max_wavelength = max_wavelength self.padding = self.ndim_padding + self.sincos_padding * ndim self.assert_positive = assert_positive effective_dim_per_wave = (self.dim - self.padding) // ndim assert effective_dim_per_wave > 0 arange = torch.arange(0, effective_dim_per_wave, 2, dtype=torch.float32) self.register_buffer( "omega", 1.0 / max_wavelength**(arange / effective_dim_per_wave), ) self.surface_bias = nn.Sequential( nn.Linear(dim, dim), nn.GELU(), nn.Linear(dim, dim), ) def forward(self, coords: torch.Tensor) -> torch.Tensor: """Forward method of the ContinuousSincosEmbed layer. Args: coords: Tensor of coordinates. The shape of the tensor should be (batch size, number of points, coordinate dimension) or (number of points, coordinate dimension). Returns: Tensor with embedded coordinates. """ if self.assert_positive: # check if coords are positive assert torch.all(coords >= 0) # fp32 to avoid numerical imprecision coords = coords.float() with torch.autocast(device_type=str(coords.device).split(":")[0], enabled=False): coordinate_ndim = coords.shape[-1] assert self.ndim == coordinate_ndim out = coords.unsqueeze(-1) @ self.omega.unsqueeze(0) emb = torch.concat([torch.sin(out), torch.cos(out)], dim=-1) if coords.ndim == 3: emb = einops.rearrange(emb, "bs num_points ndim dim -> bs num_points (ndim dim)") elif coords.ndim == 2: emb = einops.rearrange(emb, "num_points ndim dim -> num_points (ndim dim)") else: raise NotImplementedError if self.padding > 0: padding = torch.zeros(*emb.shape[:-1], self.padding, device=emb.device, dtype=emb.dtype) emb = torch.concat([emb, padding], dim=-1) emb = self.surface_bias(emb) return emb class MLP(nn.Module): def __init__(self, n_input, n_hidden, n_output, n_layers=0, res=False): super(MLP, self).__init__() act = nn.GELU self.n_input = n_input self.n_hidden = n_hidden self.n_output = n_output self.n_layers = n_layers self.res = res self.linear_pre = nn.Sequential(nn.Linear(n_input, n_hidden), act()) self.linear_post = nn.Linear(n_hidden, n_output) self.linears = nn.ModuleList([nn.Sequential(nn.Linear(n_hidden, n_hidden), act()) for _ in range(n_layers)]) def forward(self, x): x = self.linear_pre(x) for i in range(self.n_layers): if self.res: x = self.linears[i](x) + x else: x = self.linears[i](x) x = self.linear_post(x) return x class MultiHeadAttention(nn.Module): def __init__(self, d_model, num_heads, dropout=0.0): super().__init__() assert d_model % num_heads == 0, "d_model must be divisible by num_heads" self.d_model = d_model self.num_heads = num_heads self.head_dim = d_model // num_heads # Separate projections for Q, K, V self.q_proj = nn.Linear(d_model, d_model) self.k_proj = nn.Linear(d_model, d_model) self.v_proj = nn.Linear(d_model, d_model) self.out_proj = nn.Linear(d_model, d_model) self.dropout = nn.Dropout(dropout) ## Effect of this? def forward(self, q, k=None, v=None): if k is None: k = q if v is None: v = k batch_size = q.size(0) # Project inputs to Q, K, V q = self.q_proj(q).view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2) k = self.k_proj(k).view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2) v = self.v_proj(v).view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2) # with torch.backends.cuda.sdp_kernel( # enable_flash=True, # enable_math=False, # enable_mem_efficient=False # ): # output = F.scaled_dot_product_attention(q, k, v) output = F.scaled_dot_product_attention(q, k, v) output = output.transpose(1, 2).contiguous().view(batch_size, -1, self.d_model) output = self.out_proj(output) return output class TransformerSelfBlock(nn.Module): def __init__(self, n_hidden, n_heads, mlp_ratio = 1, dropout=0.0): super().__init__() self.self_attn = MultiHeadAttention(n_hidden, n_heads, dropout) self.ffn = MLP(n_hidden, n_hidden*mlp_ratio, n_hidden) self.norm1 = nn.LayerNorm(n_hidden) self.norm2 = nn.LayerNorm(n_hidden) self.dropout = nn.Dropout(dropout) def forward(self, x): normx = self.norm1(x) self_output = self.self_attn( q=normx, k=normx, v=normx ) x = x + self.dropout(self_output) # Feedforward network ffn_output = self.ffn(self.norm2(x)) ## 2 layer 128 -> 256 ->128 (expansion) mlp ratio = 2 x = x + self.dropout(ffn_output) return x ## Dees head dimension matter? or n_heads matter? whats the intution? class ansysLPFMs(nn.Module): def __init__(self, cfg): super().__init__() in_dim = cfg.indim out_dim = cfg.outdim self.n_decoder = cfg.n_decoder n_hidden = cfg.hidden_dim n_heads = cfg.n_heads mlp_ratio = cfg.mlp_ratio self.save_latent = getattr(cfg, "save_latent", False) if cfg.pos_embed_sincos: self.pos_embed = ContinuousSincosEmbed(dim=n_hidden, ndim=in_dim) else: self.pos_embed = MLP(in_dim, n_hidden * 2, n_hidden, n_layers=0, res=False) self.decoders = nn.ModuleList([TransformerSelfBlock(n_hidden, n_heads, mlp_ratio) for _ in range(self.n_decoder)]) self.linear_proj_out = nn.Linear(n_hidden, out_dim) # Initialize weights properly for stability self.initialize_weights() def initialize_weights(self): self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=0.02) ## and between std deviation of -2 and 2 if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) if isinstance(m, (nn.LayerNorm, nn.BatchNorm1d)): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) # def _init_weights(self, m): # if isinstance(m, nn.Linear): # nn.init.xavier_uniform_(m.weight, gain=1.0) # if m.bias is not None: # nn.init.constant_(m.bias, 0) # elif isinstance(m, nn.LayerNorm): # nn.init.constant_(m.bias, 0) # nn.init.constant_(m.weight, 1.0) def forward(self, data): input_pos = data['input_pos'] x = self.pos_embed(input_pos) for i, decoder in enumerate(self.decoders): x = decoder(x) if i == self.n_decoder // 2: mid = x out = self.linear_proj_out(x) if self.save_latent: return out, mid return out