File size: 10,145 Bytes
830a558
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import os

import hydra
from omegaconf import OmegaConf
import torch
from omegaconf import DictConfig
from physicsnemo.distributed import DistributedManager
from physicsnemo.launch.logging import LaunchLogger, PythonLogger
from physicsnemo.launch.utils import load_checkpoint, save_checkpoint
from physicsnemo.sym.hydra import to_absolute_path
from torch.nn.parallel import DistributedDataParallel
from torch.optim import AdamW

from dataloaders import Dedalus2DDataset, MHDDataloaderVecPot
from losses import LossMHDVecPot_PhysicsNeMo
from tfno import TFNO
from utils.plot_utils import plot_predictions_mhd, plot_predictions_mhd_plotly

dtype = torch.float
torch.set_default_dtype(dtype)


@hydra.main(
    version_base="1.3", config_path="config", config_name="train_mhd_vec_pot_tfno.yaml"
)
def main(cfg: DictConfig) -> None:
    DistributedManager.initialize()  # Only call this once in the entire script!
    dist = DistributedManager()  # call if required elsewhere
    cfg = OmegaConf.to_container(cfg, resolve=True)

    # initialize monitoring
    log = PythonLogger(name="mhd_pino")
    log.file_logging()

    log_params = cfg["log_params"]

    # Load config file parameters
    model_params = cfg["model_params"]
    dataset_params = cfg["dataset_params"]
    train_loader_params = cfg["train_loader_params"]
    val_loader_params = cfg["val_loader_params"]
    loss_params = cfg["loss_params"]
    optimizer_params = cfg["optimizer_params"]
    train_params = cfg["train_params"]

    load_ckpt = cfg["load_ckpt"]
    output_dir = cfg["output_dir"]

    output_dir = to_absolute_path(output_dir)
    os.makedirs(output_dir, exist_ok=True)

    data_dir = dataset_params["data_dir"]
    ckpt_path = train_params["ckpt_path"]

    # Construct dataloaders
    dataset_train = Dedalus2DDataset(
        dataset_params["data_dir"],
        output_names=dataset_params["output_names"],
        field_names=dataset_params["field_names"],
        num_train=dataset_params["num_train"],
        num_test=dataset_params["num_test"],
        num=dataset_params["num"],
        use_train=True,
    )
    dataset_val = Dedalus2DDataset(
        data_dir,
        output_names=dataset_params["output_names"],
        field_names=dataset_params["field_names"],
        num_train=dataset_params["num_train"],
        num_test=dataset_params["num_test"],
        num=dataset_params["num"],
        use_train=False,
    )

    mhd_dataloader_train = MHDDataloaderVecPot(
        dataset_train,
        sub_x=dataset_params["sub_x"],
        sub_t=dataset_params["sub_t"],
        ind_x=dataset_params["ind_x"],
        ind_t=dataset_params["ind_t"],
    )
    mhd_dataloader_val = MHDDataloaderVecPot(
        dataset_val,
        sub_x=dataset_params["sub_x"],
        sub_t=dataset_params["sub_t"],
        ind_x=dataset_params["ind_x"],
        ind_t=dataset_params["ind_t"],
    )

    dataloader_train, sampler_train = mhd_dataloader_train.create_dataloader(
        batch_size=train_loader_params["batch_size"],
        shuffle=train_loader_params["shuffle"],
        num_workers=train_loader_params["num_workers"],
        pin_memory=train_loader_params["pin_memory"],
        distributed=dist.distributed,
    )
    dataloader_val, sampler_val = mhd_dataloader_val.create_dataloader(
        batch_size=val_loader_params["batch_size"],
        shuffle=val_loader_params["shuffle"],
        num_workers=val_loader_params["num_workers"],
        pin_memory=val_loader_params["pin_memory"],
        distributed=dist.distributed,
    )

    # define FNO model
    model = TFNO(
        in_channels=model_params["in_dim"],
        out_channels=model_params["out_dim"],
        decoder_layers=model_params["decoder_layers"],
        decoder_layer_size=model_params["fc_dim"],
        dimension=model_params["dimension"],
        latent_channels=model_params["layers"],
        num_fno_layers=model_params["num_fno_layers"],
        num_fno_modes=model_params["modes"],
        padding=[model_params["pad_z"], model_params["pad_y"], model_params["pad_x"]],
        rank=model_params["rank"],
        factorization=model_params["factorization"],
        fixed_rank_modes=model_params["fixed_rank_modes"],
        decomposition_kwargs=model_params["decomposition_kwargs"],
    ).to(dist.device)
    # Set up DistributedDataParallel if using more than a single process.
    # The `distributed` property of DistributedManager can be used to
    # check this.
    if dist.distributed:
        ddps = torch.cuda.Stream()
        with torch.cuda.stream(ddps):
            model = DistributedDataParallel(
                model,
                device_ids=[dist.local_rank],  # Set the device_id to be
                # the local rank of this process on
                # this node
                output_device=dist.device,
                broadcast_buffers=dist.broadcast_buffers,
                find_unused_parameters=dist.find_unused_parameters,
            )
        torch.cuda.current_stream().wait_stream(ddps)

    # Construct optimizer and scheduler
    optimizer = AdamW(
        model.parameters(),
        betas=optimizer_params["betas"],
        lr=optimizer_params["lr"],
        weight_decay=0.1,
    )

    scheduler = torch.optim.lr_scheduler.MultiStepLR(
        optimizer,
        milestones=optimizer_params["milestones"],
        gamma=optimizer_params["gamma"],
    )

    # Construct Loss class
    mhd_loss = LossMHDVecPot_PhysicsNeMo(**loss_params)

    # Load model from checkpoint (if exists)
    loaded_epoch = 0
    if load_ckpt:
        loaded_epoch = load_checkpoint(
            ckpt_path, model, optimizer, scheduler, device=dist.device
        )

    # Training Loop
    epochs = train_params["epochs"]
    ckpt_freq = train_params["ckpt_freq"]
    names = dataset_params["fields"]
    input_norm = torch.tensor(model_params["input_norm"]).to(dist.device)
    output_norm = torch.tensor(model_params["output_norm"]).to(dist.device)
    for epoch in range(max(1, loaded_epoch + 1), epochs + 1):
        with LaunchLogger(
            "train",
            epoch=epoch,
            num_mini_batch=len(dataloader_train),
            epoch_alert_freq=1,
        ) as log:
            if dist.distributed:
                sampler_train.set_epoch(epoch)

            # Train Loop
            model.train()

            for i, (inputs, outputs) in enumerate(dataloader_train):
                inputs = inputs.type(torch.FloatTensor).to(dist.device)
                outputs = outputs.type(torch.FloatTensor).to(dist.device)
                # Zero Gradients
                optimizer.zero_grad()
                # Compute Predictions
                pred = (
                    model((inputs / input_norm).permute(0, 4, 1, 2, 3)).permute(
                        0, 2, 3, 4, 1
                    )
                    * output_norm
                )
                # Compute Loss
                loss, loss_dict = mhd_loss(pred, outputs, inputs, return_loss_dict=True)
                # Compute Gradients for Back Propagation
                loss.backward()
                # Update Weights
                optimizer.step()

                log.log_minibatch(loss_dict)

            log.log_epoch({"Learning Rate": optimizer.param_groups[0]["lr"]})
            scheduler.step()

        with LaunchLogger("valid", epoch=epoch) as log:
            # Val loop
            model.eval()
            plot_count = 0
            with torch.no_grad():
                for i, (inputs, outputs) in enumerate(dataloader_val):
                    inputs = inputs.type(dtype).to(dist.device)
                    outputs = outputs.type(dtype).to(dist.device)

                    # Compute Predictions
                    pred = (
                        model((inputs / input_norm).permute(0, 4, 1, 2, 3)).permute(
                            0, 2, 3, 4, 1
                        )
                        * output_norm
                    )
                    # Compute Loss
                    loss, loss_dict = mhd_loss(
                        pred, outputs, inputs, return_loss_dict=True
                    )

                    log.log_minibatch(loss_dict)

                    # Get prediction plots to log
                    # Do for number of batches specified in the config file
                    if (i < log_params["log_num_plots"]) and (
                        epoch % log_params["log_plot_freq"] == 0
                    ):
                        # Add all predictions in batch
                        for j, _ in enumerate(pred):
                            # Make plots for each field
                            for index, name in enumerate(names):
                                # Generate figure
                                _ = plot_predictions_mhd_plotly(
                                    pred[j].cpu(),
                                    outputs[j].cpu(),
                                    inputs[j].cpu(),
                                    index=index,
                                    name=name,
                                )
                            plot_count += 1

                    # Get prediction plots and save images locally
                    if (i < 2) and (epoch % log_params["log_plot_freq"] == 0):
                        # Add all predictions in batch
                        for j, _ in enumerate(pred):
                            # Generate figure
                            plot_predictions_mhd(
                                pred[j].cpu(),
                                outputs[j].cpu(),
                                inputs[j].cpu(),
                                names=names,
                                save_path=os.path.join(
                                    output_dir,
                                    "MHD_physicsnemo" + "_" + str(dist.rank),
                                ),
                                save_suffix=i,
                            )

            if epoch % ckpt_freq == 0 and dist.rank == 0:
                save_checkpoint(ckpt_path, model, optimizer, scheduler, epoch=epoch)


if __name__ == "__main__":
    main()