Spaces:
Runtime error
Runtime error
Omar Sanseviero
commited on
Commit
·
1d53eef
1
Parent(s):
c5d2104
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
os.system("git clone https://github.com/thohemp/6DRepNet")
|
| 3 |
+
import sys
|
| 4 |
+
sys.path.append("frame-interpolation")
|
| 5 |
+
|
| 6 |
+
from model import SixDRepNet
|
| 7 |
+
import math
|
| 8 |
+
import re
|
| 9 |
+
from matplotlib import pyplot as plt
|
| 10 |
+
import sys
|
| 11 |
+
import os
|
| 12 |
+
|
| 13 |
+
import numpy as np
|
| 14 |
+
import cv2
|
| 15 |
+
import matplotlib.pyplot as plt
|
| 16 |
+
from numpy.lib.function_base import _quantile_unchecked
|
| 17 |
+
|
| 18 |
+
import torch
|
| 19 |
+
import torch.nn as nn
|
| 20 |
+
from torch.utils.data import DataLoader
|
| 21 |
+
from torchvision import transforms
|
| 22 |
+
import torchvision
|
| 23 |
+
import torch.nn.functional as F
|
| 24 |
+
import utils
|
| 25 |
+
import matplotlib
|
| 26 |
+
from PIL import Image
|
| 27 |
+
import time
|
| 28 |
+
from face_detection import RetinaFace
|
| 29 |
+
from huggingface_hub import hf_hub_download
|
| 30 |
+
|
| 31 |
+
snapshot_path = hf_hub_download(repo_id="osanseviero/6DRepNet_300W_LP_AFLW2000", filename="model.pth")
|
| 32 |
+
|
| 33 |
+
model = SixDRepNet(backbone_name='RepVGG-B1g2',
|
| 34 |
+
backbone_file='',
|
| 35 |
+
deploy=True,
|
| 36 |
+
pretrained=False)
|
| 37 |
+
|
| 38 |
+
detector = RetinaFace()
|
| 39 |
+
saved_state_dict = torch.load(os.path.join(
|
| 40 |
+
snapshot_path), map_location='cpu')
|
| 41 |
+
|
| 42 |
+
if 'model_state_dict' in saved_state_dict:
|
| 43 |
+
model.load_state_dict(saved_state_dict['model_state_dict'])
|
| 44 |
+
else:
|
| 45 |
+
model.load_state_dict(saved_state_dict)
|
| 46 |
+
model.eval()
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
def predict(img):
|
| 50 |
+
faces = detector(frame)
|
| 51 |
+
for box, landmarks, score in faces:
|
| 52 |
+
# Print the location of each face in this image
|
| 53 |
+
if score < .95:
|
| 54 |
+
continue
|
| 55 |
+
x_min = int(box[0])
|
| 56 |
+
y_min = int(box[1])
|
| 57 |
+
x_max = int(box[2])
|
| 58 |
+
y_max = int(box[3])
|
| 59 |
+
bbox_width = abs(x_max - x_min)
|
| 60 |
+
bbox_height = abs(y_max - y_min)
|
| 61 |
+
|
| 62 |
+
x_min = max(0,x_min-int(0.2*bbox_height))
|
| 63 |
+
y_min = max(0,y_min-int(0.2*bbox_width))
|
| 64 |
+
x_max = x_max+int(0.2*bbox_height)
|
| 65 |
+
y_max = y_max+int(0.2*bbox_width)
|
| 66 |
+
|
| 67 |
+
img = frame[y_min:y_max,x_min:x_max]
|
| 68 |
+
img = cv2.resize(img, (244, 244))/255.0
|
| 69 |
+
img = img.transpose(2, 0, 1)
|
| 70 |
+
img = torch.from_numpy(img).type(torch.FloatTensor)
|
| 71 |
+
img = torch.Tensor(img)
|
| 72 |
+
img=img.unsqueeze(0)
|
| 73 |
+
|
| 74 |
+
R_pred = model(img)
|
| 75 |
+
euler = utils.compute_euler_angles_from_rotation_matrices(
|
| 76 |
+
R_pred)*180/np.pi
|
| 77 |
+
p_pred_deg = euler[:, 0].cpu()
|
| 78 |
+
y_pred_deg = euler[:, 1].cpu()
|
| 79 |
+
r_pred_deg = euler[:, 2].cpu()
|
| 80 |
+
utils.plot_pose_cube(frame, y_pred_deg, p_pred_deg, r_pred_deg, x_min + int(.5*(x_max-x_min)), y_min + int(.5*(y_max-y_min)), size = bbox_width)
|
| 81 |
+
|
| 82 |
+
return img
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
iface = gr.Interface(
|
| 86 |
+
fn=predict,
|
| 87 |
+
inputs='img',
|
| 88 |
+
outputs='img',
|
| 89 |
+
)
|
| 90 |
+
|
| 91 |
+
iface.launch()
|