6th_mk2 / app.py
pastenishian's picture
fix: color fix 2
5cc75e5
import gradio as gr
from matplotlib import gridspec
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
import torch
from transformers import AutoImageProcessor, AutoModelForSemanticSegmentation
MODEL_ID = "nvidia/segformer-b3-finetuned-cityscapes-1024-1024"
processor = AutoImageProcessor.from_pretrained(MODEL_ID)
model = AutoModelForSemanticSegmentation.from_pretrained(MODEL_ID)
def ade_palette():
"""ADE20K palette that maps each class to RGB values."""
return [
[0, 255, 0], # road
[255, 255, 0], # sidewalk
[0, 255, 255], # building
[255, 0, 255], # wall
[255, 255, 255], # fence
[255, 165, 0], # pole
[245, 245, 220], # traffic light
[128, 128, 128], # traffic sign
[128, 0, 128], # vegetation
[173, 216, 230], # terrain
[255, 0, 0], # sky
[0, 128, 128], # person
[0, 0, 255], # rider
[165, 42, 42], # car
[211, 211, 211], # truck
[0, 100, 0], # bus
[255, 127, 80], # train
[191, 255, 0], # motorcycle
[75, 0, 130], # bicycle
]
labels_list = []
with open("labels.txt", "r", encoding="utf-8") as fp:
for line in fp:
labels_list.append(line.rstrip("\n"))
colormap = np.asarray(ade_palette(), dtype=np.uint8)
def label_to_color_image(label):
if label.ndim != 2:
raise ValueError("Expect 2-D input label")
if np.max(label) >= len(colormap):
raise ValueError("label value too large.")
return colormap[label]
def draw_plot(pred_img, seg_np):
fig = plt.figure(figsize=(20, 15))
grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1])
plt.subplot(grid_spec[0])
plt.imshow(pred_img)
plt.axis('off')
LABEL_NAMES = np.asarray(labels_list)
FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1)
FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP)
unique_labels = np.unique(seg_np.astype("uint8"))
ax = plt.subplot(grid_spec[1])
plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest")
ax.yaxis.tick_right()
plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels])
plt.xticks([], [])
ax.tick_params(width=0.0, labelsize=25)
return fig
def run_inference(input_img):
# input: numpy array from gradio -> PIL
img = Image.fromarray(input_img.astype(np.uint8)) if isinstance(input_img, np.ndarray) else input_img
if img.mode != "RGB":
img = img.convert("RGB")
inputs = processor(images=img, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits # (1, C, h/4, w/4)
# resize to original
upsampled = torch.nn.functional.interpolate(
logits, size=img.size[::-1], mode="bilinear", align_corners=False
)
seg = upsampled.argmax(dim=1)[0].cpu().numpy().astype(np.uint8) # (H,W)
# colorize & overlay
color_seg = colormap[seg] # (H,W,3)
pred_img = (np.array(img) * 0.5 + color_seg * 0.5).astype(np.uint8)
fig = draw_plot(pred_img, seg)
return fig
demo = gr.Interface(
fn=run_inference,
inputs=gr.Image(type="numpy", label="Input Image"),
outputs=gr.Plot(label="Overlay + Legend"),
examples=[
"1.jpg",
"2.jpg",
"3.jpg",
"4.jpeg",
"5.jpg",
"6.jpg",
"7.jpeg",
"8.jpg",
"9.jpeg",
"10.jpg"
],
flagging_mode="never",
cache_examples=False,
)
if __name__ == "__main__":
demo.launch()