Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -37,6 +37,7 @@ device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
| 37 |
MODEL_ID_M = "nvidia/Llama-3.1-Nemotron-Nano-VL-8B-V1"
|
| 38 |
processor_m = AutoImageProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
|
| 39 |
tokenizer_m = AutoTokenizer.from_pretrained(MODEL_ID_M)
|
|
|
|
| 40 |
model_m = AutoModel.from_pretrained(
|
| 41 |
MODEL_ID_M,
|
| 42 |
trust_remote_code=True,
|
|
@@ -89,35 +90,65 @@ def generate_image(model_name: str, text: str, image: Image.Image,
|
|
| 89 |
processor = processor_m
|
| 90 |
tokenizer = tokenizer_m
|
| 91 |
model = model_m
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
#
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 121 |
messages = [{
|
| 122 |
"role": "user",
|
| 123 |
"content": [
|
|
@@ -134,21 +165,19 @@ def generate_image(model_name: str, text: str, image: Image.Image,
|
|
| 134 |
truncation=False,
|
| 135 |
max_length=MAX_INPUT_TOKEN_LENGTH
|
| 136 |
).to(device)
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
time.sleep(0.01)
|
| 151 |
-
yield buffer
|
| 152 |
|
| 153 |
@spaces.GPU
|
| 154 |
def generate_video(model_name: str, text: str, video_path: str,
|
|
@@ -161,39 +190,65 @@ def generate_video(model_name: str, text: str, video_path: str,
|
|
| 161 |
processor = processor_m
|
| 162 |
tokenizer = tokenizer_m
|
| 163 |
model = model_m
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
yield "Please upload a video."
|
| 176 |
-
return
|
| 177 |
-
|
| 178 |
-
frames = downsample_video(video_path)
|
| 179 |
-
if model_name == "Llama-3.1-Nemotron-Nano-VL-8B-V1":
|
| 180 |
-
# Construct a simple prompt for Llama-3.1-Nemotron-Nano-VL-8B-V1
|
| 181 |
-
prompt_parts = ["<|startoftext|>You are a helpful assistant.<|endoftext|>", text]
|
| 182 |
-
for frame in frames:
|
| 183 |
-
image, timestamp = frame
|
| 184 |
-
prompt_parts.append(f"Frame {timestamp}: <|image|>")
|
| 185 |
-
prompt_full = " ".join(prompt_parts) + "<|endoftext|>"
|
| 186 |
-
inputs = tokenizer(
|
| 187 |
-
prompt_full,
|
| 188 |
-
return_tensors="pt",
|
| 189 |
-
padding=True,
|
| 190 |
-
truncation=False,
|
| 191 |
-
max_length=MAX_INPUT_TOKEN_LENGTH
|
| 192 |
-
).to(device)
|
| 193 |
# Process all frames
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 197 |
messages = [
|
| 198 |
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
|
| 199 |
{"role": "user", "content": [{"type": "text", "text": text}]}
|
|
@@ -208,33 +263,33 @@ def generate_video(model_name: str, text: str, video_path: str,
|
|
| 208 |
add_generation_prompt=True,
|
| 209 |
return_dict=True,
|
| 210 |
return_tensors="pt",
|
|
|
|
|
|
|
| 211 |
truncation=False,
|
| 212 |
max_length=MAX_INPUT_TOKEN_LENGTH
|
| 213 |
).to(device)
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
"
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
time.sleep(0.01)
|
| 237 |
-
yield buffer
|
| 238 |
|
| 239 |
# Define examples for image and video inference
|
| 240 |
image_examples = [
|
|
@@ -293,11 +348,11 @@ with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
|
| 293 |
model_choice = gr.Radio(
|
| 294 |
choices=["Llama-3.1-Nemotron-Nano-VL-8B-V1", "SpaceThinker-3B", "coreOCR-7B-050325-preview"],
|
| 295 |
label="Select Model",
|
| 296 |
-
value="
|
| 297 |
)
|
| 298 |
|
| 299 |
gr.Markdown("**Model Info**")
|
| 300 |
-
gr.Markdown("⤷ [SkyCaptioner-V1](https://huggingface.co/Skywork/SkyCaptioner-V1):
|
| 301 |
gr.Markdown("⤷ [SpaceThinker-Qwen2.5VL-3B](https://huggingface.co/remyxai/SpaceThinker-Qwen2.5VL-3B): thinking/reasoning multimodal/vision-language model (VLM) trained to enhance spatial reasoning.")
|
| 302 |
gr.Markdown("⤷ [coreOCR-7B-050325-preview](https://huggingface.co/prithivMLmods/coreOCR-7B-050325-preview): model is a fine-tuned version of qwen/qwen2-vl-7b, optimized for document-level optical character recognition (ocr), long-context vision-language understanding.")
|
| 303 |
gr.Markdown("⤷ [Imgscope-OCR-2B-0527](https://huggingface.co/prithivMLmods/Imgscope-OCR-2B-0527): fine-tuned version of qwen2-vl-2b-instruct, specifically optimized for messy handwriting recognition, document ocr, realistic handwritten ocr, and math problem solving with latex formatting.")
|
|
|
|
| 37 |
MODEL_ID_M = "nvidia/Llama-3.1-Nemotron-Nano-VL-8B-V1"
|
| 38 |
processor_m = AutoImageProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
|
| 39 |
tokenizer_m = AutoTokenizer.from_pretrained(MODEL_ID_M)
|
| 40 |
+
tokenizer_m.pad_token = tokenizer_m.eos_token # Set pad_token to resolve ValueError
|
| 41 |
model_m = AutoModel.from_pretrained(
|
| 42 |
MODEL_ID_M,
|
| 43 |
trust_remote_code=True,
|
|
|
|
| 90 |
processor = processor_m
|
| 91 |
tokenizer = tokenizer_m
|
| 92 |
model = model_m
|
| 93 |
+
if image is None:
|
| 94 |
+
yield "Please upload an image."
|
| 95 |
+
return
|
| 96 |
+
# Construct message with <image> token as per reference
|
| 97 |
+
if "<image>" not in text:
|
| 98 |
+
message = f"<image>\n{text}"
|
| 99 |
+
else:
|
| 100 |
+
message = text
|
| 101 |
+
|
| 102 |
+
# Tokenize the message
|
| 103 |
+
inputs = tokenizer(message, return_tensors="pt").to(device)
|
| 104 |
+
|
| 105 |
+
# Process image
|
| 106 |
+
image_features = processor(image, return_tensors="pt").to(device)
|
| 107 |
+
|
| 108 |
+
# Combine inputs
|
| 109 |
+
generation_inputs = {
|
| 110 |
+
"input_ids": inputs["input_ids"],
|
| 111 |
+
"attention_mask": inputs["attention_mask"],
|
| 112 |
+
**image_features,
|
| 113 |
+
}
|
| 114 |
+
|
| 115 |
+
# Create streamer
|
| 116 |
+
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
| 117 |
+
|
| 118 |
+
# Generation kwargs
|
| 119 |
+
generation_kwargs = {
|
| 120 |
+
**generation_inputs,
|
| 121 |
+
"streamer": streamer,
|
| 122 |
+
"max_new_tokens": max_new_tokens,
|
| 123 |
+
"do_sample": True,
|
| 124 |
+
"temperature": temperature,
|
| 125 |
+
"top_p": top_p,
|
| 126 |
+
"top_k": top_k,
|
| 127 |
+
"repetition_penalty": repetition_penalty,
|
| 128 |
+
}
|
| 129 |
+
|
| 130 |
+
# Start generation in a thread
|
| 131 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
| 132 |
+
thread.start()
|
| 133 |
+
|
| 134 |
+
buffer = ""
|
| 135 |
+
for new_text in streamer:
|
| 136 |
+
buffer += new_text
|
| 137 |
+
buffer = buffer.replace("<|im_end|>", "")
|
| 138 |
+
time.sleep(0.01)
|
| 139 |
+
yield buffer
|
| 140 |
+
elif model_name in ["SpaceThinker-3B", "coreOCR-7B-050325-preview"]:
|
| 141 |
+
if model_name == "SpaceThinker-3B":
|
| 142 |
+
processor = processor_z
|
| 143 |
+
model = model_z
|
| 144 |
+
else:
|
| 145 |
+
processor = processor_k
|
| 146 |
+
model = model_k
|
| 147 |
+
|
| 148 |
+
if image is None:
|
| 149 |
+
yield "Please upload an image."
|
| 150 |
+
return
|
| 151 |
+
|
| 152 |
messages = [{
|
| 153 |
"role": "user",
|
| 154 |
"content": [
|
|
|
|
| 165 |
truncation=False,
|
| 166 |
max_length=MAX_INPUT_TOKEN_LENGTH
|
| 167 |
).to(device)
|
| 168 |
+
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
| 169 |
+
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
|
| 170 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
| 171 |
+
thread.start()
|
| 172 |
+
buffer = ""
|
| 173 |
+
for new_text in streamer:
|
| 174 |
+
buffer += new_text
|
| 175 |
+
buffer = buffer.replace("<|im_end|>", "")
|
| 176 |
+
time.sleep(0.01)
|
| 177 |
+
yield buffer
|
| 178 |
+
else:
|
| 179 |
+
yield "Invalid model selected."
|
| 180 |
+
return
|
|
|
|
|
|
|
| 181 |
|
| 182 |
@spaces.GPU
|
| 183 |
def generate_video(model_name: str, text: str, video_path: str,
|
|
|
|
| 190 |
processor = processor_m
|
| 191 |
tokenizer = tokenizer_m
|
| 192 |
model = model_m
|
| 193 |
+
if video_path is None:
|
| 194 |
+
yield "Please upload a video."
|
| 195 |
+
return
|
| 196 |
+
frames = downsample_video(video_path)
|
| 197 |
+
# Construct message with multiple <image> tokens
|
| 198 |
+
prompt_parts = ["<image>"] * len(frames) + [text]
|
| 199 |
+
message = " ".join(prompt_parts)
|
| 200 |
+
|
| 201 |
+
# Tokenize
|
| 202 |
+
inputs = tokenizer(message, return_tensors="pt").to(device)
|
| 203 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 204 |
# Process all frames
|
| 205 |
+
image_features = processor([frame[0] for frame in frames], return_tensors="pt").to(device)
|
| 206 |
+
|
| 207 |
+
# Combine inputs
|
| 208 |
+
generation_inputs = {
|
| 209 |
+
"input_ids": inputs["input_ids"],
|
| 210 |
+
"attention_mask": inputs["attention_mask"],
|
| 211 |
+
**image_features,
|
| 212 |
+
}
|
| 213 |
+
|
| 214 |
+
# Create streamer
|
| 215 |
+
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
| 216 |
+
|
| 217 |
+
# Generation kwargs
|
| 218 |
+
generation_kwargs = {
|
| 219 |
+
**generation_inputs,
|
| 220 |
+
"streamer": streamer,
|
| 221 |
+
"max_new_tokens": max_new_tokens,
|
| 222 |
+
"do_sample": True,
|
| 223 |
+
"temperature": temperature,
|
| 224 |
+
"top_p": top_p,
|
| 225 |
+
"top_k": top_k,
|
| 226 |
+
"repetition_penalty": repetition_penalty,
|
| 227 |
+
}
|
| 228 |
+
|
| 229 |
+
# Start generation in a thread
|
| 230 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
| 231 |
+
thread.start()
|
| 232 |
+
|
| 233 |
+
buffer = ""
|
| 234 |
+
for new_text in streamer:
|
| 235 |
+
buffer += new_text
|
| 236 |
+
buffer = buffer.replace("<|im_end|>", "")
|
| 237 |
+
time.sleep(0.01)
|
| 238 |
+
yield buffer
|
| 239 |
+
elif model_name in ["SpaceThinker-3B", "coreOCR-7B-050325-preview"]:
|
| 240 |
+
if model_name == "SpaceThinker-3B":
|
| 241 |
+
processor = processor_z
|
| 242 |
+
model = model_z
|
| 243 |
+
else:
|
| 244 |
+
processor = processor_k
|
| 245 |
+
model = model_k
|
| 246 |
+
|
| 247 |
+
if video_path is None:
|
| 248 |
+
yield "Please upload a video."
|
| 249 |
+
return
|
| 250 |
+
|
| 251 |
+
frames = downsample_video(video_path)
|
| 252 |
messages = [
|
| 253 |
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
|
| 254 |
{"role": "user", "content": [{"type": "text", "text": text}]}
|
|
|
|
| 263 |
add_generation_prompt=True,
|
| 264 |
return_dict=True,
|
| 265 |
return_tensors="pt",
|
| 266 |
+
ilibre
|
| 267 |
+
|
| 268 |
truncation=False,
|
| 269 |
max_length=MAX_INPUT_TOKEN_LENGTH
|
| 270 |
).to(device)
|
| 271 |
+
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
| 272 |
+
generation_kwargs = {
|
| 273 |
+
**inputs,
|
| 274 |
+
"streamer": streamer,
|
| 275 |
+
"max_new_tokens": max_new_tokens,
|
| 276 |
+
"do_sample": True,
|
| 277 |
+
"temperature": temperature,
|
| 278 |
+
"top_p": top_p,
|
| 279 |
+
"top_k": top_k,
|
| 280 |
+
"repetition_penalty": repetition_penalty,
|
| 281 |
+
}
|
| 282 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
| 283 |
+
thread.start()
|
| 284 |
+
buffer = ""
|
| 285 |
+
for new_text in streamer:
|
| 286 |
+
buffer += new_text
|
| 287 |
+
buffer = buffer.replace("<|im_end|>", "")
|
| 288 |
+
time.sleep(0.01)
|
| 289 |
+
yield buffer
|
| 290 |
+
else:
|
| 291 |
+
yield "Invalid model selected."
|
| 292 |
+
return
|
|
|
|
|
|
|
| 293 |
|
| 294 |
# Define examples for image and video inference
|
| 295 |
image_examples = [
|
|
|
|
| 348 |
model_choice = gr.Radio(
|
| 349 |
choices=["Llama-3.1-Nemotron-Nano-VL-8B-V1", "SpaceThinker-3B", "coreOCR-7B-050325-preview"],
|
| 350 |
label="Select Model",
|
| 351 |
+
value="Llama-3.1-Nemotron-Nano-VL-8B-V1" # Updated default value to a valid choice
|
| 352 |
)
|
| 353 |
|
| 354 |
gr.Markdown("**Model Info**")
|
| 355 |
+
gr.Markdown("⤷ [SkyCaptioner-V1](https://huggingface.co/Skywork/SkyCaptioner-V1): structural video captioning model designed to generate high-quality, structural descriptions for video data. It integrates specialized sub-expert models.")
|
| 356 |
gr.Markdown("⤷ [SpaceThinker-Qwen2.5VL-3B](https://huggingface.co/remyxai/SpaceThinker-Qwen2.5VL-3B): thinking/reasoning multimodal/vision-language model (VLM) trained to enhance spatial reasoning.")
|
| 357 |
gr.Markdown("⤷ [coreOCR-7B-050325-preview](https://huggingface.co/prithivMLmods/coreOCR-7B-050325-preview): model is a fine-tuned version of qwen/qwen2-vl-7b, optimized for document-level optical character recognition (ocr), long-context vision-language understanding.")
|
| 358 |
gr.Markdown("⤷ [Imgscope-OCR-2B-0527](https://huggingface.co/prithivMLmods/Imgscope-OCR-2B-0527): fine-tuned version of qwen2-vl-2b-instruct, specifically optimized for messy handwriting recognition, document ocr, realistic handwritten ocr, and math problem solving with latex formatting.")
|