Spaces:
Paused
Paused
Upload inference_video_w.py
Browse files- inference_video_w.py +316 -0
inference_video_w.py
ADDED
|
@@ -0,0 +1,316 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import cv2
|
| 3 |
+
import torch
|
| 4 |
+
import numpy as np
|
| 5 |
+
from tqdm import tqdm
|
| 6 |
+
from torch.nn import functional as F
|
| 7 |
+
import warnings
|
| 8 |
+
import _thread
|
| 9 |
+
import skvideo.io
|
| 10 |
+
from queue import Queue, Empty
|
| 11 |
+
from model.pytorch_msssim import ssim_matlab
|
| 12 |
+
import shutil
|
| 13 |
+
import tempfile
|
| 14 |
+
import time
|
| 15 |
+
|
| 16 |
+
warnings.filterwarnings("ignore")
|
| 17 |
+
|
| 18 |
+
# Utility class to mimic argparse object
|
| 19 |
+
class Args:
|
| 20 |
+
def __init__(self, **kwargs):
|
| 21 |
+
self.__dict__.update(kwargs)
|
| 22 |
+
|
| 23 |
+
def transferAudio(sourceVideo, targetVideo):
|
| 24 |
+
# generate a unique temp directory for this user
|
| 25 |
+
unique_temp_dir = tempfile.mkdtemp()
|
| 26 |
+
tempAudioFileName = os.path.join(unique_temp_dir, "audio.mkv")
|
| 27 |
+
|
| 28 |
+
# extract audio from video
|
| 29 |
+
os.system('ffmpeg -hide_banner -loglevel error -y -i "{}" -c:a copy -vn {}'.format(sourceVideo, tempAudioFileName))
|
| 30 |
+
|
| 31 |
+
targetNoAudio = os.path.splitext(targetVideo)[0] + "_noaudio" + os.path.splitext(targetVideo)[1]
|
| 32 |
+
os.rename(targetVideo, targetNoAudio)
|
| 33 |
+
# combine audio file and new video file
|
| 34 |
+
os.system('ffmpeg -hide_banner -loglevel error -y -i "{}" -i {} -c copy "{}"'.format(targetNoAudio, tempAudioFileName, targetVideo))
|
| 35 |
+
|
| 36 |
+
if os.path.getsize(targetVideo) == 0: # if ffmpeg failed to merge the video and audio together try converting the audio to aac
|
| 37 |
+
tempAudioFileName = os.path.join(unique_temp_dir, "audio.m4a")
|
| 38 |
+
os.system('ffmpeg -hide_banner -loglevel error -y -i "{}" -c:a aac -b:a 160k -vn {}'.format(sourceVideo, tempAudioFileName))
|
| 39 |
+
os.system('ffmpeg -hide_banner -loglevel error -y -i "{}" -i {} -c copy "{}"'.format(targetNoAudio, tempAudioFileName, targetVideo))
|
| 40 |
+
if (os.path.getsize(targetVideo) == 0): # if aac is not supported by selected format
|
| 41 |
+
os.rename(targetNoAudio, targetVideo)
|
| 42 |
+
print("Audio transfer failed. Interpolated video will have no audio")
|
| 43 |
+
else:
|
| 44 |
+
print("Lossless audio transfer failed. Audio was transcoded to AAC (M4A) instead.")
|
| 45 |
+
# remove audio-less video
|
| 46 |
+
os.remove(targetNoAudio)
|
| 47 |
+
else:
|
| 48 |
+
os.remove(targetNoAudio)
|
| 49 |
+
|
| 50 |
+
# remove temp directory
|
| 51 |
+
shutil.rmtree(unique_temp_dir)
|
| 52 |
+
|
| 53 |
+
def inference(
|
| 54 |
+
video=None,
|
| 55 |
+
output=None,
|
| 56 |
+
img=None,
|
| 57 |
+
montage=False,
|
| 58 |
+
modelDir='train_log',
|
| 59 |
+
fp16=False,
|
| 60 |
+
UHD=False,
|
| 61 |
+
scale=1.0,
|
| 62 |
+
skip=False,
|
| 63 |
+
fps=None,
|
| 64 |
+
png=False,
|
| 65 |
+
ext='mp4',
|
| 66 |
+
exp=1,
|
| 67 |
+
multi=2
|
| 68 |
+
):
|
| 69 |
+
# Initialize Arguments Object
|
| 70 |
+
args = Args(
|
| 71 |
+
video=video, output=output, img=img, montage=montage,
|
| 72 |
+
modelDir=modelDir, fp16=fp16, UHD=UHD, scale=scale,
|
| 73 |
+
skip=skip, fps=fps, png=png, ext=ext, exp=exp, multi=multi
|
| 74 |
+
)
|
| 75 |
+
|
| 76 |
+
# Argument Logic Adjustment
|
| 77 |
+
if args.exp != 1:
|
| 78 |
+
args.multi = (2 ** args.exp)
|
| 79 |
+
|
| 80 |
+
# Assertions
|
| 81 |
+
assert (not args.video is None or not args.img is None)
|
| 82 |
+
if args.skip:
|
| 83 |
+
print("skip flag is abandoned, please refer to issue #207.")
|
| 84 |
+
if args.UHD and args.scale==1.0:
|
| 85 |
+
args.scale = 0.5
|
| 86 |
+
assert args.scale in [0.25, 0.5, 1.0, 2.0, 4.0]
|
| 87 |
+
if not args.img is None:
|
| 88 |
+
args.png = True
|
| 89 |
+
|
| 90 |
+
# Device Setup
|
| 91 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 92 |
+
torch.set_grad_enabled(False)
|
| 93 |
+
if torch.cuda.is_available():
|
| 94 |
+
torch.backends.cudnn.enabled = True
|
| 95 |
+
torch.backends.cudnn.benchmark = True
|
| 96 |
+
if(args.fp16):
|
| 97 |
+
torch.set_default_tensor_type(torch.cuda.HalfTensor)
|
| 98 |
+
|
| 99 |
+
# Load Model
|
| 100 |
+
from train_log.RIFE_HDv3 import Model
|
| 101 |
+
model = Model()
|
| 102 |
+
if not hasattr(model, 'version'):
|
| 103 |
+
model.version = 0
|
| 104 |
+
model.load_model(args.modelDir, -1)
|
| 105 |
+
print("Loaded 3.x/4.x HD model.")
|
| 106 |
+
model.eval()
|
| 107 |
+
model.device()
|
| 108 |
+
|
| 109 |
+
# Video/Image Setup
|
| 110 |
+
if not args.video is None:
|
| 111 |
+
videoCapture = cv2.VideoCapture(args.video)
|
| 112 |
+
original_fps = videoCapture.get(cv2.CAP_PROP_FPS)
|
| 113 |
+
tot_frame = videoCapture.get(cv2.CAP_PROP_FRAME_COUNT)
|
| 114 |
+
videoCapture.release()
|
| 115 |
+
|
| 116 |
+
if args.fps is None or args.fps == 0:
|
| 117 |
+
fpsNotAssigned = True
|
| 118 |
+
args.fps = original_fps * args.multi
|
| 119 |
+
else:
|
| 120 |
+
fpsNotAssigned = False
|
| 121 |
+
|
| 122 |
+
videogen = skvideo.io.vreader(args.video)
|
| 123 |
+
lastframe = next(videogen)
|
| 124 |
+
# fourcc = cv2.VideoWriter_fourcc('m', 'p', '4', 'v') # Unused in original logic for skvideo
|
| 125 |
+
video_path_wo_ext, ext = os.path.splitext(args.video)
|
| 126 |
+
print('{}.{}, {} frames in total, {}FPS to {}FPS'.format(video_path_wo_ext, args.ext, tot_frame, original_fps, args.fps))
|
| 127 |
+
|
| 128 |
+
if args.png == False and fpsNotAssigned == True:
|
| 129 |
+
print("The audio will be merged after interpolation process")
|
| 130 |
+
else:
|
| 131 |
+
print("Will not merge audio because using png or fps flag!")
|
| 132 |
+
else:
|
| 133 |
+
videogen = []
|
| 134 |
+
for f in os.listdir(args.img):
|
| 135 |
+
if 'png' in f:
|
| 136 |
+
videogen.append(f)
|
| 137 |
+
tot_frame = len(videogen)
|
| 138 |
+
videogen.sort(key= lambda x:int(x[:-4]))
|
| 139 |
+
lastframe = cv2.imread(os.path.join(args.img, videogen[0]), cv2.IMREAD_UNCHANGED)[:, :, ::-1].copy()
|
| 140 |
+
videogen = videogen[1:]
|
| 141 |
+
|
| 142 |
+
h, w, _ = lastframe.shape
|
| 143 |
+
vid_out_name = None
|
| 144 |
+
vid_out = None
|
| 145 |
+
|
| 146 |
+
if args.png:
|
| 147 |
+
if not os.path.exists('vid_out'):
|
| 148 |
+
os.mkdir('vid_out')
|
| 149 |
+
else:
|
| 150 |
+
if args.output is not None:
|
| 151 |
+
vid_out_name = args.output
|
| 152 |
+
else:
|
| 153 |
+
vid_out_name = '{}_{}X_{}fps.{}'.format(video_path_wo_ext, args.multi, int(np.round(args.fps)), args.ext)
|
| 154 |
+
|
| 155 |
+
outputdict = {
|
| 156 |
+
'-c:v': 'libx264',
|
| 157 |
+
'-crf': '17',
|
| 158 |
+
'-preset': 'slow',
|
| 159 |
+
'-pix_fmt': 'yuv420p'
|
| 160 |
+
}
|
| 161 |
+
vid_out = skvideo.io.FFmpegWriter(vid_out_name, inputdict={'-r': str(args.fps)}, outputdict=outputdict)
|
| 162 |
+
|
| 163 |
+
# --- Nested Helper Functions to capture 'args', 'model', 'vid_out' scope ---
|
| 164 |
+
|
| 165 |
+
def clear_write_buffer(write_buffer):
|
| 166 |
+
cnt = 0
|
| 167 |
+
while True:
|
| 168 |
+
item = write_buffer.get()
|
| 169 |
+
if item is None:
|
| 170 |
+
break
|
| 171 |
+
if args.png:
|
| 172 |
+
cv2.imwrite('vid_out/{:0>7d}.png'.format(cnt), item[:, :, ::-1])
|
| 173 |
+
cnt += 1
|
| 174 |
+
else:
|
| 175 |
+
vid_out.writeFrame(item)
|
| 176 |
+
|
| 177 |
+
def build_read_buffer(read_buffer, videogen):
|
| 178 |
+
try:
|
| 179 |
+
for frame in videogen:
|
| 180 |
+
if not args.img is None:
|
| 181 |
+
frame = cv2.imread(os.path.join(args.img, frame), cv2.IMREAD_UNCHANGED)[:, :, ::-1].copy()
|
| 182 |
+
if args.montage:
|
| 183 |
+
frame = frame[:, left: left + w]
|
| 184 |
+
read_buffer.put(frame)
|
| 185 |
+
except:
|
| 186 |
+
pass
|
| 187 |
+
read_buffer.put(None)
|
| 188 |
+
|
| 189 |
+
def make_inference(I0, I1, n):
|
| 190 |
+
if model.version >= 3.9:
|
| 191 |
+
res = []
|
| 192 |
+
for i in range(n):
|
| 193 |
+
res.append(model.inference(I0, I1, (i+1) * 1. / (n+1), args.scale))
|
| 194 |
+
return res
|
| 195 |
+
else:
|
| 196 |
+
middle = model.inference(I0, I1, args.scale)
|
| 197 |
+
if n == 1:
|
| 198 |
+
return [middle]
|
| 199 |
+
first_half = make_inference(I0, middle, n=n//2)
|
| 200 |
+
second_half = make_inference(middle, I1, n=n//2)
|
| 201 |
+
if n%2:
|
| 202 |
+
return [*first_half, middle, *second_half]
|
| 203 |
+
else:
|
| 204 |
+
return [*first_half, *second_half]
|
| 205 |
+
|
| 206 |
+
def pad_image(img):
|
| 207 |
+
if(args.fp16):
|
| 208 |
+
return F.pad(img, padding).half()
|
| 209 |
+
else:
|
| 210 |
+
return F.pad(img, padding)
|
| 211 |
+
|
| 212 |
+
# --- Pre-Loop Setup ---
|
| 213 |
+
|
| 214 |
+
left = 0 # Define default
|
| 215 |
+
if args.montage:
|
| 216 |
+
left = w // 4
|
| 217 |
+
w = w // 2
|
| 218 |
+
|
| 219 |
+
tmp = max(128, int(128 / args.scale))
|
| 220 |
+
ph = ((h - 1) // tmp + 1) * tmp
|
| 221 |
+
pw = ((w - 1) // tmp + 1) * tmp
|
| 222 |
+
padding = (0, pw - w, 0, ph - h)
|
| 223 |
+
|
| 224 |
+
pbar = tqdm(total=tot_frame)
|
| 225 |
+
if args.montage:
|
| 226 |
+
lastframe = lastframe[:, left: left + w]
|
| 227 |
+
|
| 228 |
+
write_buffer = Queue(maxsize=500)
|
| 229 |
+
read_buffer = Queue(maxsize=500)
|
| 230 |
+
|
| 231 |
+
# Start threads
|
| 232 |
+
_thread.start_new_thread(build_read_buffer, (read_buffer, videogen))
|
| 233 |
+
_thread.start_new_thread(clear_write_buffer, (write_buffer,))
|
| 234 |
+
|
| 235 |
+
I1 = torch.from_numpy(np.transpose(lastframe, (2,0,1))).to(device, non_blocking=True).unsqueeze(0).float() / 255.
|
| 236 |
+
I1 = pad_image(I1)
|
| 237 |
+
temp = None
|
| 238 |
+
|
| 239 |
+
# --- Main Loop ---
|
| 240 |
+
|
| 241 |
+
while True:
|
| 242 |
+
if temp is not None:
|
| 243 |
+
frame = temp
|
| 244 |
+
temp = None
|
| 245 |
+
else:
|
| 246 |
+
frame = read_buffer.get()
|
| 247 |
+
if frame is None:
|
| 248 |
+
break
|
| 249 |
+
I0 = I1
|
| 250 |
+
I1 = torch.from_numpy(np.transpose(frame, (2,0,1))).to(device, non_blocking=True).unsqueeze(0).float() / 255.
|
| 251 |
+
I1 = pad_image(I1)
|
| 252 |
+
I0_small = F.interpolate(I0, (32, 32), mode='bilinear', align_corners=False)
|
| 253 |
+
I1_small = F.interpolate(I1, (32, 32), mode='bilinear', align_corners=False)
|
| 254 |
+
ssim = ssim_matlab(I0_small[:, :3], I1_small[:, :3])
|
| 255 |
+
|
| 256 |
+
break_flag = False
|
| 257 |
+
if ssim > 0.996:
|
| 258 |
+
frame = read_buffer.get() # read a new frame
|
| 259 |
+
if frame is None:
|
| 260 |
+
break_flag = True
|
| 261 |
+
frame = lastframe
|
| 262 |
+
else:
|
| 263 |
+
temp = frame
|
| 264 |
+
I1 = torch.from_numpy(np.transpose(frame, (2,0,1))).to(device, non_blocking=True).unsqueeze(0).float() / 255.
|
| 265 |
+
I1 = pad_image(I1)
|
| 266 |
+
I1 = model.inference(I0, I1, scale=args.scale)
|
| 267 |
+
I1_small = F.interpolate(I1, (32, 32), mode='bilinear', align_corners=False)
|
| 268 |
+
ssim = ssim_matlab(I0_small[:, :3], I1_small[:, :3])
|
| 269 |
+
frame = (I1[0] * 255).byte().cpu().numpy().transpose(1, 2, 0)[:h, :w]
|
| 270 |
+
|
| 271 |
+
if ssim < 0.2:
|
| 272 |
+
output_frames = []
|
| 273 |
+
for i in range(args.multi - 1):
|
| 274 |
+
output_frames.append(I0)
|
| 275 |
+
else:
|
| 276 |
+
output_frames = make_inference(I0, I1, args.multi - 1)
|
| 277 |
+
|
| 278 |
+
if args.montage:
|
| 279 |
+
write_buffer.put(np.concatenate((lastframe, lastframe), 1))
|
| 280 |
+
for mid in output_frames:
|
| 281 |
+
mid = (((mid[0] * 255.).byte().cpu().numpy().transpose(1, 2, 0)))
|
| 282 |
+
write_buffer.put(np.concatenate((lastframe, mid[:h, :w]), 1))
|
| 283 |
+
else:
|
| 284 |
+
write_buffer.put(lastframe)
|
| 285 |
+
for mid in output_frames:
|
| 286 |
+
mid = (((mid[0] * 255.).byte().cpu().numpy().transpose(1, 2, 0)))
|
| 287 |
+
write_buffer.put(mid[:h, :w])
|
| 288 |
+
pbar.update(1)
|
| 289 |
+
lastframe = frame
|
| 290 |
+
if break_flag:
|
| 291 |
+
break
|
| 292 |
+
|
| 293 |
+
if args.montage:
|
| 294 |
+
write_buffer.put(np.concatenate((lastframe, lastframe), 1))
|
| 295 |
+
else:
|
| 296 |
+
write_buffer.put(lastframe)
|
| 297 |
+
|
| 298 |
+
write_buffer.put(None)
|
| 299 |
+
|
| 300 |
+
while(not write_buffer.empty()):
|
| 301 |
+
time.sleep(0.1)
|
| 302 |
+
pbar.close()
|
| 303 |
+
|
| 304 |
+
if not vid_out is None:
|
| 305 |
+
vid_out.close()
|
| 306 |
+
|
| 307 |
+
# Audio Transfer Logic
|
| 308 |
+
if args.png == False and fpsNotAssigned == True and not args.video is None:
|
| 309 |
+
try:
|
| 310 |
+
transferAudio(args.video, vid_out_name)
|
| 311 |
+
except:
|
| 312 |
+
print("Audio transfer failed. Interpolated video will have no audio")
|
| 313 |
+
targetNoAudio = os.path.splitext(vid_out_name)[0] + "_noaudio" + os.path.splitext(vid_out_name)[1]
|
| 314 |
+
os.rename(targetNoAudio, vid_out_name)
|
| 315 |
+
|
| 316 |
+
return vid_out_name
|