|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import inspect |
|
|
from typing import Any, Callable, Dict, List, Optional, Tuple, Union |
|
|
|
|
|
import numpy as np |
|
|
import torch |
|
|
|
|
|
from transformers import ( |
|
|
PreTrainedModel, |
|
|
Gemma3PreTrainedModel, |
|
|
GemmaTokenizer, |
|
|
GemmaTokenizerFast, |
|
|
XLMRobertaTokenizer, |
|
|
XLMRobertaTokenizerFast |
|
|
) |
|
|
|
|
|
from diffusers.pipelines.pipeline_utils import ImagePipelineOutput |
|
|
from diffusers.image_processor import PipelineImageInput |
|
|
from diffusers.pipelines.newbie.pipeline_newbie import NewbiePipeline |
|
|
|
|
|
from diffusers.models import AutoencoderKL |
|
|
from diffusers.models.transformers.transformer_lumina2 import Lumina2Transformer2DModel |
|
|
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler |
|
|
|
|
|
from diffusers.utils import ( |
|
|
is_torch_xla_available, |
|
|
logging, |
|
|
replace_example_docstring, |
|
|
) |
|
|
from diffusers.utils.torch_utils import randn_tensor |
|
|
|
|
|
|
|
|
if is_torch_xla_available(): |
|
|
import torch_xla.core.xla_model as xm |
|
|
XLA_AVAILABLE = True |
|
|
else: |
|
|
XLA_AVAILABLE = False |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
|
|
|
EXAMPLE_DOC_STRING = """ |
|
|
Examples: |
|
|
```py |
|
|
>>> import torch |
|
|
>>> from diffusers import NewbieImg2ImgPipeline |
|
|
>>> from diffusers.utils import load_image |
|
|
>>> from transformers import AutoModel |
|
|
|
|
|
>>> device = "cuda" |
|
|
>>> model_path = "Disty0/NewBie-image-Exp0.1-Diffusers" |
|
|
>>> text_encoder_2 = AutoModel.from_pretrained(model_path, subfolder="text_encoder_2", trust_remote_code=True, torch_dtype=torch.bfloat16) |
|
|
|
|
|
>>> pipe = NewbieImg2ImgPipeline.from_pretrained(model_path, text_encoder_2=text_encoder_2, torch_dtype=torch.bfloat16) |
|
|
>>> pipe.enable_model_cpu_offload(device=device) |
|
|
|
|
|
>>> url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg" |
|
|
>>> init_image = load_image(url).resize((1024, 1024)) |
|
|
|
|
|
>>> prompt = "A fantasy landscape with mountains and a river, detailed, vibrant colors, anime style" |
|
|
>>> negative_prompt = "low quality, worst quality, blurry" |
|
|
|
|
|
>>> image = pipe( |
|
|
>>> prompt, |
|
|
>>> image=init_image, |
|
|
>>> strength=0.6, |
|
|
>>> negative_prompt=negative_prompt, |
|
|
>>> guidance_scale=2.5, |
|
|
>>> num_inference_steps=30, |
|
|
>>> generator=torch.manual_seed(42), |
|
|
>>> ).images[0] |
|
|
``` |
|
|
""" |
|
|
|
|
|
|
|
|
|
|
|
def calculate_shift( |
|
|
image_seq_len, |
|
|
base_seq_len: int = 256, |
|
|
max_seq_len: int = 4096, |
|
|
base_shift: float = 0.5, |
|
|
max_shift: float = 1.15, |
|
|
): |
|
|
m = (max_shift - base_shift) / (max_seq_len - base_seq_len) |
|
|
b = base_shift - m * base_seq_len |
|
|
mu = image_seq_len * m + b |
|
|
return mu |
|
|
|
|
|
|
|
|
|
|
|
def retrieve_timesteps( |
|
|
scheduler, |
|
|
num_inference_steps: Optional[int] = None, |
|
|
device: Optional[Union[str, torch.device]] = None, |
|
|
timesteps: Optional[List[int]] = None, |
|
|
sigmas: Optional[List[float]] = None, |
|
|
**kwargs, |
|
|
): |
|
|
r""" |
|
|
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles |
|
|
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. |
|
|
|
|
|
Args: |
|
|
scheduler (`SchedulerMixin`): |
|
|
The scheduler to get timesteps from. |
|
|
num_inference_steps (`int`): |
|
|
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` |
|
|
must be `None`. |
|
|
device (`str` or `torch.device`, *optional*): |
|
|
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. |
|
|
timesteps (`List[int]`, *optional*): |
|
|
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed, |
|
|
`num_inference_steps` and `sigmas` must be `None`. |
|
|
sigmas (`List[float]`, *optional*): |
|
|
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed, |
|
|
`num_inference_steps` and `timesteps` must be `None`. |
|
|
|
|
|
Returns: |
|
|
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the |
|
|
second element is the number of inference steps. |
|
|
""" |
|
|
if timesteps is not None and sigmas is not None: |
|
|
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values") |
|
|
if timesteps is not None: |
|
|
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) |
|
|
if not accepts_timesteps: |
|
|
raise ValueError( |
|
|
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" |
|
|
f" timestep schedules. Please check whether you are using the correct scheduler." |
|
|
) |
|
|
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) |
|
|
timesteps = scheduler.timesteps |
|
|
num_inference_steps = len(timesteps) |
|
|
elif sigmas is not None: |
|
|
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) |
|
|
if not accept_sigmas: |
|
|
raise ValueError( |
|
|
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" |
|
|
f" sigmas schedules. Please check whether you are using the correct scheduler." |
|
|
) |
|
|
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) |
|
|
timesteps = scheduler.timesteps |
|
|
num_inference_steps = len(timesteps) |
|
|
else: |
|
|
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) |
|
|
timesteps = scheduler.timesteps |
|
|
return timesteps, num_inference_steps |
|
|
|
|
|
|
|
|
|
|
|
def retrieve_latents( |
|
|
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample" |
|
|
): |
|
|
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample": |
|
|
return encoder_output.latent_dist.sample(generator) |
|
|
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax": |
|
|
return encoder_output.latent_dist.mode() |
|
|
elif hasattr(encoder_output, "latents"): |
|
|
return encoder_output.latents |
|
|
else: |
|
|
raise AttributeError("Could not access latents of provided encoder_output") |
|
|
|
|
|
|
|
|
class NewbieImg2ImgPipeline(NewbiePipeline): |
|
|
r""" |
|
|
Pipeline for image-to-image generation using Lumina-T2I / Newbie model. |
|
|
|
|
|
This model inherits from [`NewbiePipeline`]. Check the superclass documentation for the generic methods the |
|
|
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) |
|
|
|
|
|
Args: |
|
|
vae ([`AutoencoderKL`]): |
|
|
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. |
|
|
text_encoder ([`Gemma3PreTrainedModel`]): |
|
|
Frozen Gemma3 text-encoder. |
|
|
text_encoder_2 ([`PreTrainedModel`]): |
|
|
Frozen JinaCLIPTextModel text-encoder. Requires `trust_remote_code=True`. |
|
|
tokenizer (`GemmaTokenizer` or `GemmaTokenizerFast`): |
|
|
Gemma tokenizer. |
|
|
tokenizer_2 (`XLMRobertaTokenizer` or `XLMRobertaTokenizerFast`): |
|
|
XLMRoberta tokenizer. |
|
|
transformer ([`Transformer2DModel`]): |
|
|
A text conditioned `Transformer2DModel` to denoise the encoded image latents. |
|
|
scheduler ([`SchedulerMixin`]): |
|
|
A scheduler to be used in combination with `transformer` to denoise the encoded image latents. |
|
|
""" |
|
|
|
|
|
|
|
|
def get_timesteps(self, num_inference_steps, strength, device): |
|
|
|
|
|
init_timestep = min(num_inference_steps * strength, num_inference_steps) |
|
|
|
|
|
t_start = int(max(num_inference_steps - init_timestep, 0)) |
|
|
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :] |
|
|
if hasattr(self.scheduler, "set_begin_index"): |
|
|
self.scheduler.set_begin_index(t_start * self.scheduler.order) |
|
|
|
|
|
return timesteps, num_inference_steps - t_start |
|
|
|
|
|
def prepare_latents( |
|
|
self, |
|
|
image, |
|
|
timestep, |
|
|
batch_size, |
|
|
num_channels_latents, |
|
|
height, |
|
|
width, |
|
|
dtype, |
|
|
device, |
|
|
generator, |
|
|
latents=None, |
|
|
): |
|
|
if latents is not None: |
|
|
return latents.to(device=device, dtype=dtype) |
|
|
|
|
|
|
|
|
image = image.to(device=device, dtype=dtype) |
|
|
|
|
|
if image.shape[1] == num_channels_latents: |
|
|
image_latents = image |
|
|
else: |
|
|
if isinstance(generator, list): |
|
|
image_latents = [ |
|
|
retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i]) |
|
|
for i in range(image.shape[0]) |
|
|
] |
|
|
image_latents = torch.cat(image_latents, dim=0) |
|
|
else: |
|
|
image_latents = retrieve_latents(self.vae.encode(image), generator=generator) |
|
|
|
|
|
|
|
|
image_latents = (image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor |
|
|
|
|
|
|
|
|
if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0: |
|
|
additional_image_per_prompt = batch_size // image_latents.shape[0] |
|
|
image_latents = torch.cat([image_latents] * additional_image_per_prompt, dim=0) |
|
|
elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0: |
|
|
raise ValueError( |
|
|
f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts." |
|
|
) |
|
|
|
|
|
|
|
|
shape = image_latents.shape |
|
|
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) |
|
|
latents = self.scheduler.scale_noise(image_latents, timestep, noise) |
|
|
|
|
|
return latents |
|
|
|
|
|
@torch.no_grad() |
|
|
@replace_example_docstring(EXAMPLE_DOC_STRING) |
|
|
def __call__( |
|
|
self, |
|
|
prompt: Union[str, List[str]] = None, |
|
|
image: PipelineImageInput = None, |
|
|
strength: float = 0.6, |
|
|
width: Optional[int] = None, |
|
|
height: Optional[int] = None, |
|
|
num_inference_steps: int = 30, |
|
|
guidance_scale: float = 4.0, |
|
|
negative_prompt: Union[str, List[str]] = None, |
|
|
sigmas: List[float] = None, |
|
|
num_images_per_prompt: Optional[int] = 1, |
|
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
|
latents: Optional[torch.Tensor] = None, |
|
|
prompt_embeds: Optional[torch.Tensor] = None, |
|
|
pooled_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
|
negative_prompt_embeds: Optional[torch.Tensor] = None, |
|
|
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
|
prompt_attention_mask: Optional[torch.Tensor] = None, |
|
|
negative_prompt_attention_mask: Optional[torch.Tensor] = None, |
|
|
output_type: Optional[str] = "pil", |
|
|
return_dict: bool = True, |
|
|
attention_kwargs: Optional[Dict[str, Any]] = None, |
|
|
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, |
|
|
callback_on_step_end_tensor_inputs: List[str] = ["latents"], |
|
|
system_prompt: Optional[str] = None, |
|
|
cfg_trunc_ratio: float = 1.0, |
|
|
cfg_normalization: bool = True, |
|
|
max_sequence_length: int = 512, |
|
|
) -> Union[ImagePipelineOutput, Tuple]: |
|
|
""" |
|
|
Function invoked when calling the pipeline for image-to-image generation. |
|
|
|
|
|
Args: |
|
|
prompt (`str` or `List[str]`, *optional*): |
|
|
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. |
|
|
instead. |
|
|
image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`): |
|
|
`Image`, numpy array or tensor representing an image batch to be used as the starting point. |
|
|
strength (`float`, *optional*, defaults to 0.6): |
|
|
Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a |
|
|
starting point and more noise is added the higher the `strength`. |
|
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass |
|
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is |
|
|
less than `1`). |
|
|
num_inference_steps (`int`, *optional*, defaults to 30): |
|
|
The number of denoising steps. |
|
|
guidance_scale (`float`, *optional*, defaults to 4.0): |
|
|
Guidance scale as defined in [Classifier-Free Diffusion |
|
|
Guidance](https://huggingface.co/papers/2207.12598). |
|
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
|
The number of images to generate per prompt. |
|
|
height (`int`, *optional*, defaults to self.unet.config.sample_size): |
|
|
The height in pixels of the generated image. If not provided, it is inferred from input image. |
|
|
width (`int`, *optional*, defaults to self.unet.config.sample_size): |
|
|
The width in pixels of the generated image. If not provided, it is inferred from input image. |
|
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
|
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) |
|
|
to make generation deterministic. |
|
|
latents (`torch.Tensor`, *optional*): |
|
|
Pre-generated noisy latents. |
|
|
prompt_embeds (`torch.Tensor`, *optional*): |
|
|
Pre-generated text embeddings. |
|
|
pooled_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
|
Pre-generated pooled text embeddings. |
|
|
prompt_attention_mask (`torch.Tensor`, *optional*): Pre-generated attention mask for text embeddings. |
|
|
negative_prompt_embeds (`torch.Tensor`, *optional*): |
|
|
Pre-generated negative text embeddings. |
|
|
negative_prompt_attention_mask (`torch.Tensor`, *optional*): |
|
|
Pre-generated attention mask for negative text embeddings. |
|
|
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
|
Pre-generated negative pooled text embeddings. |
|
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
|
The output format of the generate image. Choose between |
|
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. |
|
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
|
Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. |
|
|
attention_kwargs: |
|
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor`. |
|
|
callback_on_step_end (`Callable`, *optional*): |
|
|
A function that calls at the end of each denoising steps during the inference. |
|
|
callback_on_step_end_tensor_inputs (`List`, *optional*): |
|
|
The list of tensor inputs for the `callback_on_step_end` function. |
|
|
system_prompt (`str`, *optional*): |
|
|
The system prompt to use for the image generation. |
|
|
cfg_trunc_ratio (`float`, *optional*, defaults to `1.0`): |
|
|
The ratio of the timestep interval to apply normalization-based guidance scale. |
|
|
cfg_normalization (`bool`, *optional*, defaults to `True`): |
|
|
Whether to apply normalization-based guidance scale. |
|
|
max_sequence_length (`int`, defaults to `512`): |
|
|
Maximum sequence length to use with the `prompt`. |
|
|
|
|
|
Examples: |
|
|
|
|
|
Returns: |
|
|
[`~pipelines.ImagePipelineOutput`] or `tuple`: |
|
|
If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is |
|
|
returned where the first element is a list with the generated images |
|
|
""" |
|
|
|
|
|
if strength < 0 or strength > 1: |
|
|
raise ValueError(f"The value of strength should be in [0.0, 1.0] but is {strength}") |
|
|
|
|
|
|
|
|
init_image = self.image_processor.preprocess(image) |
|
|
init_image = init_image.to(dtype=torch.float32) |
|
|
|
|
|
|
|
|
if height is None: |
|
|
height = init_image.shape[-2] |
|
|
if width is None: |
|
|
width = init_image.shape[-1] |
|
|
|
|
|
self._guidance_scale = guidance_scale |
|
|
self._attention_kwargs = attention_kwargs |
|
|
|
|
|
|
|
|
self.check_inputs( |
|
|
prompt, |
|
|
height, |
|
|
width, |
|
|
negative_prompt, |
|
|
prompt_embeds=prompt_embeds, |
|
|
pooled_prompt_embeds=pooled_prompt_embeds, |
|
|
negative_prompt_embeds=negative_prompt_embeds, |
|
|
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, |
|
|
prompt_attention_mask=prompt_attention_mask, |
|
|
negative_prompt_attention_mask=negative_prompt_attention_mask, |
|
|
max_sequence_length=max_sequence_length, |
|
|
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, |
|
|
) |
|
|
|
|
|
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
|
batch_size = 1 |
|
|
elif prompt is not None and isinstance(prompt, list): |
|
|
batch_size = len(prompt) |
|
|
else: |
|
|
batch_size = prompt_embeds.shape[0] |
|
|
|
|
|
device = self._execution_device |
|
|
|
|
|
|
|
|
( |
|
|
prompt_embeds, |
|
|
pooled_prompt_embeds, |
|
|
prompt_attention_mask, |
|
|
negative_prompt_embeds, |
|
|
negative_pooled_prompt_embeds, |
|
|
negative_prompt_attention_mask, |
|
|
) = self.encode_prompt( |
|
|
prompt, |
|
|
self.do_classifier_free_guidance, |
|
|
negative_prompt=negative_prompt, |
|
|
num_images_per_prompt=num_images_per_prompt, |
|
|
device=device, |
|
|
prompt_embeds=prompt_embeds, |
|
|
pooled_prompt_embeds=pooled_prompt_embeds, |
|
|
negative_prompt_embeds=negative_prompt_embeds, |
|
|
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, |
|
|
prompt_attention_mask=prompt_attention_mask, |
|
|
negative_prompt_attention_mask=negative_prompt_attention_mask, |
|
|
max_sequence_length=max_sequence_length, |
|
|
system_prompt=system_prompt, |
|
|
) |
|
|
|
|
|
|
|
|
full_sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas |
|
|
|
|
|
latent_height = height // (self.vae_scale_factor * 2) * 2 |
|
|
latent_width = width // (self.vae_scale_factor * 2) * 2 |
|
|
image_seq_len = (latent_height // 2) * (latent_width // 2) |
|
|
|
|
|
mu = calculate_shift( |
|
|
image_seq_len, |
|
|
self.scheduler.config.get("base_image_seq_len", 256), |
|
|
self.scheduler.config.get("max_image_seq_len", 4096), |
|
|
self.scheduler.config.get("base_shift", 0.5), |
|
|
self.scheduler.config.get("max_shift", 1.15), |
|
|
) |
|
|
|
|
|
timesteps, num_inference_steps = retrieve_timesteps( |
|
|
self.scheduler, |
|
|
num_inference_steps, |
|
|
device, |
|
|
sigmas=full_sigmas, |
|
|
mu=mu, |
|
|
) |
|
|
|
|
|
|
|
|
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device) |
|
|
if num_inference_steps < 1: |
|
|
raise ValueError( |
|
|
f"After adjusting the num_inference_steps by strength parameter: {strength}, the number of pipeline " |
|
|
f"steps is {num_inference_steps} which is < 1 and not appropriate for this pipeline." |
|
|
) |
|
|
|
|
|
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) |
|
|
|
|
|
|
|
|
latents = self.prepare_latents( |
|
|
init_image, |
|
|
latent_timestep, |
|
|
batch_size * num_images_per_prompt, |
|
|
self.transformer.config.in_channels, |
|
|
height, |
|
|
width, |
|
|
prompt_embeds.dtype, |
|
|
device, |
|
|
generator, |
|
|
latents, |
|
|
) |
|
|
|
|
|
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) |
|
|
self._num_timesteps = len(timesteps) |
|
|
|
|
|
|
|
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
|
for i, t in enumerate(timesteps): |
|
|
|
|
|
do_classifier_free_truncation = (i + 1) / num_inference_steps > cfg_trunc_ratio |
|
|
|
|
|
|
|
|
current_timestep = 1 - t / self.scheduler.config.num_train_timesteps |
|
|
|
|
|
current_timestep = current_timestep.expand(latents.shape[0]) |
|
|
|
|
|
noise_pred_cond = self.transformer( |
|
|
hidden_states=latents, |
|
|
timestep=current_timestep, |
|
|
encoder_hidden_states=prompt_embeds, |
|
|
pooled_projections=pooled_prompt_embeds, |
|
|
encoder_attention_mask=prompt_attention_mask, |
|
|
return_dict=False, |
|
|
attention_kwargs=self.attention_kwargs, |
|
|
)[0] |
|
|
|
|
|
|
|
|
if self.do_classifier_free_guidance and not do_classifier_free_truncation: |
|
|
noise_pred_uncond = self.transformer( |
|
|
hidden_states=latents, |
|
|
timestep=current_timestep, |
|
|
encoder_hidden_states=negative_prompt_embeds, |
|
|
pooled_projections=negative_pooled_prompt_embeds, |
|
|
encoder_attention_mask=negative_prompt_attention_mask, |
|
|
return_dict=False, |
|
|
attention_kwargs=self.attention_kwargs, |
|
|
)[0] |
|
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond) |
|
|
|
|
|
if cfg_normalization: |
|
|
cond_norm = torch.norm(noise_pred_cond, dim=-1, keepdim=True) |
|
|
noise_norm = torch.norm(noise_pred, dim=-1, keepdim=True) |
|
|
noise_pred = noise_pred * (cond_norm / noise_norm) |
|
|
else: |
|
|
noise_pred = noise_pred_cond |
|
|
|
|
|
|
|
|
latents_dtype = latents.dtype |
|
|
noise_pred = -noise_pred |
|
|
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] |
|
|
|
|
|
if latents.dtype != latents_dtype: |
|
|
if torch.backends.mps.is_available(): |
|
|
|
|
|
latents = latents.to(latents_dtype) |
|
|
|
|
|
if callback_on_step_end is not None: |
|
|
callback_kwargs = {} |
|
|
for k in callback_on_step_end_tensor_inputs: |
|
|
callback_kwargs[k] = locals()[k] |
|
|
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) |
|
|
|
|
|
latents = callback_outputs.pop("latents", latents) |
|
|
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) |
|
|
pooled_prompt_embeds = callback_outputs.pop("pooled_prompt_embeds", pooled_prompt_embeds) |
|
|
|
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): |
|
|
progress_bar.update() |
|
|
|
|
|
if XLA_AVAILABLE: |
|
|
xm.mark_step() |
|
|
|
|
|
if not output_type == "latent": |
|
|
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor |
|
|
image = self.vae.decode(latents, return_dict=False)[0] |
|
|
image = self.image_processor.postprocess(image, output_type=output_type) |
|
|
else: |
|
|
image = latents |
|
|
|
|
|
|
|
|
self.maybe_free_model_hooks() |
|
|
|
|
|
if not return_dict: |
|
|
return (image,) |
|
|
|
|
|
return ImagePipelineOutput(images=image) |