Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from transformers import AutoModel, AutoTokenizer | |
| from sklearn.neighbors import NearestNeighbors | |
| models = ['cardiffnlp/twitter-roberta-base-jun2022', | |
| 'cardiffnlp/twitter-roberta-base-2019-90m'] | |
| def topk_model(MODEL): | |
| # MODEL = "cardiffnlp/twitter-roberta-base-jun2022" | |
| model = AutoModel.from_pretrained(MODEL) | |
| tokenizer = AutoTokenizer.from_pretrained(MODEL) | |
| embedding_matrix = model.embeddings.word_embeddings.weight | |
| embedding_matrix = embedding_matrix.detach().numpy() | |
| knn_model = NearestNeighbors(n_neighbors=500, | |
| metric='cosine', | |
| algorithm='auto', | |
| n_jobs=3) | |
| nbrs = knn_model.fit(embedding_matrix) | |
| distances, indices = nbrs.kneighbors(embedding_matrix) | |
| return distances,indices,tokenizer | |
| title = "How does a word's meaning change with time?" | |
| def topk(word,model): | |
| outs = [] | |
| distances, indices, tokenizer = topk_model(model) | |
| index = tokenizer.encode(f'{word}') | |
| for i in indices[index[1]]: | |
| outs.append(tokenizer.decode(i)) | |
| print(tokenizer.decode(i)) | |
| return outs | |
| with gr.Blocks() as demo: | |
| gr.Markdown(f" # {title}") | |
| # gr.Markdown(f" ## {description1}") | |
| # gr.Markdown(f"{description2}") | |
| # gr.Markdown(f"{description3}") | |
| with gr.Row(): | |
| word = gr.Textbox(label="Word") | |
| with gr.Row(): | |
| greet_btn = gr.Button("Compute") | |
| with gr.Row(): | |
| greet_btn.click(fn=topk, inputs=[word,gr.Dropdown(models)], outputs=gr.outputs.Textbox()) | |
| demo.launch() |