Spaces:
Runtime error
Runtime error
preloading models
Browse files
app.py
CHANGED
|
@@ -2,15 +2,22 @@ import gradio as gr
|
|
| 2 |
from transformers import AutoModel, AutoTokenizer
|
| 3 |
from sklearn.neighbors import NearestNeighbors
|
| 4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
models = ['cardiffnlp/twitter-roberta-base-jun2022',
|
| 7 |
-
'cardiffnlp/twitter-roberta-base-2019-90m']
|
| 8 |
|
| 9 |
def topk_model(MODEL):
|
| 10 |
# MODEL = "cardiffnlp/twitter-roberta-base-jun2022"
|
| 11 |
-
model = AutoModel.from_pretrained(MODEL)
|
| 12 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
| 13 |
-
embedding_matrix =
|
| 14 |
embedding_matrix = embedding_matrix.detach().numpy()
|
| 15 |
|
| 16 |
knn_model = NearestNeighbors(n_neighbors=500,
|
|
@@ -22,7 +29,7 @@ def topk_model(MODEL):
|
|
| 22 |
|
| 23 |
distances, indices = nbrs.kneighbors(embedding_matrix)
|
| 24 |
|
| 25 |
-
return distances,indices,
|
| 26 |
|
| 27 |
|
| 28 |
title = "How does a word's meaning change with time?"
|
|
@@ -52,7 +59,7 @@ def topk(word,model):
|
|
| 52 |
# demo.launch()
|
| 53 |
|
| 54 |
interface = gr.Interface(fn=topk,
|
| 55 |
-
inputs=[gr.Textbox(label="Word"), gr.Dropdown(
|
| 56 |
outputs=gr.outputs.Textbox()
|
| 57 |
)
|
| 58 |
interface.launch()
|
|
|
|
| 2 |
from transformers import AutoModel, AutoTokenizer
|
| 3 |
from sklearn.neighbors import NearestNeighbors
|
| 4 |
|
| 5 |
+
available_models = ['cardiffnlp/twitter-roberta-base-2019-90m',
|
| 6 |
+
'cardiffnlp/twitter-roberta-base-jun2020']
|
| 7 |
+
|
| 8 |
+
models = {}
|
| 9 |
+
tokenizers = {}
|
| 10 |
+
|
| 11 |
+
for MODEL in available_models:
|
| 12 |
+
models[MODEL] = AutoModel.from_pretrained(MODEL)
|
| 13 |
+
tokenizers[MODEL] = AutoTokenizer.from_pretrained(MODEL)
|
| 14 |
|
|
|
|
|
|
|
| 15 |
|
| 16 |
def topk_model(MODEL):
|
| 17 |
# MODEL = "cardiffnlp/twitter-roberta-base-jun2022"
|
| 18 |
+
# model = AutoModel.from_pretrained(MODEL)
|
| 19 |
+
# tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
| 20 |
+
embedding_matrix = models[MODEL].embeddings.word_embeddings.weight
|
| 21 |
embedding_matrix = embedding_matrix.detach().numpy()
|
| 22 |
|
| 23 |
knn_model = NearestNeighbors(n_neighbors=500,
|
|
|
|
| 29 |
|
| 30 |
distances, indices = nbrs.kneighbors(embedding_matrix)
|
| 31 |
|
| 32 |
+
return distances,indices,tokenizers[MODEL]
|
| 33 |
|
| 34 |
|
| 35 |
title = "How does a word's meaning change with time?"
|
|
|
|
| 59 |
# demo.launch()
|
| 60 |
|
| 61 |
interface = gr.Interface(fn=topk,
|
| 62 |
+
inputs=[gr.Textbox(label="Word"), gr.Dropdown(available_models)],
|
| 63 |
outputs=gr.outputs.Textbox()
|
| 64 |
)
|
| 65 |
interface.launch()
|