Create rag_pipeline.py
Browse files- rag_pipeline.py +31 -0
rag_pipeline.py
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
| 2 |
+
from sentence_transformers import SentenceTransformer
|
| 3 |
+
import numpy as np
|
| 4 |
+
import faiss
|
| 5 |
+
from datasets import load_dataset
|
| 6 |
+
|
| 7 |
+
# Load Dataset
|
| 8 |
+
dataset = load_dataset("pubmed_qa", "pqa_labeled")
|
| 9 |
+
corpus = [entry['context'] for entry in dataset['train']]
|
| 10 |
+
|
| 11 |
+
# Embedding model
|
| 12 |
+
embed_model = SentenceTransformer('pritamdeka/BioBERT-mnli-snli-scinli-scitail-mednli-stsb')
|
| 13 |
+
corpus_embeddings = embed_model.encode(corpus, show_progress_bar=True)
|
| 14 |
+
|
| 15 |
+
# FAISS index
|
| 16 |
+
index = faiss.IndexFlatL2(len(corpus_embeddings[0]))
|
| 17 |
+
index.add(np.array(corpus_embeddings))
|
| 18 |
+
|
| 19 |
+
# Generator model
|
| 20 |
+
tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large")
|
| 21 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("facebook/bart-large")
|
| 22 |
+
|
| 23 |
+
# Generate Answer Function
|
| 24 |
+
def generate_answer(query, index, embeddings, corpus, embed_model):
|
| 25 |
+
query_embedding = embed_model.encode([query])
|
| 26 |
+
D, I = index.search(np.array(query_embedding), k=5)
|
| 27 |
+
retrieved = [corpus[i] for i in I[0]]
|
| 28 |
+
prompt = f"Context: {retrieved}\n\nQuestion: {query}\n\nAnswer:"
|
| 29 |
+
inputs = tokenizer(prompt, return_tensors="pt", truncation=True)
|
| 30 |
+
outputs = model.generate(**inputs, max_new_tokens=128)
|
| 31 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|