from fastapi import FastAPI from pydantic import BaseModel from transformers import pipeline from typing import Dict, Any import uvicorn INTENT_MODEL = "rasouzadev/medgo-intent-classifier" HATE_MODEL = "unitary/unbiased-toxic-roberta" print("Loading pipelines (this may take a minute)...") intent_pipe = pipeline("text-classification", model=INTENT_MODEL, truncation=True) hate_pipe = pipeline("text-classification", model=HATE_MODEL, truncation=True, top_k=None) app = FastAPI(title="MedGo - Intent & Hate Detector API") class InputText(BaseModel): text: str class PredictionResponse(BaseModel): intent: str intent_score: float hate_label: str | None hate_score: float note: str | None def unify_scores(pipe_output): if not pipe_output: return [] if isinstance(pipe_output[0], list): return pipe_output[0] return pipe_output @app.get("/") def root(): return { "message": "MedGo API - Intent & Hate Detector", "endpoints": { "predict": "/predict", "health": "/health", "docs": "/docs" } } @app.get("/health") def health(): return {"status": "ok"} @app.post("/predict", response_model=PredictionResponse) def classify(input_data: InputText) -> Dict[str, Any]: text = input_data.text hate_raw = hate_pipe(text) hate_scores = unify_scores(hate_raw) best_hate = max(hate_scores, key=lambda x: x.get("score", 0.0), default=None) hate_label = best_hate.get("label") if best_hate else None hate_score = float(best_hate.get("score", 0.0)) if best_hate else 0.0 if hate_label: low = hate_label.lower() if any(k in low for k in ["toxic", "hate", "offensive", "insult", "abusive"]) and hate_score >= 0.6: return { "intent": "HateSpeech", "intent_score": hate_score, "hate_label": hate_label, "hate_score": hate_score, "note": "flagged_by_hate_model" } intent_res = intent_pipe(text) intent_label = intent_res[0].get("label") if intent_res and isinstance(intent_res, list) else None intent_score = float(intent_res[0].get("score", 0.0)) if intent_res and isinstance(intent_res, list) else 0.0 return { "intent": intent_label, "intent_score": intent_score, "hate_label": hate_label, "hate_score": hate_score, "note": None } if __name__ == "__main__": uvicorn.run(app, host="0.0.0.0", port=7860)