import os from fastapi import FastAPI from pydantic import BaseModel from transformers import pipeline from typing import Dict, Any import uvicorn os.environ['HF_HOME'] = '/app/.cache' os.environ['TRANSFORMERS_CACHE'] = '/app/.cache' os.environ['HF_DATASETS_CACHE'] = '/app/.cache' INTENT_MODEL = "rasouzadev/medgo-intent-classifier" HATE_MODEL = "unitary/multilingual-toxic-xlm-roberta" print("Loading pipelines (this may take a minute)...") intent_pipe = pipeline("text-classification", model=INTENT_MODEL, truncation=True, max_length=512) hate_pipe = pipeline("text-classification", model=HATE_MODEL, truncation=True, max_length=512, top_k=None) app = FastAPI(title="MedGo - Intent & Hate Detector API") class InputText(BaseModel): text: str class PredictionResponse(BaseModel): intent: str intent_score: float hate_label: str | None hate_score: float note: str | None @app.get("/") def root(): return { "message": "MedGo API - Intent & Hate Detector", "endpoints": { "predict": "/predict", "health": "/health", "docs": "/docs" } } @app.get("/health") def health(): return {"status": "ok"} @app.post("/predict", response_model=PredictionResponse) def classify(input_data: InputText) -> Dict[str, Any]: text = input_data.text hate_results = hate_pipe(text)[0] # Retorna lista de todos os scores toxicity_result = next((r for r in hate_results if r.get("label") == "toxicity"), None) if toxicity_result: hate_score = float(toxicity_result.get("score", 0.0)) is_toxic = hate_score >= 0.5 hate_label = "toxic" if is_toxic else "non-toxic" else: best_result = max(hate_results, key=lambda x: x.get("score", 0.0)) hate_score = float(best_result.get("score", 0.0)) hate_label = best_result.get("label", "unknown") is_toxic = hate_score >= 0.5 and hate_label in ["toxicity", "severe_toxicity", "obscene", "threat", "insult", "identity_attack"] if is_toxic: return { "intent": "HateSpeech", "intent_score": hate_score, "hate_label": hate_label, "hate_score": hate_score, "note": "flagged_by_hate_model" } intent_res = intent_pipe(text) intent_label = intent_res[0].get("label") if intent_res and isinstance(intent_res, list) else None intent_score = float(intent_res[0].get("score", 0.0)) if intent_res and isinstance(intent_res, list) else 0.0 return { "intent": intent_label or "Unknown", "intent_score": intent_score, "hate_label": hate_label, "hate_score": hate_score, "note": None } if __name__ == "__main__": uvicorn.run(app, host="0.0.0.0", port=7860)