Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 3 |
-
# import spaces # Removed as @spaces.GPU is not used with async
|
| 4 |
from duckduckgo_search import DDGS
|
| 5 |
import time
|
| 6 |
import torch
|
|
@@ -16,8 +16,9 @@ from concurrent.futures import ThreadPoolExecutor
|
|
| 16 |
import warnings
|
| 17 |
import traceback # For detailed error logging
|
| 18 |
import re # For text cleaning
|
| 19 |
-
import shutil # For checking sudo
|
| 20 |
import html # For escaping HTML
|
|
|
|
| 21 |
|
| 22 |
# --- Configuration ---
|
| 23 |
MODEL_NAME = "deepseek-ai/DeepSeek-R1-Distill-Llama-8B"
|
|
@@ -27,11 +28,11 @@ MAX_TTS_CHARS = 1000 # Max characters for a single TTS chunk
|
|
| 27 |
MAX_NEW_TOKENS = 300
|
| 28 |
TEMPERATURE = 0.7
|
| 29 |
TOP_P = 0.95
|
| 30 |
-
KOKORO_PATH = 'Kokoro-82M' #
|
| 31 |
|
| 32 |
# --- Initialization ---
|
| 33 |
-
#
|
| 34 |
-
executor = ThreadPoolExecutor(max_workers=os.cpu_count() or 4)
|
| 35 |
|
| 36 |
# Suppress specific warnings
|
| 37 |
warnings.filterwarnings("ignore", category=UserWarning, message="TypedStorage is deprecated")
|
|
@@ -40,41 +41,42 @@ warnings.filterwarnings("ignore", message="Backend 'inductor' is not available."
|
|
| 40 |
# --- LLM Initialization ---
|
| 41 |
llm_model: Optional[AutoModelForCausalLM] = None
|
| 42 |
llm_tokenizer: Optional[AutoTokenizer] = None
|
| 43 |
-
llm_device = "cpu"
|
| 44 |
|
| 45 |
try:
|
| 46 |
-
print("Initializing
|
| 47 |
llm_tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 48 |
llm_tokenizer.pad_token = llm_tokenizer.eos_token
|
| 49 |
|
| 50 |
if torch.cuda.is_available():
|
| 51 |
llm_device = "cuda"
|
| 52 |
torch_dtype = torch.float16
|
| 53 |
-
device_map = "auto"
|
| 54 |
-
print(f"CUDA detected. Loading model with device_map='{device_map}', dtype={torch_dtype}")
|
| 55 |
else:
|
| 56 |
llm_device = "cpu"
|
| 57 |
-
torch_dtype = torch.float32
|
| 58 |
device_map = {"": "cpu"}
|
| 59 |
-
print(f"CUDA not found. Loading model on CPU with dtype={torch_dtype}")
|
| 60 |
|
| 61 |
llm_model = AutoModelForCausalLM.from_pretrained(
|
| 62 |
MODEL_NAME,
|
| 63 |
device_map=device_map,
|
| 64 |
low_cpu_mem_usage=True,
|
| 65 |
torch_dtype=torch_dtype,
|
| 66 |
-
# attn_implementation="flash_attention_2" # Optional
|
| 67 |
)
|
| 68 |
-
|
| 69 |
-
llm_model.
|
|
|
|
|
|
|
| 70 |
|
| 71 |
except Exception as e:
|
| 72 |
-
print(f"FATAL: Error initializing LLM model: {str(e)}")
|
| 73 |
print(traceback.format_exc())
|
| 74 |
-
# Depending on environment, you might exit or just disable LLM features
|
| 75 |
llm_model = None
|
| 76 |
llm_tokenizer = None
|
| 77 |
-
print("LLM features will be unavailable.")
|
| 78 |
|
| 79 |
|
| 80 |
# --- TTS Initialization ---
|
|
@@ -85,147 +87,189 @@ VOICE_CHOICES = {
|
|
| 85 |
'🇺🇸 Nicole': 'af_nicole'
|
| 86 |
}
|
| 87 |
TTS_ENABLED = False
|
| 88 |
-
tts_model: Optional[Any] = None
|
| 89 |
-
voicepacks: Dict[str, Any] = {}
|
| 90 |
-
tts_device = "cpu"
|
| 91 |
|
| 92 |
-
#
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
def _run_subprocess(cmd: List[str], check: bool = True, cwd: Optional[str] = None) -> subprocess.CompletedProcess:
|
| 96 |
-
"""Helper to run subprocess and capture output."""
|
| 97 |
print(f"Running command: {' '.join(cmd)}")
|
| 98 |
try:
|
| 99 |
-
result = subprocess.run(cmd, check=check, capture_output=True, text=True, cwd=cwd)
|
| 100 |
-
|
| 101 |
-
if result.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
return result
|
| 103 |
except FileNotFoundError:
|
| 104 |
-
print(f"Error: Command not found - {cmd[0]}")
|
|
|
|
|
|
|
|
|
|
| 105 |
raise
|
| 106 |
except subprocess.CalledProcessError as e:
|
| 107 |
-
print(f"Error running command: {' '.join(e.cmd)}")
|
| 108 |
-
if e.stdout: print(f"Stdout: {e.stdout.strip()}")
|
| 109 |
-
if e.stderr: print(f"Stderr: {e.stderr.strip()}")
|
| 110 |
raise
|
| 111 |
|
|
|
|
| 112 |
def setup_tts_task():
|
| 113 |
"""Initializes Kokoro TTS model and dependencies."""
|
| 114 |
global TTS_ENABLED, tts_model, voicepacks, tts_device
|
| 115 |
print("[TTS Setup] Starting background initialization...")
|
| 116 |
|
| 117 |
-
# Determine TTS device
|
| 118 |
tts_device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 119 |
print(f"[TTS Setup] Target device: {tts_device}")
|
| 120 |
|
| 121 |
can_sudo = shutil.which('sudo') is not None
|
| 122 |
apt_cmd_prefix = ['sudo'] if can_sudo else []
|
|
|
|
| 123 |
|
| 124 |
try:
|
| 125 |
# 1. Clone Kokoro Repo if needed
|
| 126 |
-
if not os.path.exists(
|
| 127 |
-
print(f"[TTS Setup] Cloning repository to {
|
| 128 |
try:
|
| 129 |
_run_subprocess(['git', 'lfs', 'install', '--system', '--skip-repo'])
|
| 130 |
except Exception as lfs_err:
|
| 131 |
-
print(f"[TTS Setup] Warning: git lfs install
|
| 132 |
-
_run_subprocess(['git', 'clone', 'https://huggingface.co/hexgrad/Kokoro-82M',
|
| 133 |
try:
|
| 134 |
print("[TTS Setup] Running git lfs pull...")
|
| 135 |
-
_run_subprocess(['git', 'lfs', 'pull'], cwd=
|
| 136 |
except Exception as lfs_pull_err:
|
| 137 |
print(f"[TTS Setup] Warning: git lfs pull failed: {lfs_pull_err}")
|
| 138 |
else:
|
| 139 |
-
print(f"[TTS Setup] Directory {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 140 |
|
| 141 |
# 2. Install espeak dependency
|
| 142 |
print("[TTS Setup] Checking/Installing espeak...")
|
| 143 |
try:
|
|
|
|
| 144 |
_run_subprocess(apt_cmd_prefix + ['apt-get', 'update', '-qq'])
|
|
|
|
| 145 |
_run_subprocess(apt_cmd_prefix + ['apt-get', 'install', '-y', '-qq', 'espeak-ng'])
|
| 146 |
print("[TTS Setup] espeak-ng installed or already present.")
|
| 147 |
except Exception:
|
| 148 |
-
print("[TTS Setup] espeak-ng failed, trying espeak...")
|
| 149 |
try:
|
|
|
|
| 150 |
_run_subprocess(apt_cmd_prefix + ['apt-get', 'install', '-y', '-qq', 'espeak'])
|
| 151 |
print("[TTS Setup] espeak installed or already present.")
|
| 152 |
except Exception as espeak_err:
|
| 153 |
print(f"[TTS Setup] ERROR: Failed to install both espeak-ng and espeak: {espeak_err}. TTS disabled.")
|
| 154 |
-
return #
|
| 155 |
|
| 156 |
# 3. Load Kokoro Model and Voices
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 161 |
sys_path_updated = True
|
|
|
|
|
|
|
| 162 |
try:
|
|
|
|
| 163 |
from models import build_model
|
| 164 |
from kokoro import generate as generate_tts_internal
|
|
|
|
| 165 |
|
| 166 |
-
|
|
|
|
| 167 |
globals()['generate_tts_internal'] = generate_tts_internal
|
| 168 |
|
| 169 |
-
model_file = os.path.join(
|
| 170 |
if not os.path.exists(model_file):
|
| 171 |
print(f"[TTS Setup] ERROR: Model file {model_file} not found. TTS disabled.")
|
| 172 |
return
|
| 173 |
|
| 174 |
print(f"[TTS Setup] Loading TTS model from {model_file} onto {tts_device}...")
|
| 175 |
tts_model = build_model(model_file, tts_device)
|
| 176 |
-
tts_model.eval()
|
| 177 |
print("[TTS Setup] TTS model loaded.")
|
| 178 |
|
| 179 |
# Load voices
|
| 180 |
loaded_voices = 0
|
| 181 |
for voice_name, voice_id in VOICE_CHOICES.items():
|
| 182 |
-
voice_file_path = os.path.join(
|
| 183 |
if os.path.exists(voice_file_path):
|
| 184 |
try:
|
| 185 |
print(f"[TTS Setup] Loading voice: {voice_id} ({voice_name})")
|
| 186 |
-
# map_location ensures it loads to the correct device
|
| 187 |
voicepacks[voice_id] = torch.load(voice_file_path, map_location=tts_device)
|
| 188 |
loaded_voices += 1
|
| 189 |
except Exception as e:
|
| 190 |
print(f"[TTS Setup] Warning: Failed to load voice {voice_id}: {str(e)}")
|
| 191 |
else:
|
| 192 |
-
print(f"[TTS Setup] Info: Voice file {voice_file_path} not found
|
| 193 |
|
| 194 |
if loaded_voices == 0:
|
| 195 |
print("[TTS Setup] ERROR: No voicepacks could be loaded. TTS disabled.")
|
| 196 |
-
tts_model = None #
|
| 197 |
return
|
| 198 |
|
| 199 |
TTS_ENABLED = True
|
| 200 |
print(f"[TTS Setup] Initialization successful. {loaded_voices} voices loaded. TTS Enabled: {TTS_ENABLED}")
|
| 201 |
|
|
|
|
| 202 |
except ImportError as ie:
|
| 203 |
-
print(f"[TTS Setup] ERROR: Failed to import Kokoro modules: {ie}.
|
|
|
|
|
|
|
| 204 |
except Exception as load_err:
|
| 205 |
-
print(f"[TTS Setup] ERROR:
|
| 206 |
print(traceback.format_exc())
|
| 207 |
finally:
|
| 208 |
-
# Clean up sys.path
|
| 209 |
-
if sys_path_updated
|
| 210 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 211 |
else:
|
| 212 |
-
print(f"[TTS Setup] ERROR: {
|
| 213 |
|
| 214 |
except Exception as e:
|
| 215 |
print(f"[TTS Setup] ERROR: Unexpected error during setup: {str(e)}")
|
| 216 |
print(traceback.format_exc())
|
| 217 |
-
# Ensure
|
| 218 |
-
TTS_ENABLED = False
|
| 219 |
tts_model = None
|
| 220 |
voicepacks.clear()
|
| 221 |
|
| 222 |
-
# Start TTS setup in
|
| 223 |
print("Starting TTS setup thread...")
|
| 224 |
tts_setup_thread = threading.Thread(target=setup_tts_task, daemon=True)
|
| 225 |
tts_setup_thread.start()
|
| 226 |
|
| 227 |
|
| 228 |
-
# --- Core Functions ---
|
| 229 |
|
| 230 |
@lru_cache(maxsize=128)
|
| 231 |
def get_web_results_sync(query: str, max_results: int = MAX_SEARCH_RESULTS) -> List[Dict[str, Any]]:
|
|
@@ -244,33 +288,27 @@ def get_web_results_sync(query: str, max_results: int = MAX_SEARCH_RESULTS) -> L
|
|
| 244 |
return formatted
|
| 245 |
except Exception as e:
|
| 246 |
print(f"[Web Search] Error: {e}")
|
| 247 |
-
|
| 248 |
return []
|
| 249 |
|
| 250 |
def format_llm_prompt(query: str, context: List[Dict[str, Any]]) -> str:
|
| 251 |
"""Formats the prompt for the LLM, including context and instructions."""
|
| 252 |
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
| 253 |
context_str = "\n\n".join(
|
| 254 |
-
[f"[{res['id']}] {res['title']}\n{res['snippet']}" for res in context]
|
| 255 |
) if context else "No relevant web context found."
|
| 256 |
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
- Synthesize information from the context to answer concisely.
|
| 260 |
-
- Cite sources using bracket notation like [1], [2], etc., corresponding to the context IDs.
|
| 261 |
-
- If the context is insufficient, state that clearly. Do not add external information.
|
| 262 |
-
- Use markdown for formatting.
|
| 263 |
-
|
| 264 |
-
Current Time: {current_time}
|
| 265 |
|
| 266 |
-
|
| 267 |
---
|
| 268 |
{context_str}
|
| 269 |
---
|
| 270 |
|
| 271 |
-
|
| 272 |
|
| 273 |
-
|
| 274 |
|
| 275 |
def format_sources_html(web_results: List[Dict[str, Any]]) -> str:
|
| 276 |
"""Formats search results into HTML for display."""
|
|
@@ -280,7 +318,7 @@ def format_sources_html(web_results: List[Dict[str, Any]]) -> str:
|
|
| 280 |
for res in web_results:
|
| 281 |
title_safe = html.escape(res.get("title", "Source"))
|
| 282 |
snippet_safe = html.escape(res.get("snippet", "")[:150] + ("..." if len(res.get("snippet", "")) > 150 else ""))
|
| 283 |
-
url = res.get("url", "#")
|
| 284 |
items_html += f"""
|
| 285 |
<div class='source-item'>
|
| 286 |
<div class='source-number'>[{res['id']}]</div>
|
|
@@ -295,7 +333,8 @@ def format_sources_html(web_results: List[Dict[str, Any]]) -> str:
|
|
| 295 |
async def generate_llm_answer(prompt: str) -> str:
|
| 296 |
"""Generates answer using the loaded LLM (Async Wrapper)."""
|
| 297 |
if not llm_model or not llm_tokenizer:
|
| 298 |
-
|
|
|
|
| 299 |
|
| 300 |
print(f"[LLM Generate] Requesting generation (prompt length {len(prompt)})...")
|
| 301 |
start_time = time.time()
|
|
@@ -305,12 +344,11 @@ async def generate_llm_answer(prompt: str) -> str:
|
|
| 305 |
return_tensors="pt",
|
| 306 |
padding=True,
|
| 307 |
truncation=True,
|
| 308 |
-
max_length=1024, #
|
| 309 |
return_attention_mask=True
|
| 310 |
-
).to(llm_model.device)
|
| 311 |
|
| 312 |
with torch.inference_mode(), torch.cuda.amp.autocast(enabled=(llm_model.dtype == torch.float16)):
|
| 313 |
-
# Run blocking model.generate in the executor thread pool
|
| 314 |
outputs = await asyncio.get_event_loop().run_in_executor(
|
| 315 |
executor,
|
| 316 |
llm_model.generate,
|
|
@@ -325,20 +363,12 @@ async def generate_llm_answer(prompt: str) -> str:
|
|
| 325 |
num_return_sequences=1
|
| 326 |
)
|
| 327 |
|
| 328 |
-
# Decode only newly generated tokens
|
| 329 |
output_ids = outputs[0][inputs.input_ids.shape[1]:]
|
| 330 |
answer_part = llm_tokenizer.decode(output_ids, skip_special_tokens=True).strip()
|
| 331 |
|
| 332 |
-
# Handle potential empty generation
|
| 333 |
if not answer_part:
|
| 334 |
-
|
| 335 |
-
full_output = llm_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 336 |
-
answer_marker = "Answer:"
|
| 337 |
-
marker_index = full_output.rfind(answer_marker)
|
| 338 |
-
if marker_index != -1:
|
| 339 |
-
answer_part = full_output[marker_index + len(answer_marker):].strip()
|
| 340 |
-
else:
|
| 341 |
-
answer_part = "*Model generated an empty response.*" # Fallback message
|
| 342 |
|
| 343 |
end_time = time.time()
|
| 344 |
print(f"[LLM Generate] Generation complete in {end_time - start_time:.2f}s. Length: {len(answer_part)}")
|
|
@@ -347,22 +377,21 @@ async def generate_llm_answer(prompt: str) -> str:
|
|
| 347 |
except Exception as e:
|
| 348 |
print(f"[LLM Generate] Error: {e}")
|
| 349 |
print(traceback.format_exc())
|
| 350 |
-
return f"Error during answer generation:
|
| 351 |
|
| 352 |
async def generate_tts_speech(text: str, voice_id: str = 'af') -> Optional[Tuple[int, np.ndarray]]:
|
| 353 |
"""Generates speech using the loaded TTS model (Async Wrapper)."""
|
| 354 |
if not TTS_ENABLED or not tts_model or 'generate_tts_internal' not in globals():
|
| 355 |
print("[TTS Generate] Skipping: TTS not ready.")
|
| 356 |
return None
|
| 357 |
-
if not text or not text.strip():
|
| 358 |
-
print("[TTS Generate] Skipping:
|
| 359 |
return None
|
| 360 |
|
| 361 |
print(f"[TTS Generate] Requesting speech (length {len(text)}, voice '{voice_id}')...")
|
| 362 |
start_time = time.time()
|
| 363 |
|
| 364 |
try:
|
| 365 |
-
# Verify voicepack availability
|
| 366 |
actual_voice_id = voice_id
|
| 367 |
if voice_id not in voicepacks:
|
| 368 |
print(f"[TTS Generate] Warning: Voice '{voice_id}' not loaded. Trying default 'af'.")
|
|
@@ -371,18 +400,23 @@ async def generate_tts_speech(text: str, voice_id: str = 'af') -> Optional[Tuple
|
|
| 371 |
print("[TTS Generate] Error: Default voice 'af' also not available.")
|
| 372 |
return None
|
| 373 |
|
| 374 |
-
# Clean text for TTS
|
| 375 |
-
clean_text = re.sub(r'\[\d+\](\[\d+\])*', '', text)
|
| 376 |
-
clean_text = re.sub(r'
|
|
|
|
|
|
|
|
|
|
|
|
|
| 377 |
clean_text = ' '.join(clean_text.split()) # Normalize whitespace
|
| 378 |
|
| 379 |
-
if not clean_text:
|
|
|
|
|
|
|
| 380 |
|
| 381 |
-
# Truncate if necessary
|
| 382 |
if len(clean_text) > MAX_TTS_CHARS:
|
| 383 |
-
print(f"[TTS Generate] Truncating text from {len(clean_text)} to {MAX_TTS_CHARS} chars.")
|
| 384 |
clean_text = clean_text[:MAX_TTS_CHARS]
|
| 385 |
-
last_punct = max(clean_text.rfind(p) for p in '
|
| 386 |
if last_punct != -1: clean_text = clean_text[:last_punct+1]
|
| 387 |
clean_text += "..."
|
| 388 |
|
|
@@ -390,17 +424,13 @@ async def generate_tts_speech(text: str, voice_id: str = 'af') -> Optional[Tuple
|
|
| 390 |
gen_func = globals()['generate_tts_internal']
|
| 391 |
voice_pack_data = voicepacks[actual_voice_id]
|
| 392 |
|
| 393 |
-
#
|
| 394 |
-
#
|
| 395 |
audio_data, _ = await asyncio.get_event_loop().run_in_executor(
|
| 396 |
-
executor,
|
| 397 |
-
gen_func,
|
| 398 |
-
tts_model, # The loaded model object
|
| 399 |
-
clean_text, # The cleaned text string
|
| 400 |
-
voice_pack_data,# The loaded voice pack tensor/dict
|
| 401 |
-
'afr' # Language code (verify this is correct)
|
| 402 |
)
|
| 403 |
|
|
|
|
| 404 |
if isinstance(audio_data, torch.Tensor):
|
| 405 |
audio_np = audio_data.detach().cpu().numpy()
|
| 406 |
elif isinstance(audio_data, np.ndarray):
|
|
@@ -409,8 +439,7 @@ async def generate_tts_speech(text: str, voice_id: str = 'af') -> Optional[Tuple
|
|
| 409 |
print("[TTS Generate] Warning: Unexpected audio data type.")
|
| 410 |
return None
|
| 411 |
|
| 412 |
-
# Ensure
|
| 413 |
-
audio_np = audio_np.flatten().astype(np.float32)
|
| 414 |
|
| 415 |
end_time = time.time()
|
| 416 |
print(f"[TTS Generate] Audio generated in {end_time - start_time:.2f}s. Shape: {audio_np.shape}")
|
|
@@ -427,9 +456,7 @@ def get_voice_id_from_display(voice_display_name: str) -> str:
|
|
| 427 |
|
| 428 |
|
| 429 |
# --- Gradio Interaction Logic ---
|
| 430 |
-
|
| 431 |
-
# Define type for chat history using the 'messages' format
|
| 432 |
-
ChatHistoryType = List[Dict[str, str]]
|
| 433 |
|
| 434 |
async def handle_interaction(
|
| 435 |
query: str,
|
|
@@ -438,94 +465,84 @@ async def handle_interaction(
|
|
| 438 |
):
|
| 439 |
"""Main async generator function to handle user queries and update Gradio UI."""
|
| 440 |
print(f"\n--- Handling Query ---")
|
|
|
|
| 441 |
print(f"Query: '{query}', Voice: '{selected_voice_display_name}'")
|
| 442 |
|
| 443 |
-
if not query
|
| 444 |
print("Empty query received.")
|
| 445 |
-
|
| 446 |
-
yield history, "*Please enter a query.*", "<div class='no-sources'>Enter a query to search.</div>", None, gr.Button(value="Search", interactive=True)
|
| 447 |
return
|
| 448 |
|
| 449 |
-
#
|
| 450 |
-
current_history = history + [{"role": "user", "content": query}]
|
| 451 |
# Add placeholder for assistant response
|
| 452 |
-
current_history.append({"role": "assistant", "content":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 453 |
|
| 454 |
# 1. Initial State: Searching
|
| 455 |
-
|
| 456 |
-
|
| 457 |
-
"*Searching the web...*", # Update answer area
|
| 458 |
-
"<div class='searching'><span>Searching the web...</span></div>", # Update sources area
|
| 459 |
-
None, # No audio yet
|
| 460 |
-
gr.Button(value="Searching...", interactive=False) # Update button state
|
| 461 |
-
)
|
| 462 |
|
| 463 |
# 2. Perform Web Search (in executor)
|
| 464 |
web_results = await asyncio.get_event_loop().run_in_executor(
|
| 465 |
executor, get_web_results_sync, query
|
| 466 |
)
|
| 467 |
-
|
| 468 |
|
| 469 |
# Update state: Generating Answer
|
| 470 |
-
|
| 471 |
-
|
| 472 |
-
|
| 473 |
-
|
| 474 |
-
sources_html, # Show sources
|
| 475 |
-
None,
|
| 476 |
-
gr.Button(value="Generating...", interactive=False)
|
| 477 |
-
)
|
| 478 |
|
| 479 |
# 3. Generate LLM Answer (async)
|
| 480 |
llm_prompt = format_llm_prompt(query, web_results)
|
| 481 |
final_answer = await generate_llm_answer(llm_prompt)
|
|
|
|
| 482 |
|
| 483 |
-
# Update assistant message in history
|
| 484 |
current_history[-1]["content"] = final_answer
|
| 485 |
|
| 486 |
# Update state: Generating Audio (if applicable)
|
| 487 |
-
|
| 488 |
-
|
| 489 |
-
final_answer, # Show final answer
|
| 490 |
-
sources_html,
|
| 491 |
-
None,
|
| 492 |
-
gr.Button(value="Audio...", interactive=False) if TTS_ENABLED else gr.Button(value="Search", interactive=True) # Enable search if TTS disabled
|
| 493 |
-
)
|
| 494 |
|
| 495 |
# 4. Generate TTS Speech (async)
|
| 496 |
-
audio_output_data = None
|
| 497 |
tts_status_message = ""
|
| 498 |
if not TTS_ENABLED:
|
| 499 |
if tts_setup_thread.is_alive():
|
| 500 |
tts_status_message = "\n\n*(TTS initializing...)*"
|
| 501 |
else:
|
| 502 |
-
|
| 503 |
-
|
|
|
|
|
|
|
| 504 |
voice_id = get_voice_id_from_display(selected_voice_display_name)
|
| 505 |
-
|
| 506 |
-
if
|
| 507 |
tts_status_message = "\n\n*(Audio generation failed)*"
|
| 508 |
|
| 509 |
# 5. Final State: Show all results
|
| 510 |
final_answer_with_status = final_answer + tts_status_message
|
| 511 |
-
|
|
|
|
|
|
|
|
|
|
| 512 |
|
| 513 |
print("--- Query Handling Complete ---")
|
| 514 |
-
yield
|
| 515 |
-
current_history,
|
| 516 |
-
final_answer_with_status, # Show answer + TTS status
|
| 517 |
-
sources_html,
|
| 518 |
-
audio_output_data, # Output audio data (or None)
|
| 519 |
-
gr.Button(value="Search", interactive=True) # Re-enable button
|
| 520 |
-
)
|
| 521 |
|
| 522 |
|
| 523 |
# --- Gradio UI Definition ---
|
| 524 |
-
# (CSS
|
| 525 |
css = """
|
| 526 |
-
/* ... [Your existing refined CSS
|
| 527 |
-
/* Example: Style examples container via its parent or default class if needed */
|
| 528 |
-
/* .examples-container .gradio-examples { ... } */ /* This might still work depending on structure */
|
| 529 |
.gradio-container { max-width: 1200px !important; background-color: #f7f7f8 !important; }
|
| 530 |
#header { text-align: center; margin-bottom: 2rem; padding: 2rem 0; background: linear-gradient(135deg, #1a1b1e, #2d2e32); border-radius: 12px; color: white; box-shadow: 0 8px 32px rgba(0,0,0,0.2); }
|
| 531 |
#header h1 { color: white; font-size: 2.5rem; margin-bottom: 0.5rem; text-shadow: 0 2px 4px rgba(0,0,0,0.3); }
|
|
@@ -542,8 +559,8 @@ css = """
|
|
| 542 |
.search-box button:hover { background: #1d4ed8 !important; }
|
| 543 |
.search-box button:disabled { background: #9ca3af !important; cursor: not-allowed; }
|
| 544 |
.results-container { background: transparent; padding: 0; margin-top: 1.5rem; }
|
| 545 |
-
.answer-box { background: white; border: 1px solid #e0e0e0; border-radius: 10px; padding:
|
| 546 |
-
.answer-box p { color: #374151; line-height: 1.7; }
|
| 547 |
.answer-box code { background: #f3f4f6; border-radius: 4px; padding: 2px 4px; color: #4b5563; font-size: 0.9em; }
|
| 548 |
.sources-box { background: white; border: 1px solid #e0e0e0; border-radius: 10px; padding: 1.5rem; }
|
| 549 |
.sources-box h3 { margin-top: 0; margin-bottom: 1rem; color: #111827; font-size: 1.2rem; }
|
|
@@ -555,13 +572,12 @@ css = """
|
|
| 555 |
.source-title { color: #2563eb; font-weight: 500; text-decoration: none; display: block; margin-bottom: 4px; transition: all 0.2s; font-size: 0.95em; white-space: nowrap; overflow: hidden; text-overflow: ellipsis;}
|
| 556 |
.source-title:hover { color: #1d4ed8; text-decoration: underline; }
|
| 557 |
.source-snippet { color: #4b5563; font-size: 0.9em; line-height: 1.5; }
|
| 558 |
-
.chat-history { /* Style the chatbot container */ max-height:
|
| 559 |
.chat-history > div { padding: 1rem; } /* Add padding inside the chatbot display area */
|
| 560 |
.chat-history::-webkit-scrollbar { width: 6px; }
|
| 561 |
.chat-history::-webkit-scrollbar-track { background: #f9fafb; }
|
| 562 |
.chat-history::-webkit-scrollbar-thumb { background-color: #d1d5db; border-radius: 20px; }
|
| 563 |
.examples-container { background: #f9fafb; border-radius: 8px; padding: 1rem; margin-top: 1rem; border: 1px solid #e5e7eb; }
|
| 564 |
-
/* Default styling for example buttons (since elem_classes might not work) */
|
| 565 |
.examples-container button { background: white !important; border: 1px solid #d1d5db !important; color: #374151 !important; transition: all 0.2s; margin: 4px !important; font-size: 0.9em !important; padding: 6px 12px !important; border-radius: 4px !important; }
|
| 566 |
.examples-container button:hover { background: #f3f4f6 !important; border-color: #adb5bd !important; }
|
| 567 |
.markdown-content { color: #374151 !important; font-size: 1rem; line-height: 1.7; }
|
|
@@ -578,8 +594,8 @@ css = """
|
|
| 578 |
.markdown-content table { border-collapse: collapse !important; width: 100% !important; margin: 1em 0; }
|
| 579 |
.markdown-content th, .markdown-content td { padding: 8px 12px !important; border: 1px solid #d1d5db !important; text-align: left;}
|
| 580 |
.markdown-content th { background: #f9fafb !important; font-weight: 600; }
|
| 581 |
-
.accordion { background: #f9fafb !important; border: 1px solid #e5e7eb !important; border-radius: 8px !important; margin-top: 1rem !important; box-shadow: none !important; }
|
| 582 |
-
.accordion > .label-wrap { padding: 10px 15px !important; }
|
| 583 |
.voice-selector { margin: 0; padding: 0; height: 100%; }
|
| 584 |
.voice-selector div[data-testid="dropdown"] { height: 100% !important; border-radius: 0 !important;}
|
| 585 |
.voice-selector select { background: white !important; color: #374151 !important; border: 1px solid #d1d5db !important; border-left: none !important; border-right: none !important; border-radius: 0 !important; height: 100% !important; padding: 0 10px !important; transition: all 0.2s; appearance: none !important; -webkit-appearance: none !important; background-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' fill='none' viewBox='0 0 20 20'%3e%3cpath stroke='%236b7280' stroke-linecap='round' stroke-linejoin='round' stroke-width='1.5' d='M6 8l4 4 4-4'/%3e%3c/svg%3e") !important; background-position: right 0.5rem center !important; background-repeat: no-repeat !important; background-size: 1.5em 1.5em !important; padding-right: 2.5rem !important; }
|
|
@@ -592,7 +608,7 @@ css = """
|
|
| 592 |
.no-sources { padding: 1rem; text-align: center; color: #6b7280; background: #f9fafb; border-radius: 8px; border: 1px solid #e5e7eb;}
|
| 593 |
@keyframes pulse { 0% { opacity: 0.7; } 50% { opacity: 1; } 100% { opacity: 0.7; } }
|
| 594 |
.searching span { animation: pulse 1.5s infinite ease-in-out; display: inline-block; }
|
| 595 |
-
/* Dark Mode Styles
|
| 596 |
.dark .gradio-container { background-color: #111827 !important; }
|
| 597 |
.dark #header { background: linear-gradient(135deg, #1f2937, #374151); }
|
| 598 |
.dark #header h3 { color: #9ca3af; }
|
|
@@ -630,8 +646,8 @@ css = """
|
|
| 630 |
.dark .markdown-content blockquote { border-left-color: #4b5563 !important; color: #9ca3af !important; }
|
| 631 |
.dark .markdown-content th, .dark .markdown-content td { border-color: #4b5563 !important; }
|
| 632 |
.dark .markdown-content th { background: #374151 !important; }
|
| 633 |
-
.dark .accordion { background: #374151 !important; border-color: #4b5563 !important; }
|
| 634 |
-
.dark .accordion > .label-wrap { color: #d1d5db !important; }
|
| 635 |
.dark .voice-selector select { background: #1f2937 !important; color: #d1d5db !important; border-color: #4b5563 !important; background-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' fill='none' viewBox='0 0 20 20'%3e%3cpath stroke='%239ca3af' stroke-linecap='round' stroke-linejoin='round' stroke-width='1.5' d='M6 8l4 4 4-4'/%3e%3c/svg%3e") !important;}
|
| 636 |
.dark .voice-selector select:focus { border-color: #3b82f6 !important; }
|
| 637 |
.dark .audio-player { background: #374151 !important; border-color: #4b5563;}
|
|
@@ -644,13 +660,11 @@ css = """
|
|
| 644 |
.dark .no-sources { background: #374151; color: #9ca3af; border-color: #4b5563;}
|
| 645 |
"""
|
| 646 |
|
| 647 |
-
import sys # Needed for sys.path manipulation in TTS setup
|
| 648 |
-
|
| 649 |
with gr.Blocks(title="AI Search Assistant", css=css, theme=gr.themes.Default(primary_hue="blue")) as demo:
|
| 650 |
-
# Use gr.State
|
| 651 |
chat_history_state = gr.State([])
|
| 652 |
|
| 653 |
-
with gr.Column():
|
| 654 |
# Header
|
| 655 |
with gr.Column(elem_id="header"):
|
| 656 |
gr.Markdown("# 🔍 AI Search Assistant")
|
|
@@ -658,27 +672,25 @@ with gr.Blocks(title="AI Search Assistant", css=css, theme=gr.themes.Default(pri
|
|
| 658 |
|
| 659 |
# Search Area
|
| 660 |
with gr.Column(elem_classes="search-container"):
|
| 661 |
-
with gr.Row(elem_classes="search-box"
|
| 662 |
search_input = gr.Textbox(label="", placeholder="Ask anything...", scale=5, container=False)
|
| 663 |
voice_select = gr.Dropdown(choices=list(VOICE_CHOICES.keys()), value=list(VOICE_CHOICES.keys())[0], label="", scale=1, min_width=180, container=False, elem_classes="voice-selector")
|
| 664 |
search_btn = gr.Button("Search", variant="primary", scale=0, min_width=100)
|
| 665 |
|
| 666 |
# Results Area
|
| 667 |
-
with gr.Row(elem_classes="results-container"
|
| 668 |
-
# Left Column:
|
| 669 |
with gr.Column(scale=3):
|
| 670 |
-
# Chatbot display (uses 'messages' format now)
|
| 671 |
chatbot_display = gr.Chatbot(
|
| 672 |
label="Conversation",
|
| 673 |
bubble_full_width=True,
|
| 674 |
-
height=500,
|
| 675 |
elem_classes="chat-history",
|
| 676 |
-
type="messages", # Use
|
| 677 |
-
|
|
|
|
| 678 |
)
|
| 679 |
-
# Separate Markdown for status/intermediate answer
|
| 680 |
answer_status_output = gr.Markdown(value="*Enter a query to start.*", elem_classes="answer-box markdown-content")
|
| 681 |
-
# Audio Output
|
| 682 |
audio_player = gr.Audio(label="Voice Response", type="numpy", autoplay=False, show_label=False, elem_classes="audio-player")
|
| 683 |
|
| 684 |
# Right Column: Sources
|
|
@@ -689,7 +701,6 @@ with gr.Blocks(title="AI Search Assistant", css=css, theme=gr.themes.Default(pri
|
|
| 689 |
|
| 690 |
# Examples Area
|
| 691 |
with gr.Row(elem_classes="examples-container"):
|
| 692 |
-
# REMOVED elem_classes from gr.Examples
|
| 693 |
gr.Examples(
|
| 694 |
examples=[
|
| 695 |
"Latest news about renewable energy",
|
|
@@ -700,47 +711,54 @@ with gr.Blocks(title="AI Search Assistant", css=css, theme=gr.themes.Default(pri
|
|
| 700 |
],
|
| 701 |
inputs=search_input,
|
| 702 |
label="Try these examples:",
|
|
|
|
| 703 |
)
|
| 704 |
|
| 705 |
# --- Event Handling Setup ---
|
| 706 |
-
# Define the inputs and outputs for the Gradio event triggers
|
| 707 |
event_inputs = [search_input, chat_history_state, voice_select]
|
| 708 |
event_outputs = [
|
| 709 |
-
chatbot_display, # Updated chat history
|
| 710 |
-
answer_status_output, #
|
| 711 |
-
sources_output_html, #
|
| 712 |
-
audio_player, # Audio data
|
| 713 |
-
search_btn # Button state
|
| 714 |
]
|
| 715 |
|
| 716 |
-
# Create a wrapper to adapt the async generator for Gradio's streaming updates
|
| 717 |
async def stream_interaction_updates(query, history, voice_display_name):
|
|
|
|
|
|
|
|
|
|
| 718 |
try:
|
| 719 |
-
|
| 720 |
-
|
| 721 |
-
|
|
|
|
|
|
|
| 722 |
except Exception as e:
|
| 723 |
print(f"[Gradio Stream] Error during interaction: {e}")
|
| 724 |
print(traceback.format_exc())
|
| 725 |
-
#
|
| 726 |
-
error_history = history + [{"role":"user", "content":query}, {"role":"assistant", "content":f"*
|
| 727 |
-
|
| 728 |
error_history,
|
| 729 |
f"An error occurred: {e}",
|
| 730 |
"<div class='error'>Request failed.</div>",
|
| 731 |
None,
|
| 732 |
-
gr.Button(value="Search", interactive=True)
|
| 733 |
)
|
| 734 |
-
|
| 735 |
-
|
| 736 |
-
# We need to yield the final state *plus* the cleared input
|
| 737 |
-
# This requires adding search_input to the outputs list for the event triggers
|
| 738 |
-
# For now, let's not clear it automatically to avoid complexity.
|
| 739 |
-
# yield (*final_state_tuple, gr.Textbox(value="")) # Example if clearing input
|
| 740 |
-
print("[Gradio Stream] Interaction stream finished.")
|
| 741 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 742 |
|
| 743 |
-
|
|
|
|
| 744 |
search_btn.click(
|
| 745 |
fn=stream_interaction_updates,
|
| 746 |
inputs=event_inputs,
|
|
@@ -752,10 +770,15 @@ with gr.Blocks(title="AI Search Assistant", css=css, theme=gr.themes.Default(pri
|
|
| 752 |
outputs=event_outputs
|
| 753 |
)
|
| 754 |
|
|
|
|
| 755 |
if __name__ == "__main__":
|
| 756 |
print("Starting Gradio application...")
|
|
|
|
|
|
|
| 757 |
demo.queue(max_size=20).launch(
|
| 758 |
debug=True,
|
| 759 |
-
share=True,
|
| 760 |
-
# server_name="0.0.0.0" #
|
| 761 |
-
|
|
|
|
|
|
|
|
|
| 1 |
+
# --- Imports ---
|
| 2 |
import gradio as gr
|
| 3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
|
| 4 |
from duckduckgo_search import DDGS
|
| 5 |
import time
|
| 6 |
import torch
|
|
|
|
| 16 |
import warnings
|
| 17 |
import traceback # For detailed error logging
|
| 18 |
import re # For text cleaning
|
| 19 |
+
import shutil # For checking sudo/file operations
|
| 20 |
import html # For escaping HTML
|
| 21 |
+
import sys # For sys.path manipulation
|
| 22 |
|
| 23 |
# --- Configuration ---
|
| 24 |
MODEL_NAME = "deepseek-ai/DeepSeek-R1-Distill-Llama-8B"
|
|
|
|
| 28 |
MAX_NEW_TOKENS = 300
|
| 29 |
TEMPERATURE = 0.7
|
| 30 |
TOP_P = 0.95
|
| 31 |
+
KOKORO_PATH = 'Kokoro-82M' # Relative path to TTS model directory
|
| 32 |
|
| 33 |
# --- Initialization ---
|
| 34 |
+
# Thread Pool Executor for blocking tasks
|
| 35 |
+
executor = ThreadPoolExecutor(max_workers=os.cpu_count() or 4)
|
| 36 |
|
| 37 |
# Suppress specific warnings
|
| 38 |
warnings.filterwarnings("ignore", category=UserWarning, message="TypedStorage is deprecated")
|
|
|
|
| 41 |
# --- LLM Initialization ---
|
| 42 |
llm_model: Optional[AutoModelForCausalLM] = None
|
| 43 |
llm_tokenizer: Optional[AutoTokenizer] = None
|
| 44 |
+
llm_device = "cpu"
|
| 45 |
|
| 46 |
try:
|
| 47 |
+
print("[LLM Init] Initializing Language Model...")
|
| 48 |
llm_tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 49 |
llm_tokenizer.pad_token = llm_tokenizer.eos_token
|
| 50 |
|
| 51 |
if torch.cuda.is_available():
|
| 52 |
llm_device = "cuda"
|
| 53 |
torch_dtype = torch.float16
|
| 54 |
+
device_map = "auto"
|
| 55 |
+
print(f"[LLM Init] CUDA detected. Loading model with device_map='{device_map}', dtype={torch_dtype}")
|
| 56 |
else:
|
| 57 |
llm_device = "cpu"
|
| 58 |
+
torch_dtype = torch.float32
|
| 59 |
device_map = {"": "cpu"}
|
| 60 |
+
print(f"[LLM Init] CUDA not found. Loading model on CPU with dtype={torch_dtype}")
|
| 61 |
|
| 62 |
llm_model = AutoModelForCausalLM.from_pretrained(
|
| 63 |
MODEL_NAME,
|
| 64 |
device_map=device_map,
|
| 65 |
low_cpu_mem_usage=True,
|
| 66 |
torch_dtype=torch_dtype,
|
| 67 |
+
# attn_implementation="flash_attention_2" # Optional
|
| 68 |
)
|
| 69 |
+
# Get the actual device map if using 'auto'
|
| 70 |
+
effective_device_map = llm_model.hf_device_map if hasattr(llm_model, 'hf_device_map') else device_map
|
| 71 |
+
print(f"[LLM Init] LLM loaded successfully. Device map: {effective_device_map}")
|
| 72 |
+
llm_model.eval()
|
| 73 |
|
| 74 |
except Exception as e:
|
| 75 |
+
print(f"[LLM Init] FATAL: Error initializing LLM model: {str(e)}")
|
| 76 |
print(traceback.format_exc())
|
|
|
|
| 77 |
llm_model = None
|
| 78 |
llm_tokenizer = None
|
| 79 |
+
print("[LLM Init] LLM features will be unavailable.")
|
| 80 |
|
| 81 |
|
| 82 |
# --- TTS Initialization ---
|
|
|
|
| 87 |
'🇺🇸 Nicole': 'af_nicole'
|
| 88 |
}
|
| 89 |
TTS_ENABLED = False
|
| 90 |
+
tts_model: Optional[Any] = None
|
| 91 |
+
voicepacks: Dict[str, Any] = {}
|
| 92 |
+
tts_device = "cpu"
|
| 93 |
|
| 94 |
+
# Helper for running subprocesses
|
| 95 |
+
def _run_subprocess(cmd: List[str], check: bool = True, cwd: Optional[str] = None, timeout: int = 300) -> subprocess.CompletedProcess:
|
| 96 |
+
"""Runs a subprocess command, captures output, and handles errors."""
|
|
|
|
|
|
|
| 97 |
print(f"Running command: {' '.join(cmd)}")
|
| 98 |
try:
|
| 99 |
+
result = subprocess.run(cmd, check=check, capture_output=True, text=True, cwd=cwd, timeout=timeout)
|
| 100 |
+
# Only print output details if check failed or for specific successful commands
|
| 101 |
+
if not check or result.returncode != 0:
|
| 102 |
+
if result.stdout: print(f" Stdout: {result.stdout.strip()}")
|
| 103 |
+
if result.stderr: print(f" Stderr: {result.stderr.strip()}")
|
| 104 |
+
elif result.returncode == 0 and ('clone' in cmd or 'pull' in cmd or 'install' in cmd):
|
| 105 |
+
print(f" Command successful.") # Concise success message
|
| 106 |
return result
|
| 107 |
except FileNotFoundError:
|
| 108 |
+
print(f" Error: Command not found - {cmd[0]}")
|
| 109 |
+
raise
|
| 110 |
+
except subprocess.TimeoutExpired:
|
| 111 |
+
print(f" Error: Command timed out - {' '.join(cmd)}")
|
| 112 |
raise
|
| 113 |
except subprocess.CalledProcessError as e:
|
| 114 |
+
print(f" Error running command: {' '.join(e.cmd)} (Code: {e.returncode})")
|
| 115 |
+
if e.stdout: print(f" Stdout: {e.stdout.strip()}")
|
| 116 |
+
if e.stderr: print(f" Stderr: {e.stderr.strip()}")
|
| 117 |
raise
|
| 118 |
|
| 119 |
+
# TTS Setup Task (runs in background thread)
|
| 120 |
def setup_tts_task():
|
| 121 |
"""Initializes Kokoro TTS model and dependencies."""
|
| 122 |
global TTS_ENABLED, tts_model, voicepacks, tts_device
|
| 123 |
print("[TTS Setup] Starting background initialization...")
|
| 124 |
|
|
|
|
| 125 |
tts_device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 126 |
print(f"[TTS Setup] Target device: {tts_device}")
|
| 127 |
|
| 128 |
can_sudo = shutil.which('sudo') is not None
|
| 129 |
apt_cmd_prefix = ['sudo'] if can_sudo else []
|
| 130 |
+
absolute_kokoro_path = os.path.abspath(KOKORO_PATH) # Use absolute path
|
| 131 |
|
| 132 |
try:
|
| 133 |
# 1. Clone Kokoro Repo if needed
|
| 134 |
+
if not os.path.exists(absolute_kokoro_path):
|
| 135 |
+
print(f"[TTS Setup] Cloning repository to {absolute_kokoro_path}...")
|
| 136 |
try:
|
| 137 |
_run_subprocess(['git', 'lfs', 'install', '--system', '--skip-repo'])
|
| 138 |
except Exception as lfs_err:
|
| 139 |
+
print(f"[TTS Setup] Warning: git lfs install failed: {lfs_err}. Continuing...")
|
| 140 |
+
_run_subprocess(['git', 'clone', 'https://huggingface.co/hexgrad/Kokoro-82M', absolute_kokoro_path])
|
| 141 |
try:
|
| 142 |
print("[TTS Setup] Running git lfs pull...")
|
| 143 |
+
_run_subprocess(['git', 'lfs', 'pull'], cwd=absolute_kokoro_path)
|
| 144 |
except Exception as lfs_pull_err:
|
| 145 |
print(f"[TTS Setup] Warning: git lfs pull failed: {lfs_pull_err}")
|
| 146 |
else:
|
| 147 |
+
print(f"[TTS Setup] Directory {absolute_kokoro_path} already exists.")
|
| 148 |
+
# Optional: Run git pull and lfs pull to update if needed
|
| 149 |
+
# try:
|
| 150 |
+
# print("[TTS Setup] Updating existing repo...")
|
| 151 |
+
# _run_subprocess(['git', 'pull'], cwd=absolute_kokoro_path)
|
| 152 |
+
# _run_subprocess(['git', 'lfs', 'pull'], cwd=absolute_kokoro_path)
|
| 153 |
+
# except Exception as update_err:
|
| 154 |
+
# print(f"[TTS Setup] Warning: Failed to update repo: {update_err}")
|
| 155 |
|
| 156 |
# 2. Install espeak dependency
|
| 157 |
print("[TTS Setup] Checking/Installing espeak...")
|
| 158 |
try:
|
| 159 |
+
# Run update quietly first
|
| 160 |
_run_subprocess(apt_cmd_prefix + ['apt-get', 'update', '-qq'])
|
| 161 |
+
# Try installing espeak-ng
|
| 162 |
_run_subprocess(apt_cmd_prefix + ['apt-get', 'install', '-y', '-qq', 'espeak-ng'])
|
| 163 |
print("[TTS Setup] espeak-ng installed or already present.")
|
| 164 |
except Exception:
|
| 165 |
+
print("[TTS Setup] espeak-ng installation failed, trying espeak...")
|
| 166 |
try:
|
| 167 |
+
# Fallback to legacy espeak
|
| 168 |
_run_subprocess(apt_cmd_prefix + ['apt-get', 'install', '-y', '-qq', 'espeak'])
|
| 169 |
print("[TTS Setup] espeak installed or already present.")
|
| 170 |
except Exception as espeak_err:
|
| 171 |
print(f"[TTS Setup] ERROR: Failed to install both espeak-ng and espeak: {espeak_err}. TTS disabled.")
|
| 172 |
+
return # Cannot proceed
|
| 173 |
|
| 174 |
# 3. Load Kokoro Model and Voices
|
| 175 |
+
sys_path_updated = False
|
| 176 |
+
if os.path.exists(absolute_kokoro_path):
|
| 177 |
+
print(f"[TTS Setup] Checking contents of: {absolute_kokoro_path}")
|
| 178 |
+
try:
|
| 179 |
+
dir_contents = os.listdir(absolute_kokoro_path)
|
| 180 |
+
print(f"[TTS Setup] Contents: {dir_contents}")
|
| 181 |
+
if 'models.py' not in dir_contents or 'kokoro.py' not in dir_contents:
|
| 182 |
+
print("[TTS Setup] Warning: Core Kokoro python files ('models.py', 'kokoro.py') might be missing!")
|
| 183 |
+
except OSError as list_err:
|
| 184 |
+
print(f"[TTS Setup] Warning: Could not list directory contents: {list_err}")
|
| 185 |
+
|
| 186 |
+
# Add path temporarily for import
|
| 187 |
+
if absolute_kokoro_path not in sys.path:
|
| 188 |
+
sys.path.insert(0, absolute_kokoro_path) # Add to beginning
|
| 189 |
sys_path_updated = True
|
| 190 |
+
print(f"[TTS Setup] Temporarily added {absolute_kokoro_path} to sys.path.")
|
| 191 |
+
|
| 192 |
try:
|
| 193 |
+
print("[TTS Setup] Attempting to import Kokoro modules...")
|
| 194 |
from models import build_model
|
| 195 |
from kokoro import generate as generate_tts_internal
|
| 196 |
+
print("[TTS Setup] Kokoro modules imported successfully.")
|
| 197 |
|
| 198 |
+
# Make functions globally accessible IF NEEDED (alternative: pass them around)
|
| 199 |
+
globals()['build_model'] = build_model
|
| 200 |
globals()['generate_tts_internal'] = generate_tts_internal
|
| 201 |
|
| 202 |
+
model_file = os.path.join(absolute_kokoro_path, 'kokoro-v0_19.pth')
|
| 203 |
if not os.path.exists(model_file):
|
| 204 |
print(f"[TTS Setup] ERROR: Model file {model_file} not found. TTS disabled.")
|
| 205 |
return
|
| 206 |
|
| 207 |
print(f"[TTS Setup] Loading TTS model from {model_file} onto {tts_device}...")
|
| 208 |
tts_model = build_model(model_file, tts_device)
|
| 209 |
+
tts_model.eval()
|
| 210 |
print("[TTS Setup] TTS model loaded.")
|
| 211 |
|
| 212 |
# Load voices
|
| 213 |
loaded_voices = 0
|
| 214 |
for voice_name, voice_id in VOICE_CHOICES.items():
|
| 215 |
+
voice_file_path = os.path.join(absolute_kokoro_path, 'voices', f'{voice_id}.pt')
|
| 216 |
if os.path.exists(voice_file_path):
|
| 217 |
try:
|
| 218 |
print(f"[TTS Setup] Loading voice: {voice_id} ({voice_name})")
|
|
|
|
| 219 |
voicepacks[voice_id] = torch.load(voice_file_path, map_location=tts_device)
|
| 220 |
loaded_voices += 1
|
| 221 |
except Exception as e:
|
| 222 |
print(f"[TTS Setup] Warning: Failed to load voice {voice_id}: {str(e)}")
|
| 223 |
else:
|
| 224 |
+
print(f"[TTS Setup] Info: Voice file {voice_file_path} not found.")
|
| 225 |
|
| 226 |
if loaded_voices == 0:
|
| 227 |
print("[TTS Setup] ERROR: No voicepacks could be loaded. TTS disabled.")
|
| 228 |
+
tts_model = None # Free memory if no voices
|
| 229 |
return
|
| 230 |
|
| 231 |
TTS_ENABLED = True
|
| 232 |
print(f"[TTS Setup] Initialization successful. {loaded_voices} voices loaded. TTS Enabled: {TTS_ENABLED}")
|
| 233 |
|
| 234 |
+
# Catch the specific import error
|
| 235 |
except ImportError as ie:
|
| 236 |
+
print(f"[TTS Setup] ERROR: Failed to import Kokoro modules: {ie}.")
|
| 237 |
+
print(f" Please ensure '{absolute_kokoro_path}' contains 'models.py' and 'kokoro.py'.")
|
| 238 |
+
print(traceback.format_exc())
|
| 239 |
except Exception as load_err:
|
| 240 |
+
print(f"[TTS Setup] ERROR: Exception during TTS model/voice loading: {load_err}. TTS disabled.")
|
| 241 |
print(traceback.format_exc())
|
| 242 |
finally:
|
| 243 |
+
# *** Crucial: Clean up sys.path ***
|
| 244 |
+
if sys_path_updated:
|
| 245 |
+
try:
|
| 246 |
+
if sys.path[0] == absolute_kokoro_path:
|
| 247 |
+
sys.path.pop(0)
|
| 248 |
+
print(f"[TTS Setup] Removed {absolute_kokoro_path} from sys.path.")
|
| 249 |
+
else:
|
| 250 |
+
# It might have been removed elsewhere, or wasn't at index 0
|
| 251 |
+
if absolute_kokoro_path in sys.path:
|
| 252 |
+
sys.path.remove(absolute_kokoro_path)
|
| 253 |
+
print(f"[TTS Setup] Removed {absolute_kokoro_path} from sys.path (was not index 0).")
|
| 254 |
+
except Exception as cleanup_err:
|
| 255 |
+
print(f"[TTS Setup] Warning: Error removing path from sys.path: {cleanup_err}")
|
| 256 |
else:
|
| 257 |
+
print(f"[TTS Setup] ERROR: Directory {absolute_kokoro_path} not found. TTS disabled.")
|
| 258 |
|
| 259 |
except Exception as e:
|
| 260 |
print(f"[TTS Setup] ERROR: Unexpected error during setup: {str(e)}")
|
| 261 |
print(traceback.format_exc())
|
| 262 |
+
TTS_ENABLED = False # Ensure disabled on any top-level error
|
|
|
|
| 263 |
tts_model = None
|
| 264 |
voicepacks.clear()
|
| 265 |
|
| 266 |
+
# Start TTS setup in background
|
| 267 |
print("Starting TTS setup thread...")
|
| 268 |
tts_setup_thread = threading.Thread(target=setup_tts_task, daemon=True)
|
| 269 |
tts_setup_thread.start()
|
| 270 |
|
| 271 |
|
| 272 |
+
# --- Core Logic Functions ---
|
| 273 |
|
| 274 |
@lru_cache(maxsize=128)
|
| 275 |
def get_web_results_sync(query: str, max_results: int = MAX_SEARCH_RESULTS) -> List[Dict[str, Any]]:
|
|
|
|
| 288 |
return formatted
|
| 289 |
except Exception as e:
|
| 290 |
print(f"[Web Search] Error: {e}")
|
| 291 |
+
# Avoid printing full traceback repeatedly for common network errors maybe
|
| 292 |
return []
|
| 293 |
|
| 294 |
def format_llm_prompt(query: str, context: List[Dict[str, Any]]) -> str:
|
| 295 |
"""Formats the prompt for the LLM, including context and instructions."""
|
| 296 |
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
| 297 |
context_str = "\n\n".join(
|
| 298 |
+
[f"[{res['id']}] {html.escape(res['title'])}\n{html.escape(res['snippet'])}" for res in context]
|
| 299 |
) if context else "No relevant web context found."
|
| 300 |
|
| 301 |
+
# Using a clear, structured prompt
|
| 302 |
+
return f"""SYSTEM: You are a helpful AI assistant. Answer the user's query based *only* on the provided web search context. Cite sources using bracket notation like [1], [2]. If the context is insufficient, state that clearly. Use markdown for formatting. Do not add external information. Current Time: {current_time}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 303 |
|
| 304 |
+
CONTEXT:
|
| 305 |
---
|
| 306 |
{context_str}
|
| 307 |
---
|
| 308 |
|
| 309 |
+
USER: {html.escape(query)}
|
| 310 |
|
| 311 |
+
ASSISTANT:""" # Using ASSISTANT: marker might help some models
|
| 312 |
|
| 313 |
def format_sources_html(web_results: List[Dict[str, Any]]) -> str:
|
| 314 |
"""Formats search results into HTML for display."""
|
|
|
|
| 318 |
for res in web_results:
|
| 319 |
title_safe = html.escape(res.get("title", "Source"))
|
| 320 |
snippet_safe = html.escape(res.get("snippet", "")[:150] + ("..." if len(res.get("snippet", "")) > 150 else ""))
|
| 321 |
+
url = html.escape(res.get("url", "#")) # Escape URL too
|
| 322 |
items_html += f"""
|
| 323 |
<div class='source-item'>
|
| 324 |
<div class='source-number'>[{res['id']}]</div>
|
|
|
|
| 333 |
async def generate_llm_answer(prompt: str) -> str:
|
| 334 |
"""Generates answer using the loaded LLM (Async Wrapper)."""
|
| 335 |
if not llm_model or not llm_tokenizer:
|
| 336 |
+
print("[LLM Generate] LLM model or tokenizer not available.")
|
| 337 |
+
return "Error: Language Model is not available."
|
| 338 |
|
| 339 |
print(f"[LLM Generate] Requesting generation (prompt length {len(prompt)})...")
|
| 340 |
start_time = time.time()
|
|
|
|
| 344 |
return_tensors="pt",
|
| 345 |
padding=True,
|
| 346 |
truncation=True,
|
| 347 |
+
max_length=1024, # Adjust based on model limits
|
| 348 |
return_attention_mask=True
|
| 349 |
+
).to(llm_model.device)
|
| 350 |
|
| 351 |
with torch.inference_mode(), torch.cuda.amp.autocast(enabled=(llm_model.dtype == torch.float16)):
|
|
|
|
| 352 |
outputs = await asyncio.get_event_loop().run_in_executor(
|
| 353 |
executor,
|
| 354 |
llm_model.generate,
|
|
|
|
| 363 |
num_return_sequences=1
|
| 364 |
)
|
| 365 |
|
| 366 |
+
# Decode only newly generated tokens
|
| 367 |
output_ids = outputs[0][inputs.input_ids.shape[1]:]
|
| 368 |
answer_part = llm_tokenizer.decode(output_ids, skip_special_tokens=True).strip()
|
| 369 |
|
|
|
|
| 370 |
if not answer_part:
|
| 371 |
+
answer_part = "*Model generated an empty response.*"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 372 |
|
| 373 |
end_time = time.time()
|
| 374 |
print(f"[LLM Generate] Generation complete in {end_time - start_time:.2f}s. Length: {len(answer_part)}")
|
|
|
|
| 377 |
except Exception as e:
|
| 378 |
print(f"[LLM Generate] Error: {e}")
|
| 379 |
print(traceback.format_exc())
|
| 380 |
+
return f"Error during answer generation: Check logs for details." # User-friendly error
|
| 381 |
|
| 382 |
async def generate_tts_speech(text: str, voice_id: str = 'af') -> Optional[Tuple[int, np.ndarray]]:
|
| 383 |
"""Generates speech using the loaded TTS model (Async Wrapper)."""
|
| 384 |
if not TTS_ENABLED or not tts_model or 'generate_tts_internal' not in globals():
|
| 385 |
print("[TTS Generate] Skipping: TTS not ready.")
|
| 386 |
return None
|
| 387 |
+
if not text or not text.strip() or text.startswith("Error:") or text.startswith("*Model generated"):
|
| 388 |
+
print("[TTS Generate] Skipping: Invalid or empty text.")
|
| 389 |
return None
|
| 390 |
|
| 391 |
print(f"[TTS Generate] Requesting speech (length {len(text)}, voice '{voice_id}')...")
|
| 392 |
start_time = time.time()
|
| 393 |
|
| 394 |
try:
|
|
|
|
| 395 |
actual_voice_id = voice_id
|
| 396 |
if voice_id not in voicepacks:
|
| 397 |
print(f"[TTS Generate] Warning: Voice '{voice_id}' not loaded. Trying default 'af'.")
|
|
|
|
| 400 |
print("[TTS Generate] Error: Default voice 'af' also not available.")
|
| 401 |
return None
|
| 402 |
|
| 403 |
+
# Clean text more thoroughly for TTS
|
| 404 |
+
clean_text = re.sub(r'\[\d+\](\[\d+\])*', '', text) # Remove citations [1], [2][3]
|
| 405 |
+
clean_text = re.sub(r'```.*?```', '', clean_text, flags=re.DOTALL) # Remove code blocks
|
| 406 |
+
clean_text = re.sub(r'`[^`]*`', '', clean_text) # Remove inline code
|
| 407 |
+
clean_text = re.sub(r'^\s*[\*->]\s*', '', clean_text, flags=re.MULTILINE) # Remove list markers/blockquotes at line start
|
| 408 |
+
clean_text = re.sub(r'[\*#_]', '', clean_text) # Remove remaining markdown emphasis/headers
|
| 409 |
+
clean_text = html.unescape(clean_text) # Decode HTML entities
|
| 410 |
clean_text = ' '.join(clean_text.split()) # Normalize whitespace
|
| 411 |
|
| 412 |
+
if not clean_text:
|
| 413 |
+
print("[TTS Generate] Skipping: Text empty after cleaning.")
|
| 414 |
+
return None
|
| 415 |
|
|
|
|
| 416 |
if len(clean_text) > MAX_TTS_CHARS:
|
| 417 |
+
print(f"[TTS Generate] Truncating cleaned text from {len(clean_text)} to {MAX_TTS_CHARS} chars.")
|
| 418 |
clean_text = clean_text[:MAX_TTS_CHARS]
|
| 419 |
+
last_punct = max(clean_text.rfind(p) for p in '.?!; ') # Find reasonable cut-off
|
| 420 |
if last_punct != -1: clean_text = clean_text[:last_punct+1]
|
| 421 |
clean_text += "..."
|
| 422 |
|
|
|
|
| 424 |
gen_func = globals()['generate_tts_internal']
|
| 425 |
voice_pack_data = voicepacks[actual_voice_id]
|
| 426 |
|
| 427 |
+
# Execute in thread pool
|
| 428 |
+
# Verify the expected language code ('afr', 'eng', etc.) for Kokoro
|
| 429 |
audio_data, _ = await asyncio.get_event_loop().run_in_executor(
|
| 430 |
+
executor, gen_func, tts_model, clean_text, voice_pack_data, 'afr'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 431 |
)
|
| 432 |
|
| 433 |
+
# Process output
|
| 434 |
if isinstance(audio_data, torch.Tensor):
|
| 435 |
audio_np = audio_data.detach().cpu().numpy()
|
| 436 |
elif isinstance(audio_data, np.ndarray):
|
|
|
|
| 439 |
print("[TTS Generate] Warning: Unexpected audio data type.")
|
| 440 |
return None
|
| 441 |
|
| 442 |
+
audio_np = audio_np.flatten().astype(np.float32) # Ensure 1D float32
|
|
|
|
| 443 |
|
| 444 |
end_time = time.time()
|
| 445 |
print(f"[TTS Generate] Audio generated in {end_time - start_time:.2f}s. Shape: {audio_np.shape}")
|
|
|
|
| 456 |
|
| 457 |
|
| 458 |
# --- Gradio Interaction Logic ---
|
| 459 |
+
ChatHistoryType = List[Dict[str, Optional[str]]] # Allow None for content during streaming
|
|
|
|
|
|
|
| 460 |
|
| 461 |
async def handle_interaction(
|
| 462 |
query: str,
|
|
|
|
| 465 |
):
|
| 466 |
"""Main async generator function to handle user queries and update Gradio UI."""
|
| 467 |
print(f"\n--- Handling Query ---")
|
| 468 |
+
query = query.strip() # Clean input query
|
| 469 |
print(f"Query: '{query}', Voice: '{selected_voice_display_name}'")
|
| 470 |
|
| 471 |
+
if not query:
|
| 472 |
print("Empty query received.")
|
| 473 |
+
yield history, "*Please enter a non-empty query.*", "<div class='no-sources'>Enter a query to search.</div>", None, gr.Button(value="Search", interactive=True)
|
|
|
|
| 474 |
return
|
| 475 |
|
| 476 |
+
# Use 'messages' format: List of {'role': 'user'/'assistant', 'content': '...'}
|
| 477 |
+
current_history: ChatHistoryType = history + [{"role": "user", "content": query}]
|
| 478 |
# Add placeholder for assistant response
|
| 479 |
+
current_history.append({"role": "assistant", "content": None}) # Content starts as None
|
| 480 |
+
|
| 481 |
+
# Define states to yield
|
| 482 |
+
chatbot_state = current_history
|
| 483 |
+
status_state = "*Searching...*"
|
| 484 |
+
sources_state = "<div class='searching'><span>Searching the web...</span></div>"
|
| 485 |
+
audio_state = None
|
| 486 |
+
button_state = gr.Button(value="Searching...", interactive=False)
|
| 487 |
|
| 488 |
# 1. Initial State: Searching
|
| 489 |
+
current_history[-1]["content"] = status_state # Update placeholder
|
| 490 |
+
yield chatbot_state, status_state, sources_state, audio_state, button_state
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 491 |
|
| 492 |
# 2. Perform Web Search (in executor)
|
| 493 |
web_results = await asyncio.get_event_loop().run_in_executor(
|
| 494 |
executor, get_web_results_sync, query
|
| 495 |
)
|
| 496 |
+
sources_state = format_sources_html(web_results)
|
| 497 |
|
| 498 |
# Update state: Generating Answer
|
| 499 |
+
status_state = "*Generating answer...*"
|
| 500 |
+
button_state = gr.Button(value="Generating...", interactive=False)
|
| 501 |
+
current_history[-1]["content"] = status_state # Update placeholder
|
| 502 |
+
yield chatbot_state, status_state, sources_state, audio_state, button_state
|
|
|
|
|
|
|
|
|
|
|
|
|
| 503 |
|
| 504 |
# 3. Generate LLM Answer (async)
|
| 505 |
llm_prompt = format_llm_prompt(query, web_results)
|
| 506 |
final_answer = await generate_llm_answer(llm_prompt)
|
| 507 |
+
status_state = final_answer # Now status holds the actual answer
|
| 508 |
|
| 509 |
+
# Update assistant message in history fully
|
| 510 |
current_history[-1]["content"] = final_answer
|
| 511 |
|
| 512 |
# Update state: Generating Audio (if applicable)
|
| 513 |
+
button_state = gr.Button(value="Audio...", interactive=False) if TTS_ENABLED else gr.Button(value="Search", interactive=True)
|
| 514 |
+
yield chatbot_state, status_state, sources_state, audio_state, button_state
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 515 |
|
| 516 |
# 4. Generate TTS Speech (async)
|
|
|
|
| 517 |
tts_status_message = ""
|
| 518 |
if not TTS_ENABLED:
|
| 519 |
if tts_setup_thread.is_alive():
|
| 520 |
tts_status_message = "\n\n*(TTS initializing...)*"
|
| 521 |
else:
|
| 522 |
+
# Check if setup failed vs just disabled
|
| 523 |
+
# This info isn't easily available here, assume failed/disabled
|
| 524 |
+
tts_status_message = "\n\n*(TTS unavailable)*"
|
| 525 |
+
else:
|
| 526 |
voice_id = get_voice_id_from_display(selected_voice_display_name)
|
| 527 |
+
audio_state = await generate_tts_speech(final_answer, voice_id) # Returns (rate, data) or None
|
| 528 |
+
if audio_state is None and not final_answer.startswith("Error"): # Don't show TTS fail if LLM failed
|
| 529 |
tts_status_message = "\n\n*(Audio generation failed)*"
|
| 530 |
|
| 531 |
# 5. Final State: Show all results
|
| 532 |
final_answer_with_status = final_answer + tts_status_message
|
| 533 |
+
status_state = final_answer_with_status # Update status display
|
| 534 |
+
current_history[-1]["content"] = final_answer_with_status # Update history *again* with status msg
|
| 535 |
+
|
| 536 |
+
button_state = gr.Button(value="Search", interactive=True) # Re-enable button
|
| 537 |
|
| 538 |
print("--- Query Handling Complete ---")
|
| 539 |
+
yield chatbot_state, status_state, sources_state, audio_state, button_state
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 540 |
|
| 541 |
|
| 542 |
# --- Gradio UI Definition ---
|
| 543 |
+
# (CSS from previous response)
|
| 544 |
css = """
|
| 545 |
+
/* ... [Your existing refined CSS] ... */
|
|
|
|
|
|
|
| 546 |
.gradio-container { max-width: 1200px !important; background-color: #f7f7f8 !important; }
|
| 547 |
#header { text-align: center; margin-bottom: 2rem; padding: 2rem 0; background: linear-gradient(135deg, #1a1b1e, #2d2e32); border-radius: 12px; color: white; box-shadow: 0 8px 32px rgba(0,0,0,0.2); }
|
| 548 |
#header h1 { color: white; font-size: 2.5rem; margin-bottom: 0.5rem; text-shadow: 0 2px 4px rgba(0,0,0,0.3); }
|
|
|
|
| 559 |
.search-box button:hover { background: #1d4ed8 !important; }
|
| 560 |
.search-box button:disabled { background: #9ca3af !important; cursor: not-allowed; }
|
| 561 |
.results-container { background: transparent; padding: 0; margin-top: 1.5rem; }
|
| 562 |
+
.answer-box { /* Now used for status/interim text */ background: white; border: 1px solid #e0e0e0; border-radius: 10px; padding: 1rem; color: #1f2937; margin-bottom: 0.5rem; box-shadow: 0 2px 8px rgba(0,0,0,0.05); min-height: 50px;}
|
| 563 |
+
.answer-box p { color: #374151; line-height: 1.7; margin:0;}
|
| 564 |
.answer-box code { background: #f3f4f6; border-radius: 4px; padding: 2px 4px; color: #4b5563; font-size: 0.9em; }
|
| 565 |
.sources-box { background: white; border: 1px solid #e0e0e0; border-radius: 10px; padding: 1.5rem; }
|
| 566 |
.sources-box h3 { margin-top: 0; margin-bottom: 1rem; color: #111827; font-size: 1.2rem; }
|
|
|
|
| 572 |
.source-title { color: #2563eb; font-weight: 500; text-decoration: none; display: block; margin-bottom: 4px; transition: all 0.2s; font-size: 0.95em; white-space: nowrap; overflow: hidden; text-overflow: ellipsis;}
|
| 573 |
.source-title:hover { color: #1d4ed8; text-decoration: underline; }
|
| 574 |
.source-snippet { color: #4b5563; font-size: 0.9em; line-height: 1.5; }
|
| 575 |
+
.chat-history { /* Style the chatbot container */ max-height: 500px; overflow-y: auto; background: #f9fafb; border: 1px solid #e5e7eb; border-radius: 8px; /* margin-top: 1rem; */ scrollbar-width: thin; scrollbar-color: #d1d5db #f9fafb; }
|
| 576 |
.chat-history > div { padding: 1rem; } /* Add padding inside the chatbot display area */
|
| 577 |
.chat-history::-webkit-scrollbar { width: 6px; }
|
| 578 |
.chat-history::-webkit-scrollbar-track { background: #f9fafb; }
|
| 579 |
.chat-history::-webkit-scrollbar-thumb { background-color: #d1d5db; border-radius: 20px; }
|
| 580 |
.examples-container { background: #f9fafb; border-radius: 8px; padding: 1rem; margin-top: 1rem; border: 1px solid #e5e7eb; }
|
|
|
|
| 581 |
.examples-container button { background: white !important; border: 1px solid #d1d5db !important; color: #374151 !important; transition: all 0.2s; margin: 4px !important; font-size: 0.9em !important; padding: 6px 12px !important; border-radius: 4px !important; }
|
| 582 |
.examples-container button:hover { background: #f3f4f6 !important; border-color: #adb5bd !important; }
|
| 583 |
.markdown-content { color: #374151 !important; font-size: 1rem; line-height: 1.7; }
|
|
|
|
| 594 |
.markdown-content table { border-collapse: collapse !important; width: 100% !important; margin: 1em 0; }
|
| 595 |
.markdown-content th, .markdown-content td { padding: 8px 12px !important; border: 1px solid #d1d5db !important; text-align: left;}
|
| 596 |
.markdown-content th { background: #f9fafb !important; font-weight: 600; }
|
| 597 |
+
/* .accordion { background: #f9fafb !important; border: 1px solid #e5e7eb !important; border-radius: 8px !important; margin-top: 1rem !important; box-shadow: none !important; } */
|
| 598 |
+
/* .accordion > .label-wrap { padding: 10px 15px !important; } */
|
| 599 |
.voice-selector { margin: 0; padding: 0; height: 100%; }
|
| 600 |
.voice-selector div[data-testid="dropdown"] { height: 100% !important; border-radius: 0 !important;}
|
| 601 |
.voice-selector select { background: white !important; color: #374151 !important; border: 1px solid #d1d5db !important; border-left: none !important; border-right: none !important; border-radius: 0 !important; height: 100% !important; padding: 0 10px !important; transition: all 0.2s; appearance: none !important; -webkit-appearance: none !important; background-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' fill='none' viewBox='0 0 20 20'%3e%3cpath stroke='%236b7280' stroke-linecap='round' stroke-linejoin='round' stroke-width='1.5' d='M6 8l4 4 4-4'/%3e%3c/svg%3e") !important; background-position: right 0.5rem center !important; background-repeat: no-repeat !important; background-size: 1.5em 1.5em !important; padding-right: 2.5rem !important; }
|
|
|
|
| 608 |
.no-sources { padding: 1rem; text-align: center; color: #6b7280; background: #f9fafb; border-radius: 8px; border: 1px solid #e5e7eb;}
|
| 609 |
@keyframes pulse { 0% { opacity: 0.7; } 50% { opacity: 1; } 100% { opacity: 0.7; } }
|
| 610 |
.searching span { animation: pulse 1.5s infinite ease-in-out; display: inline-block; }
|
| 611 |
+
/* Dark Mode Styles */
|
| 612 |
.dark .gradio-container { background-color: #111827 !important; }
|
| 613 |
.dark #header { background: linear-gradient(135deg, #1f2937, #374151); }
|
| 614 |
.dark #header h3 { color: #9ca3af; }
|
|
|
|
| 646 |
.dark .markdown-content blockquote { border-left-color: #4b5563 !important; color: #9ca3af !important; }
|
| 647 |
.dark .markdown-content th, .dark .markdown-content td { border-color: #4b5563 !important; }
|
| 648 |
.dark .markdown-content th { background: #374151 !important; }
|
| 649 |
+
/* .dark .accordion { background: #374151 !important; border-color: #4b5563 !important; } */
|
| 650 |
+
/* .dark .accordion > .label-wrap { color: #d1d5db !important; } */
|
| 651 |
.dark .voice-selector select { background: #1f2937 !important; color: #d1d5db !important; border-color: #4b5563 !important; background-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' fill='none' viewBox='0 0 20 20'%3e%3cpath stroke='%239ca3af' stroke-linecap='round' stroke-linejoin='round' stroke-width='1.5' d='M6 8l4 4 4-4'/%3e%3c/svg%3e") !important;}
|
| 652 |
.dark .voice-selector select:focus { border-color: #3b82f6 !important; }
|
| 653 |
.dark .audio-player { background: #374151 !important; border-color: #4b5563;}
|
|
|
|
| 660 |
.dark .no-sources { background: #374151; color: #9ca3af; border-color: #4b5563;}
|
| 661 |
"""
|
| 662 |
|
|
|
|
|
|
|
| 663 |
with gr.Blocks(title="AI Search Assistant", css=css, theme=gr.themes.Default(primary_hue="blue")) as demo:
|
| 664 |
+
# Use gr.State for chat history in 'messages' format
|
| 665 |
chat_history_state = gr.State([])
|
| 666 |
|
| 667 |
+
with gr.Column():
|
| 668 |
# Header
|
| 669 |
with gr.Column(elem_id="header"):
|
| 670 |
gr.Markdown("# 🔍 AI Search Assistant")
|
|
|
|
| 672 |
|
| 673 |
# Search Area
|
| 674 |
with gr.Column(elem_classes="search-container"):
|
| 675 |
+
with gr.Row(elem_classes="search-box"):
|
| 676 |
search_input = gr.Textbox(label="", placeholder="Ask anything...", scale=5, container=False)
|
| 677 |
voice_select = gr.Dropdown(choices=list(VOICE_CHOICES.keys()), value=list(VOICE_CHOICES.keys())[0], label="", scale=1, min_width=180, container=False, elem_classes="voice-selector")
|
| 678 |
search_btn = gr.Button("Search", variant="primary", scale=0, min_width=100)
|
| 679 |
|
| 680 |
# Results Area
|
| 681 |
+
with gr.Row(elem_classes="results-container"):
|
| 682 |
+
# Left Column: Chatbot, Status, Audio
|
| 683 |
with gr.Column(scale=3):
|
|
|
|
| 684 |
chatbot_display = gr.Chatbot(
|
| 685 |
label="Conversation",
|
| 686 |
bubble_full_width=True,
|
| 687 |
+
height=500, # Adjusted height
|
| 688 |
elem_classes="chat-history",
|
| 689 |
+
type="messages", # IMPORTANT: Use 'messages' format
|
| 690 |
+
show_label=False,
|
| 691 |
+
avatar_images=(None, os.path.join(KOKORO_PATH, "icon.png") if os.path.exists(os.path.join(KOKORO_PATH, "icon.png")) else "https://huggingface.co/spaces/gradio/chatbot-streaming/resolve/main/avatar.png") # User/Assistant avatars
|
| 692 |
)
|
|
|
|
| 693 |
answer_status_output = gr.Markdown(value="*Enter a query to start.*", elem_classes="answer-box markdown-content")
|
|
|
|
| 694 |
audio_player = gr.Audio(label="Voice Response", type="numpy", autoplay=False, show_label=False, elem_classes="audio-player")
|
| 695 |
|
| 696 |
# Right Column: Sources
|
|
|
|
| 701 |
|
| 702 |
# Examples Area
|
| 703 |
with gr.Row(elem_classes="examples-container"):
|
|
|
|
| 704 |
gr.Examples(
|
| 705 |
examples=[
|
| 706 |
"Latest news about renewable energy",
|
|
|
|
| 711 |
],
|
| 712 |
inputs=search_input,
|
| 713 |
label="Try these examples:",
|
| 714 |
+
# elem_classes removed
|
| 715 |
)
|
| 716 |
|
| 717 |
# --- Event Handling Setup ---
|
|
|
|
| 718 |
event_inputs = [search_input, chat_history_state, voice_select]
|
| 719 |
event_outputs = [
|
| 720 |
+
chatbot_display, # Output 1: Updated chat history
|
| 721 |
+
answer_status_output, # Output 2: Status/final text
|
| 722 |
+
sources_output_html, # Output 3: Sources HTML
|
| 723 |
+
audio_player, # Output 4: Audio data
|
| 724 |
+
search_btn # Output 5: Button state
|
| 725 |
]
|
| 726 |
|
|
|
|
| 727 |
async def stream_interaction_updates(query, history, voice_display_name):
|
| 728 |
+
"""Wraps the async generator to handle streaming updates and errors."""
|
| 729 |
+
print("[Gradio Stream] Starting interaction...")
|
| 730 |
+
final_state_tuple = None # To store the last successful state
|
| 731 |
try:
|
| 732 |
+
async for state_update_tuple in handle_interaction(query, history, voice_display_name):
|
| 733 |
+
yield state_update_tuple # Yield the tuple for Gradio to update outputs
|
| 734 |
+
final_state_tuple = state_update_tuple # Keep track of the last state
|
| 735 |
+
print("[Gradio Stream] Interaction completed successfully.")
|
| 736 |
+
|
| 737 |
except Exception as e:
|
| 738 |
print(f"[Gradio Stream] Error during interaction: {e}")
|
| 739 |
print(traceback.format_exc())
|
| 740 |
+
# Construct error state to yield
|
| 741 |
+
error_history = history + [{"role":"user", "content":query}, {"role":"assistant", "content":f"*An error occurred. Please check logs.*"}]
|
| 742 |
+
error_state_tuple = (
|
| 743 |
error_history,
|
| 744 |
f"An error occurred: {e}",
|
| 745 |
"<div class='error'>Request failed.</div>",
|
| 746 |
None,
|
| 747 |
+
gr.Button(value="Search", interactive=True) # Ensure button is re-enabled
|
| 748 |
)
|
| 749 |
+
yield error_state_tuple # Yield the error state to UI
|
| 750 |
+
final_state_tuple = error_state_tuple # Store error state as last state
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 751 |
|
| 752 |
+
# Optionally clear input ONLY if the interaction finished (success or error)
|
| 753 |
+
# Requires adding search_input to event_outputs and handling the update dict
|
| 754 |
+
# Example (if search_input is the 6th output):
|
| 755 |
+
# if final_state_tuple:
|
| 756 |
+
# yield (*final_state_tuple, gr.Textbox(value=""))
|
| 757 |
+
# else: # Handle case where no state was ever yielded (e.g., immediate empty query return)
|
| 758 |
+
# yield (history, "*Please enter a query.*", "...", None, gr.Button(value="Search", interactive=True), gr.Textbox(value=""))
|
| 759 |
|
| 760 |
+
|
| 761 |
+
# Connect the streaming function
|
| 762 |
search_btn.click(
|
| 763 |
fn=stream_interaction_updates,
|
| 764 |
inputs=event_inputs,
|
|
|
|
| 770 |
outputs=event_outputs
|
| 771 |
)
|
| 772 |
|
| 773 |
+
# --- Main Execution ---
|
| 774 |
if __name__ == "__main__":
|
| 775 |
print("Starting Gradio application...")
|
| 776 |
+
# Optional: Wait a moment for TTS setup thread to start and potentially print messages
|
| 777 |
+
# time.sleep(1)
|
| 778 |
demo.queue(max_size=20).launch(
|
| 779 |
debug=True,
|
| 780 |
+
share=True, # Set to False if not running on Spaces or don't need public link
|
| 781 |
+
# server_name="0.0.0.0", # Uncomment to bind to all network interfaces
|
| 782 |
+
# server_port=7860 # Optional: Specify port
|
| 783 |
+
)
|
| 784 |
+
print("Gradio application stopped.")
|