File size: 10,173 Bytes
984c806
 
 
6ad4659
984c806
 
 
6ad4659
 
 
 
 
 
 
 
 
 
 
984c806
 
 
 
6ad4659
 
 
984c806
 
 
 
6ad4659
 
 
 
ef24863
6ad4659
 
 
 
984c806
 
 
 
 
 
 
 
 
6ad4659
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
984c806
6ad4659
 
 
 
984c806
ef24863
 
 
 
984c806
 
 
 
 
 
6ad4659
984c806
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ad4659
 
 
 
 
 
 
 
 
 
 
 
984c806
6ad4659
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
984c806
 
6ad4659
 
 
 
 
 
 
 
984c806
 
 
 
6ad4659
984c806
 
 
 
6ad4659
984c806
6ad4659
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
"""
Extract high-value Caribbean entities from training transcripts.
This builds a gazetteer purely from the competition dataset (no external data).
Supports both single-word and multi-word entity extraction.
"""
import pandas as pd
import re
from typing import Set, Dict, List, Tuple


def extract_ngrams(words: List[str], n: int) -> List[Tuple[str, ...]]:
    """Extract n-grams from a list of words."""
    return [tuple(words[i:i+n]) for i in range(len(words) - n + 1)]


def is_phrase_capitalized(phrase_words: List[str]) -> bool:
    """Check if a phrase has proper capitalization (all words capitalized)."""
    return all(word[0].isupper() if word else False for word in phrase_words)


def extract_entities_from_transcripts(train_df: pd.DataFrame, 
                                     min_frequency: int = 50,
                                     min_frequency_multiword: int = 20,
                                     capitalization_threshold: float = 0.7,
                                     verbose: bool = True) -> Set[str]:
    """
    Extract high-value entities from training transcripts based on:
    1. Frequency (appears > min_frequency times)
    2. Capitalization pattern (capitalized/ALLCAPS most of the time)
    3. Multi-word phrase detection (bigrams, trigrams)
    4. Proximity to known Caribbean keywords (optional filter)
    
    Args:
        train_df: DataFrame with 'transcription' column (lowercase)
        min_frequency: Minimum occurrences for single-word entities
        min_frequency_multiword: Minimum occurrences for multi-word entities
        capitalization_threshold: Minimum ratio of capitalized occurrences (0-1)
        verbose: Print progress and statistics
    """
    # Known Caribbean keywords for context filtering
    caribbean_keywords = {
        "caribbean", "bbc", "report", "london", "port", "prime", "minister",
        "trinidad", "tobago", "jamaica", "guyana", "haiti", "barbados",
        "antigua", "dominica", "grenada", "montserrat", "lucia", "kitts",
        "nevis", "suriname", "caricom", "west", "indies"
    }
    
    # Exclusion list: common words that are frequently capitalized but not entities
    EXCLUDED_WORDS = {
        # Single letters
        "i", "u",
        # Titles/honorifics
        "mr", "mrs", "ms", "dr", "sir", "madam",
        # Days of week
        "monday", "tuesday", "wednesday", "thursday", "friday", "saturday", "sunday",
        # Months
        "january", "february", "march", "april", "may", "june",
        "july", "august", "september", "october", "november", "december",
        # Common nouns that start sentences (remove from single words, but allow in phrases)
        "minister", "assembly", "council", "department", "secretariat",
        "secretary", "parliament", "congress", "labour", "republic", "states",
        "attorney", "association",
        # Adjectives (nationality/descriptive)
        "british", "american", "cuban", "haitian", "guyanese", "jamaican",
        "trinidadian", "dominican", "african", "european", "indian", "dutch",
        "french", "eastern", "latin", "south", "west", "north",
    }
    
    # Exclusion patterns for multi-word phrases
    EXCLUDED_PHRASE_PATTERNS = {
        # Generic time references
        "last week", "this week", "next week", "last year", "this year", "next year",
        "last month", "this month", "next month",
        # Generic titles without names
        "prime minister", "foreign minister", "finance minister",
        # Articles and common phrases
        "the report", "the government", "the country",
    }
    
    # Track word and phrase occurrences with capitalization info
    word_stats: Dict[str, Dict[str, int]] = {}
    phrase_stats: Dict[str, Dict[str, int]] = {}
    
    if verbose:
        print("\n[1/3] Analyzing single words and multi-word phrases...")
    
    # Support both 'Transcription' (CSV) and 'transcription' (HF dataset)
    transcription_col = 'transcription' if 'transcription' in train_df.columns else 'Transcription'
    
    for transcription in train_df[transcription_col]:
        if pd.isna(transcription):
            continue
            
        # Tokenize: split on whitespace and punctuation
        words = re.findall(r'\b[A-Za-z]+\b', str(transcription))
        
        # === SINGLE WORD EXTRACTION ===
        for word in words:
            word_lower = word.lower()
            
            if word_lower not in word_stats:
                word_stats[word_lower] = {
                    'total': 0,
                    'capitalized': 0,
                    'allcaps': 0,
                    'near_caribbean': 0
                }
            
            word_stats[word_lower]['total'] += 1
            
            # Check capitalization
            if word.isupper() and len(word) > 1:
                word_stats[word_lower]['allcaps'] += 1
            elif word[0].isupper():
                word_stats[word_lower]['capitalized'] += 1
        
        # === MULTI-WORD EXTRACTION (bigrams and trigrams) ===
        # Extract bigrams (2-word phrases)
        for i in range(len(words) - 1):
            phrase = (words[i], words[i+1])
            phrase_lower = ' '.join(w.lower() for w in phrase)
            
            if phrase_lower not in phrase_stats:
                phrase_stats[phrase_lower] = {
                    'total': 0,
                    'capitalized': 0,
                }
            
            phrase_stats[phrase_lower]['total'] += 1
            
            # Check if phrase is properly capitalized
            if is_phrase_capitalized(phrase):
                phrase_stats[phrase_lower]['capitalized'] += 1
        
        # Extract trigrams (3-word phrases)
        for i in range(len(words) - 2):
            phrase = (words[i], words[i+1], words[i+2])
            phrase_lower = ' '.join(w.lower() for w in phrase)
            
            if phrase_lower not in phrase_stats:
                phrase_stats[phrase_lower] = {
                    'total': 0,
                    'capitalized': 0,
                }
            
            phrase_stats[phrase_lower]['total'] += 1
            
            # Check if phrase is properly capitalized
            if is_phrase_capitalized(phrase):
                phrase_stats[phrase_lower]['capitalized'] += 1
    
    if verbose:
        print(f"  - Analyzed {len(word_stats):,} unique words")
        print(f"  - Analyzed {len(phrase_stats):,} unique phrases")
    
    # === FILTER SINGLE WORDS ===
    if verbose:
        print(f"\n[2/3] Filtering single-word entities...")
    
    single_word_entities = set()
    
    for word_lower, stats in word_stats.items():
        # Minimum length filter
        if len(word_lower) < 2:
            continue
        
        # Exclusion list filter
        if word_lower in EXCLUDED_WORDS:
            continue
        
        # Frequency filter
        if stats['total'] < min_frequency:
            continue
        
        # Capitalization filter
        capitalized_ratio = (stats['capitalized'] + stats['allcaps']) / stats['total']
        if capitalized_ratio < capitalization_threshold:
            continue
        
        single_word_entities.add(word_lower)
    
    if verbose:
        print(f"  - Found {len(single_word_entities)} single-word entities")
    
    # === FILTER MULTI-WORD PHRASES ===
    if verbose:
        print(f"\n[3/3] Filtering multi-word entities...")
    
    multiword_entities = set()
    
    for phrase_lower, stats in phrase_stats.items():
        # Exclusion pattern filter
        if phrase_lower in EXCLUDED_PHRASE_PATTERNS:
            continue
        
        # Frequency filter (lower threshold for multi-word)
        if stats['total'] < min_frequency_multiword:
            continue
        
        # Capitalization filter
        capitalized_ratio = stats['capitalized'] / stats['total']
        if capitalized_ratio < capitalization_threshold:
            continue
        
        # Check if all component words would be valid entities or are "rescued" by context
        # For example: "puerto rico" is valid even though "puerto" alone is excluded
        words_in_phrase = phrase_lower.split()
        
        # Allow if at least one word is a known entity or if it's a common multi-word pattern
        has_known_entity = any(w in single_word_entities for w in words_in_phrase)
        is_common_pattern = any(pattern in phrase_lower for pattern in 
                               ['port of', 'puerto', 'st ', ' st', 'prime minister', 'saint'])
        
        if has_known_entity or is_common_pattern:
            multiword_entities.add(phrase_lower)
    
    if verbose:
        print(f"  - Found {len(multiword_entities)} multi-word entities")
    
    # === COMBINE AND DEDUPLICATE ===
    # Prefer longer entities over shorter ones when they overlap
    all_entities = single_word_entities | multiword_entities
    
    if verbose:
        print(f"\n✓ Total entities: {len(all_entities)} ({len(single_word_entities)} single + {len(multiword_entities)} multi-word)")
        
        # Show top entities by type
        if single_word_entities:
            entity_freqs = [(w, word_stats[w]['total']) for w in single_word_entities]
            entity_freqs.sort(key=lambda x: x[1], reverse=True)
            
            print("\nTop 20 single-word entities:")
            for word, freq in entity_freqs[:20]:
                stats = word_stats[word]
                cap_ratio = (stats['capitalized'] + stats['allcaps']) / stats['total']
                print(f"  {word:25s} | freq={freq:5d} | cap_ratio={cap_ratio:.2f}")
        
        if multiword_entities:
            phrase_freqs = [(p, phrase_stats[p]['total']) for p in multiword_entities]
            phrase_freqs.sort(key=lambda x: x[1], reverse=True)
            
            print("\nTop 20 multi-word entities:")
            for phrase, freq in phrase_freqs[:20]:
                stats = phrase_stats[phrase]
                cap_ratio = stats['capitalized'] / stats['total']
                print(f"  {phrase:25s} | freq={freq:5d} | cap_ratio={cap_ratio:.2f}")
    
    return all_entities