shaun3141's picture
Add checkpoint selection for inference
0a59e8a
"""Gradio UI interface for Caribbean Voices OWSM platform."""
import gradio as gr
import time
import os
from pathlib import Path
from datetime import datetime
# Import modules
from utils.status import get_status_display, get_data_loading_status
from utils.entities import extract_entities_progress
from training.espnet_trainer import run_espnet_training_progress
from training.whisper_trainer import run_whisper_training_progress
from models.inference import transcribe_audio, run_inference_owsm
from models.loader import get_available_models, get_available_checkpoints
from data.loader import load_data_from_hf_dataset
from utils.logging import get_latest_log_file, get_all_log_files, get_log_directory
def create_interface():
"""Create and return the Gradio interface"""
interface_start = time.time()
with gr.Blocks(title="Caribbean Voices - OWSM Platform") as demo:
gr.Markdown("""
<div class="main-header">
<h1>🎀 Caribbean Voices Hackathon</h1>
<p>OWSM v3.1 Training & Inference Platform</p>
</div>
""")
with gr.Tabs() as tabs:
# Tab 1: Status & Setup (Homepage)
with gr.Tab("🏠 Home", id=0):
status_display = gr.HTML(value=get_status_display())
refresh_status_btn = gr.Button("πŸ”„ Refresh Status", variant="secondary", size="lg")
# Navigation buttons
gr.Markdown("""
<div class="nav-buttons-grid">
""")
nav_buttons_row1 = gr.Row()
with nav_buttons_row1:
nav_load_data = gr.Button("πŸ“₯ Load Data", variant="primary", size="lg", scale=1)
nav_entity_extraction = gr.Button("πŸ” Entity Extraction", variant="primary", size="lg", scale=1)
nav_training = gr.Button("πŸ‹οΈ Training", variant="primary", size="lg", scale=1)
nav_buttons_row2 = gr.Row()
with nav_buttons_row2:
nav_inference = gr.Button("πŸš€ Inference", variant="primary", size="lg", scale=1)
nav_single_file = gr.Button("🎯 Single File", variant="primary", size="lg", scale=1)
nav_about = gr.Button("πŸ“š About", variant="secondary", size="lg", scale=1)
gr.Markdown("</div>")
# Add project info section
gr.Markdown("""
<div style="margin-top: 40px; padding: 20px; background: #fff; border-radius: 10px; border: 1px solid #e0e0e0;">
<h2 style="color: #667eea; margin-top: 0;">πŸ“Š About This Project</h2>
<p style="font-size: 1.05em; line-height: 1.6; color: #555;">
The <strong>Caribbean Voices Hackathon</strong> project focuses on building an advanced Automatic Speech Recognition (ASR)
system using OWSM v3.1 (Open Whisper-Style Model). This platform enables fine-tuning on Caribbean-accented speech
with specialized entity extraction and contextual biasing for improved recognition of Caribbean proper nouns,
locations, and organizations.
</p>
<h3 style="color: #667eea;">Key Features</h3>
<ul style="font-size: 1.05em; line-height: 1.8; color: #555;">
<li><strong>Entity Extraction:</strong> Automatically identifies Caribbean-specific entities from training transcripts</li>
<li><strong>OWSM Fine-tuning:</strong> Fine-tune the OWSM v3.1 model with entity-weighted loss</li>
<li><strong>Batch Inference:</strong> Process entire test sets efficiently</li>
<li><strong>Single File Testing:</strong> Quick transcription with multiple model options</li>
<li><strong>ESPnet Integration:</strong> Full support for ESPnet training recipes</li>
</ul>
</div>
""")
def refresh_status():
return get_status_display()
refresh_status_btn.click(
fn=refresh_status,
outputs=[status_display]
)
# Navigation button handlers - use JavaScript to switch tabs
nav_load_data.click(
None, None, None,
js="() => { setTimeout(() => { const tabs = document.querySelectorAll('button[role=\\'tab\\']'); if(tabs[1]) tabs[1].click(); }, 100); }"
)
nav_entity_extraction.click(
None, None, None,
js="() => { setTimeout(() => { const tabs = document.querySelectorAll('button[role=\\'tab\\']'); if(tabs[2]) tabs[2].click(); }, 100); }"
)
nav_training.click(
None, None, None,
js="() => { setTimeout(() => { const tabs = document.querySelectorAll('button[role=\\'tab\\']'); if(tabs[3]) tabs[3].click(); }, 100); }"
)
nav_inference.click(
None, None, None,
js="() => { setTimeout(() => { const tabs = document.querySelectorAll('button[role=\\'tab\\']'); if(tabs[4]) tabs[4].click(); }, 100); }"
)
nav_single_file.click(
None, None, None,
js="() => { setTimeout(() => { const tabs = document.querySelectorAll('button[role=\\'tab\\']'); if(tabs[5]) tabs[5].click(); }, 100); }"
)
nav_about.click(
None, None, None,
js="() => { setTimeout(() => { const tabs = document.querySelectorAll('button[role=\\'tab\\']'); if(tabs[6]) tabs[6].click(); }, 100); }"
)
# Tab 2: Data Loading
with gr.Tab("πŸ“₯ Load Data"):
gr.Markdown("### Load Dataset into HF Space")
# Show current data status
data_status_display = gr.Markdown(value=get_data_loading_status())
refresh_data_status_btn = gr.Button("πŸ”„ Refresh Status", variant="secondary", size="sm")
gr.Markdown("""
---
### Load Dataset
Data is automatically loaded from the Hugging Face dataset on startup.
You can manually load a different dataset below if needed.
""")
hf_dataset_name = gr.Textbox(
label="Hugging Face Dataset Name",
placeholder="username/dataset-name",
value=""
)
hf_load_btn = gr.Button("Load from HF Dataset", variant="primary")
hf_load_output = gr.Markdown()
# Refresh data status when buttons are clicked
def refresh_data_status():
return get_data_loading_status()
refresh_data_status_btn.click(
fn=refresh_data_status,
outputs=[data_status_display]
)
def load_hf_and_refresh(dataset_name, progress=gr.Progress()):
result = load_data_from_hf_dataset(dataset_name, progress)
return result, get_data_loading_status()
hf_load_btn.click(
fn=load_hf_and_refresh,
inputs=[hf_dataset_name],
outputs=[hf_load_output, data_status_display]
)
# Tab 3: Entity Extraction
with gr.Tab("πŸ” Entity Extraction"):
gr.Markdown("### Extract Caribbean Entities from Training Data")
gr.Markdown("""
This extracts high-value Caribbean entities (proper nouns, locations, organizations)
from the training transcripts. These entities will be used for:
- Entity-weighted loss during training
- Contextual biasing during inference
""")
extract_btn = gr.Button("Extract Entities", variant="primary")
extract_output = gr.Markdown()
extract_json = gr.JSON(label="Entities JSON")
extract_btn.click(
fn=extract_entities_progress,
outputs=[extract_output, extract_json]
)
# Tab 4: Training (with sub-tabs for ESPnet and Whisper)
with gr.Tab("πŸ‹οΈ Training"):
gr.Markdown("### Model Training")
gr.Markdown("""
Choose your training framework:
- **ESPnet Training**: For ESPnet OWSM models (requires ESPnet recipes)
- **Whisper Training**: For Whisper models (full HuggingFace integration)
""")
with gr.Tabs() as training_tabs:
# ESPnet Training Tab
with gr.Tab("πŸ”§ ESPnet Training"):
gr.Markdown("### ESPnet OWSM Model Training")
gr.Markdown("""
**ESPnet Training** - Uses ESPnet's native framework.
This loads ESPnet models and prepares them for training with ESPnet recipes.
Full fine-tuning requires ESPnet training recipes.
""")
with gr.Row():
with gr.Column():
espnet_train_epochs = gr.Slider(1, 10, value=3, step=1, label="Epochs (for ESPnet recipes)")
espnet_train_batch_size = gr.Slider(1, 32, value=4, step=1, label="Batch Size (for ESPnet recipes)")
espnet_train_lr = gr.Slider(1e-6, 1e-3, value=3e-5, step=1e-6, label="Learning Rate (for ESPnet recipes)")
espnet_train_btn = gr.Button("Load ESPnet Model", variant="primary")
with gr.Column():
espnet_train_output = gr.Markdown()
espnet_train_metrics = gr.JSON(label="Model Info")
espnet_train_btn.click(
fn=run_espnet_training_progress,
inputs=[espnet_train_epochs, espnet_train_batch_size, espnet_train_lr],
outputs=[espnet_train_output, espnet_train_metrics]
)
# Whisper Training Tab
with gr.Tab("🎀 Whisper Training"):
gr.Markdown("### Whisper Model Training")
gr.Markdown("""
**Whisper Training** - Full HuggingFace transformers integration.
Fine-tune Whisper models with entity-weighted loss using HuggingFace's training framework.
Includes full support for HuggingFace features like early stopping, WER metrics, etc.
""")
with gr.Row():
with gr.Column():
gr.Markdown("#### Training Hyperparameters")
whisper_train_epochs = gr.Slider(1, 10, value=3, step=1, label="Epochs")
whisper_train_batch_size = gr.Slider(1, 32, value=4, step=1, label="Batch Size")
whisper_train_lr = gr.Slider(1e-6, 1e-3, value=3e-5, step=1e-6, label="Learning Rate")
gr.Markdown("#### Speed Augmentation")
gr.Markdown("Speed factors for dataset expansion (creates multiple versions of each sample)")
speed_aug_enabled = gr.Checkbox(value=True, label="Enable Speed Augmentation")
speed_factor_min = gr.Slider(0.8, 1.0, value=0.9, step=0.05, label="Min Speed Factor")
speed_factor_max = gr.Slider(1.0, 1.2, value=1.1, step=0.05, label="Max Speed Factor")
speed_factor_count = gr.Slider(2, 5, value=3, step=1, label="Number of Speed Variants")
gr.Markdown("#### SpecAugment Parameters")
gr.Markdown("Spectrogram augmentation settings (applied during training)")
specaug_enabled = gr.Checkbox(value=True, label="Enable SpecAugment")
specaug_time_mask = gr.Slider(0, 50, value=27, step=1, label="Time Mask Parameter")
specaug_freq_mask = gr.Slider(0, 20, value=10, step=1, label="Frequency Mask Parameter")
specaug_time_warp = gr.Checkbox(value=True, label="Enable Time Warping")
specaug_warp_param = gr.Slider(0, 80, value=40, step=5, label="Time Warp Parameter")
whisper_train_btn = gr.Button("Start Whisper Training", variant="primary", size="lg")
with gr.Column():
whisper_train_output = gr.Markdown()
whisper_train_metrics = gr.JSON(label="Training Metrics")
gr.Markdown("#### Training Logs")
log_info = gr.Markdown(f"Log directory: `{get_log_directory()}`")
latest_log_file = gr.File(
label="Download Latest Training Log",
visible=False
)
def update_log_download():
latest = get_latest_log_file("whisper_training")
if latest and os.path.exists(latest):
return gr.File(value=latest, visible=True)
return gr.File(visible=False)
refresh_log_btn = gr.Button("πŸ”„ Refresh Logs", variant="secondary", size="sm")
refresh_log_btn.click(
fn=update_log_download,
outputs=[latest_log_file]
)
def run_training_with_log_refresh(
epochs, batch_size, lr,
speed_aug_enabled, speed_factor_min, speed_factor_max, speed_factor_count,
specaug_enabled, specaug_time_mask, specaug_freq_mask, specaug_time_warp, specaug_warp_param,
progress=gr.Progress()
):
"""Run training and refresh log download after completion."""
result = run_whisper_training_progress(
epochs, batch_size, lr,
speed_aug_enabled, speed_factor_min, speed_factor_max, speed_factor_count,
specaug_enabled, specaug_time_mask, specaug_freq_mask, specaug_time_warp, specaug_warp_param,
progress
)
latest_log = update_log_download()
return result[0], result[1], latest_log
whisper_train_btn.click(
fn=run_training_with_log_refresh,
inputs=[
whisper_train_epochs,
whisper_train_batch_size,
whisper_train_lr,
speed_aug_enabled,
speed_factor_min,
speed_factor_max,
speed_factor_count,
specaug_enabled,
specaug_time_mask,
specaug_freq_mask,
specaug_time_warp,
specaug_warp_param,
],
outputs=[whisper_train_output, whisper_train_metrics, latest_log_file]
)
# Tab 5: Inference
with gr.Tab("πŸš€ Inference"):
gr.Markdown("### Run Inference on Test Set")
gr.Markdown("Generate transcriptions for all test files using a trained checkpoint or base model")
# Checkpoint selection
checkpoint_choices = get_available_checkpoints()
if not checkpoint_choices:
checkpoint_choices = ["No checkpoints available - train a model first"]
checkpoint_default = checkpoint_choices[0]
else:
checkpoint_default = checkpoint_choices[0] if checkpoint_choices else None
checkpoint_dropdown = gr.Dropdown(
choices=checkpoint_choices,
value=checkpoint_default,
label="Select Checkpoint/Model",
info="Choose a trained checkpoint or base model for inference"
)
def refresh_checkpoints():
"""Refresh checkpoint list"""
checkpoints = get_available_checkpoints()
if not checkpoints:
return gr.Dropdown(choices=["No checkpoints available - train a model first"], value="No checkpoints available - train a model first")
return gr.Dropdown(choices=checkpoints, value=checkpoints[0])
refresh_checkpoints_btn = gr.Button("πŸ”„ Refresh Checkpoint List", variant="secondary", size="sm")
refresh_checkpoints_btn.click(
fn=refresh_checkpoints,
outputs=[checkpoint_dropdown]
)
infer_btn = gr.Button("Run Inference", variant="primary")
infer_output = gr.Markdown()
infer_download = gr.File(label="Download Submission CSV")
infer_btn.click(
fn=run_inference_owsm,
inputs=[checkpoint_dropdown],
outputs=[infer_output, infer_download]
)
# Tab 6: Single File Transcription
with gr.Tab("🎯 Single File"):
gr.Markdown("### Transcribe a Single Audio File")
with gr.Row():
with gr.Column():
audio_input = gr.Audio(
label="Upload Audio File",
type="filepath",
sources=["upload", "microphone"]
)
model_choice = gr.Dropdown(
choices=get_available_models(),
value=get_available_models()[0],
label="Select Model"
)
max_seconds = gr.Slider(5, 60, value=30, step=5, label="Max Audio Length (seconds)")
transcribe_btn = gr.Button("Transcribe", variant="primary")
with gr.Column():
transcription_output = gr.Textbox(
label="Transcription",
lines=5,
placeholder="Transcription will appear here..."
)
info_output = gr.Markdown(label="Processing Info")
transcribe_btn.click(
fn=transcribe_audio,
inputs=[audio_input, model_choice, max_seconds],
outputs=[transcription_output, info_output]
)
# Tab 7: About
with gr.Tab("πŸ“š About"):
gr.Markdown("""
## Caribbean Voices Hackathon - OWSM v3.1 Platform
### Features
- **Entity Extraction**: Extract Caribbean entities from training data
- **Model Training**: Fine-tune OWSM v3.1 with entity-weighted loss
- **Batch Inference**: Generate transcriptions for test set
- **Single File Transcription**: Quick transcription with multiple models
### OWSM v3.1 Features
- **Emergent Contextual Biasing**: Improves proper noun recognition
- **Entity-Weighted Loss**: Prioritizes Caribbean entities during training
- **Competition Compliant**: Single model, no external data
### Available Models
- **Wav2Vec2 Models**: Fast baseline models
- **OWSM v3.1 Small**: Open Whisper-style model with ESPnet
### Workflow
1. **Extract Entities**: Run entity extraction on training data
2. **Train Model**:
- **ESPnet Training**: Load ESPnet models (requires ESPnet recipes for fine-tuning)
- **Whisper Training**: Full HuggingFace fine-tuning with entity-weighted loss
3. **Run Inference**: Generate test set transcriptions
4. **Download Results**: Get submission CSV file
### Technical Details
- **ESPnet Framework**: ESPnet + PyTorch for ESPnet OWSM models
- **Whisper Framework**: HuggingFace transformers for Whisper models
- **Model**: OWSM v3.1 E-Branchformer (ESPnet) or Whisper (HuggingFace)
- **Entity Extraction**: Frequency + capitalization analysis
- **Training**: Entity-weighted cross-entropy loss
### Documentation
See `ESPNET_OWSM_SETUP.md` and `IMPLEMENTATION_SUMMARY.md` for details.
""")
interface_time = time.time() - interface_start
timestamp = datetime.now().strftime("%H:%M:%S.%f")[:-3]
print(f"[{timestamp}] ⏱️ Total interface creation: {interface_time:.3f}s")
# Return demo and CSS path for Gradio 6.x (CSS goes in launch())
css_path = Path(__file__).parent / "styles.css"
return demo, css_path