Fengzhe Zhou
commited on
Commit
Β·
1421041
1
Parent(s):
ea97839
update
Browse files- .gitignore +1 -0
- app.py +312 -146
- data/conditional_generation-leaderboard.json +123 -0
- data/{predict-leaderboard.json β generation-leaderboard.json} +167 -109
- data/reason-leaderboard.csv +0 -15
- data/understanding-leaderboard.json +376 -0
- inspect_gradio.py +0 -5
.gitignore
CHANGED
|
@@ -1,2 +1,3 @@
|
|
| 1 |
scripts/
|
|
|
|
| 2 |
__pycache__/
|
|
|
|
| 1 |
scripts/
|
| 2 |
+
internal-data/
|
| 3 |
__pycache__/
|
app.py
CHANGED
|
@@ -7,15 +7,15 @@ TITLE = """<h1 align="center" id="space-title">Physical AI Bench Leaderboard</h1
|
|
| 7 |
|
| 8 |
# CSS to make the leaderboard full height
|
| 9 |
CSS = """
|
| 10 |
-
#predict_leaderboard, #reason_leaderboard {
|
| 11 |
height: auto !important;
|
| 12 |
max-height: none !important;
|
| 13 |
}
|
| 14 |
-
#predict_leaderboard .wrap, #reason_leaderboard .wrap {
|
| 15 |
max-height: none !important;
|
| 16 |
height: auto !important;
|
| 17 |
}
|
| 18 |
-
#predict_leaderboard .tbody, #reason_leaderboard .tbody {
|
| 19 |
max-height: none !important;
|
| 20 |
height: auto !important;
|
| 21 |
overflow-x: auto !important;
|
|
@@ -46,6 +46,7 @@ PAI-Bench covers multiple physical AI domains including autonomous driving, robo
|
|
| 46 |
- π [Generation Dataset](https://huggingface.co/datasets/shi-labs/physical-ai-bench-predict)
|
| 47 |
- π [Conditional Generation Dataset](https://huggingface.co/datasets/shi-labs/physical-ai-bench-transfer)
|
| 48 |
- π [Understanding Dataset](https://huggingface.co/datasets/shi-labs/physical-ai-bench-reason)
|
|
|
|
| 49 |
|
| 50 |
## Reproducibility
|
| 51 |
|
|
@@ -57,13 +58,13 @@ If you use Physical AI Bench in your research, please cite:
|
|
| 57 |
|
| 58 |
```bibtex
|
| 59 |
@misc{zhou2025paibenchcomprehensivebenchmarkphysical,
|
| 60 |
-
title={PAI-Bench: A Comprehensive Benchmark For Physical AI},
|
| 61 |
author={Fengzhe Zhou and Jiannan Huang and Jialuo Li and Deva Ramanan and Humphrey Shi},
|
| 62 |
year={2025},
|
| 63 |
eprint={2512.01989},
|
| 64 |
archivePrefix={arXiv},
|
| 65 |
primaryClass={cs.CV},
|
| 66 |
-
url={https://arxiv.org/abs/2512.01989},
|
| 67 |
}
|
| 68 |
|
| 69 |
```
|
|
@@ -99,12 +100,30 @@ def create_model_link(model_name):
|
|
| 99 |
# Generation Tab Configuration and Utilities
|
| 100 |
# ============================================================================
|
| 101 |
|
| 102 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
PREDICT_COLUMN_ORDER = [
|
| 104 |
-
'
|
| 105 |
'Overall',
|
| 106 |
-
'Domain
|
| 107 |
-
'Quality
|
| 108 |
'Common Sense',
|
| 109 |
'AV',
|
| 110 |
'Robot',
|
|
@@ -115,66 +134,39 @@ PREDICT_COLUMN_ORDER = [
|
|
| 115 |
'Background Consistency',
|
| 116 |
'Motion Smoothness',
|
| 117 |
'Aesthetic Quality',
|
| 118 |
-
'
|
| 119 |
'Overall Consistency',
|
| 120 |
'I2V Subject',
|
| 121 |
-
'I2V Background'
|
| 122 |
-
'params',
|
| 123 |
-
'activate_params'
|
| 124 |
]
|
| 125 |
|
| 126 |
# Columns to hide by default (but still available for filtering/selection)
|
| 127 |
-
PREDICT_HIDDEN_COLUMNS = [
|
| 128 |
|
| 129 |
-
# Semantic/Domain dimensions (for selection button)
|
| 130 |
PREDICT_DOMAIN_SCORE_DIMENSIONS = [
|
| 131 |
-
'Domain
|
| 132 |
-
'
|
| 133 |
-
'AV',
|
| 134 |
-
'Robot',
|
| 135 |
-
'Industry',
|
| 136 |
-
'Human',
|
| 137 |
-
'Physics',
|
| 138 |
]
|
| 139 |
|
| 140 |
-
# Quality dimensions (for selection button)
|
| 141 |
PREDICT_QUALITY_SCORE_DIMENSIONS = [
|
| 142 |
-
'Quality
|
| 143 |
-
'
|
| 144 |
-
'Background Consistency',
|
| 145 |
-
'Motion Smoothness',
|
| 146 |
-
'Aesthetic Quality',
|
| 147 |
-
'Image Quality',
|
| 148 |
-
'Overall Consistency',
|
| 149 |
-
'I2V Subject',
|
| 150 |
-
'I2V Background'
|
| 151 |
]
|
| 152 |
|
| 153 |
-
PREDICT_DESELECTED_COLUMNS = ['Domain
|
| 154 |
|
| 155 |
PREDICT_ALL_SELECTED_COLUMNS = [
|
| 156 |
-
'Domain
|
| 157 |
-
'
|
| 158 |
-
'
|
| 159 |
-
'AV',
|
| 160 |
-
'Robot',
|
| 161 |
-
'Industry',
|
| 162 |
-
'Human',
|
| 163 |
-
'Physics',
|
| 164 |
-
'Subject Consistency',
|
| 165 |
-
'Background Consistency',
|
| 166 |
-
'Motion Smoothness',
|
| 167 |
-
'Aesthetic Quality',
|
| 168 |
-
'Image Quality',
|
| 169 |
-
'Overall Consistency',
|
| 170 |
-
'I2V Subject',
|
| 171 |
-
'I2V Background'
|
| 172 |
]
|
| 173 |
|
| 174 |
# Columns that can never be deselected
|
| 175 |
-
PREDICT_NEVER_HIDDEN_COLUMNS = ['
|
| 176 |
|
| 177 |
-
# Columns displayed by default
|
| 178 |
PREDICT_DEFAULT_DISPLAYED_COLUMNS = PREDICT_NEVER_HIDDEN_COLUMNS + PREDICT_ALL_SELECTED_COLUMNS
|
| 179 |
|
| 180 |
def load_predict_json(json_path):
|
|
@@ -196,15 +188,36 @@ def load_predict_json(json_path):
|
|
| 196 |
df['model'] = df.apply(create_link, axis=1)
|
| 197 |
df = df.drop(columns=['url'])
|
| 198 |
|
| 199 |
-
|
| 200 |
-
|
| 201 |
for col in df.columns:
|
| 202 |
-
if col
|
| 203 |
df[col] = df[col].apply(lambda x: f"{x:.1f}" if pd.notna(x) else x)
|
| 204 |
|
|
|
|
|
|
|
|
|
|
| 205 |
return df
|
| 206 |
|
| 207 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 208 |
def select_predict_domain_score():
|
| 209 |
"""Return domain score for checkbox selection"""
|
| 210 |
return gr.update(value=PREDICT_DOMAIN_SCORE_DIMENSIONS)
|
|
@@ -223,24 +236,18 @@ def select_predict_all():
|
|
| 223 |
|
| 224 |
def on_predict_dimension_selection_change(selected_columns, full_df):
|
| 225 |
"""Handle dimension selection changes and update the dataframe"""
|
| 226 |
-
|
| 227 |
-
present_columns = ['model', 'Overall']
|
| 228 |
|
| 229 |
-
# Add selected columns
|
| 230 |
for col in selected_columns:
|
| 231 |
if col not in present_columns and col in full_df.columns:
|
| 232 |
present_columns.append(col)
|
| 233 |
|
| 234 |
-
# Filter dataframe to show only selected columns
|
| 235 |
updated_data = full_df[present_columns]
|
| 236 |
|
| 237 |
-
# Determine datatypes
|
| 238 |
datatypes = []
|
| 239 |
for col in present_columns:
|
| 240 |
-
if col == '
|
| 241 |
datatypes.append('markdown')
|
| 242 |
-
elif col in ['params', 'activate_params']:
|
| 243 |
-
datatypes.append('number')
|
| 244 |
else:
|
| 245 |
datatypes.append('str')
|
| 246 |
|
|
@@ -261,14 +268,11 @@ def init_predict_leaderboard(dataframe):
|
|
| 261 |
# Determine datatypes dynamically
|
| 262 |
datatypes = []
|
| 263 |
for col in display_df.columns:
|
| 264 |
-
if col == '
|
| 265 |
datatypes.append('markdown')
|
| 266 |
-
elif col in ['params', 'activate_params']:
|
| 267 |
-
datatypes.append('number')
|
| 268 |
else:
|
| 269 |
-
datatypes.append('str')
|
| 270 |
|
| 271 |
-
# Create the UI components
|
| 272 |
with gr.Row():
|
| 273 |
with gr.Column(scale=1):
|
| 274 |
domain_score_btn = gr.Button("Domain Score", size="md")
|
|
@@ -277,13 +281,12 @@ def init_predict_leaderboard(dataframe):
|
|
| 277 |
deselect_btn = gr.Button("Deselect All", size="md")
|
| 278 |
|
| 279 |
with gr.Column(scale=4):
|
| 280 |
-
# Get
|
| 281 |
-
|
| 282 |
-
if col not in PREDICT_NEVER_HIDDEN_COLUMNS + PREDICT_HIDDEN_COLUMNS]
|
| 283 |
|
| 284 |
checkbox_group = gr.CheckboxGroup(
|
| 285 |
-
choices=
|
| 286 |
-
value=[col for col in
|
| 287 |
label="Evaluation Dimensions",
|
| 288 |
interactive=True,
|
| 289 |
)
|
|
@@ -295,7 +298,7 @@ def init_predict_leaderboard(dataframe):
|
|
| 295 |
interactive=False,
|
| 296 |
visible=True,
|
| 297 |
wrap=False,
|
| 298 |
-
column_widths=["320px"] + ["
|
| 299 |
pinned_columns=1,
|
| 300 |
elem_id="predict_leaderboard",
|
| 301 |
max_height=10000,
|
|
@@ -352,18 +355,185 @@ def init_predict_leaderboard(dataframe):
|
|
| 352 |
return data_component
|
| 353 |
|
| 354 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 355 |
# ============================================================================
|
| 356 |
# Understanding Tab Configuration and Utilities
|
| 357 |
# ============================================================================
|
| 358 |
|
| 359 |
-
# Column name mapping for display
|
| 360 |
-
|
| 361 |
-
'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 362 |
}
|
| 363 |
|
| 364 |
-
# Desired column order
|
| 365 |
REASON_COLUMN_ORDER = [
|
| 366 |
-
'
|
|
|
|
| 367 |
'Overall',
|
| 368 |
'Common Sense',
|
| 369 |
'Embodied Reasoning',
|
|
@@ -375,85 +545,91 @@ REASON_COLUMN_ORDER = [
|
|
| 375 |
'RoboFail',
|
| 376 |
'Agibot',
|
| 377 |
'HoloAssist',
|
| 378 |
-
'AV'
|
| 379 |
-
'params',
|
| 380 |
-
'activate_params'
|
| 381 |
]
|
| 382 |
|
| 383 |
# Columns to hide by default (but still available for filtering/selection)
|
| 384 |
-
REASON_HIDDEN_COLUMNS = [
|
| 385 |
|
| 386 |
-
# Reasoning dimensions (for selection button)
|
| 387 |
REASON_COMMON_SENSE_DIMENSIONS = [
|
| 388 |
-
'
|
| 389 |
'Space',
|
| 390 |
'Time',
|
| 391 |
'Physics',
|
| 392 |
]
|
| 393 |
|
| 394 |
-
# Domain dimensions (for selection button)
|
| 395 |
REASON_EMBODIED_REASONING_DIMENSIONS = [
|
| 396 |
-
'
|
| 397 |
'Space',
|
| 398 |
'Time',
|
| 399 |
'Physics',
|
| 400 |
-
'
|
| 401 |
-
'RoboVQA',
|
| 402 |
-
'RoboFail',
|
| 403 |
-
'Agibot',
|
| 404 |
-
'HoloAssist',
|
| 405 |
-
'AV',
|
| 406 |
]
|
| 407 |
|
| 408 |
REASON_DESELECTED_COLUMNS = [
|
| 409 |
-
'
|
| 410 |
-
'
|
| 411 |
]
|
| 412 |
|
| 413 |
REASON_ALL_SELECTED_COLUMNS = [
|
| 414 |
-
'
|
| 415 |
-
'
|
| 416 |
-
'
|
| 417 |
-
'Time',
|
| 418 |
-
'Physics',
|
| 419 |
-
'BridgeData V2',
|
| 420 |
-
'RoboVQA',
|
| 421 |
-
'RoboFail',
|
| 422 |
-
'Agibot',
|
| 423 |
-
'HoloAssist',
|
| 424 |
-
'AV',
|
| 425 |
]
|
| 426 |
|
| 427 |
# Columns that can never be deselected
|
| 428 |
-
REASON_NEVER_HIDDEN_COLUMNS = ['
|
| 429 |
|
| 430 |
# Columns displayed by default (using renamed column names)
|
| 431 |
REASON_DEFAULT_DISPLAYED_COLUMNS = REASON_NEVER_HIDDEN_COLUMNS + REASON_ALL_SELECTED_COLUMNS
|
| 432 |
|
| 433 |
|
| 434 |
-
def
|
| 435 |
-
"""Load
|
| 436 |
-
df = pd.
|
| 437 |
|
| 438 |
-
|
| 439 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 440 |
|
| 441 |
-
|
| 442 |
-
|
| 443 |
-
df = df[available_cols]
|
| 444 |
|
| 445 |
-
|
| 446 |
-
if 'model' in df.columns:
|
| 447 |
-
df['model'] = df['model'].apply(create_model_link)
|
| 448 |
|
| 449 |
-
# Format numbers to ensure decimal places (1 decimal for integers)
|
| 450 |
for col in df.columns:
|
| 451 |
-
if col
|
| 452 |
df[col] = df[col].apply(lambda x: f"{x:.1f}" if pd.notna(x) else x)
|
| 453 |
|
|
|
|
|
|
|
|
|
|
| 454 |
return df
|
| 455 |
|
| 456 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 457 |
def select_reason_common_sense_dimensions():
|
| 458 |
"""Return reasoning dimensions for checkbox selection"""
|
| 459 |
return gr.update(value=REASON_COMMON_SENSE_DIMENSIONS)
|
|
@@ -476,24 +652,18 @@ def select_reason_all():
|
|
| 476 |
|
| 477 |
def on_reason_dimension_selection_change(selected_columns, full_df):
|
| 478 |
"""Handle dimension selection changes and update the dataframe"""
|
| 479 |
-
|
| 480 |
-
present_columns = ['model', 'Overall']
|
| 481 |
|
| 482 |
-
# Add selected columns
|
| 483 |
for col in selected_columns:
|
| 484 |
if col not in present_columns and col in full_df.columns:
|
| 485 |
present_columns.append(col)
|
| 486 |
|
| 487 |
-
# Filter dataframe to show only selected columns
|
| 488 |
updated_data = full_df[present_columns]
|
| 489 |
|
| 490 |
-
# Determine datatypes
|
| 491 |
datatypes = []
|
| 492 |
for col in present_columns:
|
| 493 |
-
if col == '
|
| 494 |
datatypes.append('markdown')
|
| 495 |
-
elif col in ['params', 'activate_params']:
|
| 496 |
-
datatypes.append('number')
|
| 497 |
else:
|
| 498 |
datatypes.append('str')
|
| 499 |
|
|
@@ -514,14 +684,11 @@ def init_reason_leaderboard(dataframe):
|
|
| 514 |
# Determine datatypes dynamically
|
| 515 |
datatypes = []
|
| 516 |
for col in display_df.columns:
|
| 517 |
-
if col == '
|
| 518 |
datatypes.append('markdown')
|
| 519 |
-
elif col in ['params', 'activate_params']:
|
| 520 |
-
datatypes.append('number')
|
| 521 |
else:
|
| 522 |
-
datatypes.append('str')
|
| 523 |
|
| 524 |
-
# Create the UI components
|
| 525 |
with gr.Row():
|
| 526 |
with gr.Column(scale=1):
|
| 527 |
common_sense_btn = gr.Button("Common Sense", size="md")
|
|
@@ -530,13 +697,12 @@ def init_reason_leaderboard(dataframe):
|
|
| 530 |
deselect_btn = gr.Button("Deselect All", size="md")
|
| 531 |
|
| 532 |
with gr.Column(scale=4):
|
| 533 |
-
# Get
|
| 534 |
-
|
| 535 |
-
if col not in REASON_NEVER_HIDDEN_COLUMNS + REASON_HIDDEN_COLUMNS]
|
| 536 |
|
| 537 |
checkbox_group = gr.CheckboxGroup(
|
| 538 |
-
choices=
|
| 539 |
-
value=[col for col in
|
| 540 |
label="Evaluation Dimensions",
|
| 541 |
interactive=True,
|
| 542 |
)
|
|
@@ -547,12 +713,11 @@ def init_reason_leaderboard(dataframe):
|
|
| 547 |
datatype=datatypes,
|
| 548 |
interactive=False,
|
| 549 |
visible=True,
|
| 550 |
-
wrap=False,
|
| 551 |
-
column_widths=["320px"] + ["
|
| 552 |
-
pinned_columns=
|
| 553 |
elem_id="reason_leaderboard",
|
| 554 |
max_height=10000,
|
| 555 |
-
|
| 556 |
)
|
| 557 |
|
| 558 |
# Setup event handlers
|
|
@@ -611,23 +776,24 @@ def init_reason_leaderboard(dataframe):
|
|
| 611 |
|
| 612 |
demo = gr.Blocks()
|
| 613 |
with demo:
|
|
|
|
| 614 |
gr.HTML(TITLE)
|
| 615 |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
| 616 |
|
| 617 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
| 618 |
with gr.TabItem("π¨ Generation", elem_id="predict-tab", id=0):
|
| 619 |
-
predict_df = load_predict_json("data/
|
| 620 |
predict_leaderboard = init_predict_leaderboard(predict_df)
|
| 621 |
|
| 622 |
with gr.TabItem("π Conditional Generation", elem_id="transfer-tab", id=1):
|
| 623 |
-
|
|
|
|
| 624 |
|
| 625 |
with gr.TabItem("π§ Understanding", elem_id="reason-tab", id=2):
|
| 626 |
-
reason_df =
|
| 627 |
reason_leaderboard = init_reason_leaderboard(reason_df)
|
| 628 |
|
| 629 |
with gr.TabItem("βΉοΈ About", elem_id="about-tab", id=3):
|
| 630 |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
| 631 |
|
| 632 |
-
demo.launch(
|
| 633 |
-
|
|
|
|
| 7 |
|
| 8 |
# CSS to make the leaderboard full height
|
| 9 |
CSS = """
|
| 10 |
+
#predict_leaderboard, #transfer_leaderboard, #reason_leaderboard {
|
| 11 |
height: auto !important;
|
| 12 |
max-height: none !important;
|
| 13 |
}
|
| 14 |
+
#predict_leaderboard .wrap, #transfer_leaderboard .wrap, #reason_leaderboard .wrap {
|
| 15 |
max-height: none !important;
|
| 16 |
height: auto !important;
|
| 17 |
}
|
| 18 |
+
#predict_leaderboard .tbody, #transfer_leaderboard .tbody, #reason_leaderboard .tbody {
|
| 19 |
max-height: none !important;
|
| 20 |
height: auto !important;
|
| 21 |
overflow-x: auto !important;
|
|
|
|
| 46 |
- π [Generation Dataset](https://huggingface.co/datasets/shi-labs/physical-ai-bench-predict)
|
| 47 |
- π [Conditional Generation Dataset](https://huggingface.co/datasets/shi-labs/physical-ai-bench-transfer)
|
| 48 |
- π [Understanding Dataset](https://huggingface.co/datasets/shi-labs/physical-ai-bench-reason)
|
| 49 |
+
- π¦ [Artifacts](https://huggingface.co/datasets/Leymore/physical-ai-bench-artifacts)
|
| 50 |
|
| 51 |
## Reproducibility
|
| 52 |
|
|
|
|
| 58 |
|
| 59 |
```bibtex
|
| 60 |
@misc{zhou2025paibenchcomprehensivebenchmarkphysical,
|
| 61 |
+
title={PAI-Bench: A Comprehensive Benchmark For Physical AI},
|
| 62 |
author={Fengzhe Zhou and Jiannan Huang and Jialuo Li and Deva Ramanan and Humphrey Shi},
|
| 63 |
year={2025},
|
| 64 |
eprint={2512.01989},
|
| 65 |
archivePrefix={arXiv},
|
| 66 |
primaryClass={cs.CV},
|
| 67 |
+
url={https://arxiv.org/abs/2512.01989},
|
| 68 |
}
|
| 69 |
|
| 70 |
```
|
|
|
|
| 100 |
# Generation Tab Configuration and Utilities
|
| 101 |
# ============================================================================
|
| 102 |
|
| 103 |
+
# Column name to abbreviation mapping for display
|
| 104 |
+
PREDICT_COLUMN_ABBREV = {
|
| 105 |
+
'Common Sense': 'CS',
|
| 106 |
+
'AV': 'AV',
|
| 107 |
+
'Robot': 'RO',
|
| 108 |
+
'Industry': 'IN',
|
| 109 |
+
'Human': 'HU',
|
| 110 |
+
'Physics': 'PH',
|
| 111 |
+
'Subject Consistency': 'SC',
|
| 112 |
+
'Background Consistency': 'BC',
|
| 113 |
+
'Motion Smoothness': 'MS',
|
| 114 |
+
'Aesthetic Quality': 'AQ',
|
| 115 |
+
'Imaging Quality': 'IQ',
|
| 116 |
+
'Overall Consistency': 'OC',
|
| 117 |
+
'I2V Subject': 'IS',
|
| 118 |
+
'I2V Background': 'IB',
|
| 119 |
+
}
|
| 120 |
+
|
| 121 |
+
# Expected column order (full names from JSON)
|
| 122 |
PREDICT_COLUMN_ORDER = [
|
| 123 |
+
'Model',
|
| 124 |
'Overall',
|
| 125 |
+
'Domain',
|
| 126 |
+
'Quality',
|
| 127 |
'Common Sense',
|
| 128 |
'AV',
|
| 129 |
'Robot',
|
|
|
|
| 134 |
'Background Consistency',
|
| 135 |
'Motion Smoothness',
|
| 136 |
'Aesthetic Quality',
|
| 137 |
+
'Imaging Quality',
|
| 138 |
'Overall Consistency',
|
| 139 |
'I2V Subject',
|
| 140 |
+
'I2V Background'
|
|
|
|
|
|
|
| 141 |
]
|
| 142 |
|
| 143 |
# Columns to hide by default (but still available for filtering/selection)
|
| 144 |
+
PREDICT_HIDDEN_COLUMNS = []
|
| 145 |
|
| 146 |
+
# Semantic/Domain dimensions (for selection button) - use abbreviations matching dataframe
|
| 147 |
PREDICT_DOMAIN_SCORE_DIMENSIONS = [
|
| 148 |
+
'Domain',
|
| 149 |
+
'CS', 'AV', 'RO', 'IN', 'HU', 'PH',
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 150 |
]
|
| 151 |
|
| 152 |
+
# Quality dimensions (for selection button) - use abbreviations matching dataframe
|
| 153 |
PREDICT_QUALITY_SCORE_DIMENSIONS = [
|
| 154 |
+
'Quality',
|
| 155 |
+
'SC', 'BC', 'MS', 'AQ', 'IQ', 'OC', 'IS', 'IB'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 156 |
]
|
| 157 |
|
| 158 |
+
PREDICT_DESELECTED_COLUMNS = ['Domain', 'Quality']
|
| 159 |
|
| 160 |
PREDICT_ALL_SELECTED_COLUMNS = [
|
| 161 |
+
'Domain', 'Quality',
|
| 162 |
+
'CS', 'AV', 'RO', 'IN', 'HU', 'PH',
|
| 163 |
+
'SC', 'BC', 'MS', 'AQ', 'IQ', 'OC', 'IS', 'IB'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 164 |
]
|
| 165 |
|
| 166 |
# Columns that can never be deselected
|
| 167 |
+
PREDICT_NEVER_HIDDEN_COLUMNS = ['Model', 'Overall']
|
| 168 |
|
| 169 |
+
# Columns displayed by default
|
| 170 |
PREDICT_DEFAULT_DISPLAYED_COLUMNS = PREDICT_NEVER_HIDDEN_COLUMNS + PREDICT_ALL_SELECTED_COLUMNS
|
| 171 |
|
| 172 |
def load_predict_json(json_path):
|
|
|
|
| 188 |
df['model'] = df.apply(create_link, axis=1)
|
| 189 |
df = df.drop(columns=['url'])
|
| 190 |
|
| 191 |
+
df = df.rename(columns={'model': 'Model'})
|
| 192 |
+
|
| 193 |
for col in df.columns:
|
| 194 |
+
if col != 'Model' and pd.api.types.is_numeric_dtype(df[col]):
|
| 195 |
df[col] = df[col].apply(lambda x: f"{x:.1f}" if pd.notna(x) else x)
|
| 196 |
|
| 197 |
+
# Rename columns to abbreviations for display
|
| 198 |
+
df = df.rename(columns=PREDICT_COLUMN_ABBREV)
|
| 199 |
+
|
| 200 |
return df
|
| 201 |
|
| 202 |
|
| 203 |
+
def get_predict_checkbox_choices(dataframe):
|
| 204 |
+
"""Get checkbox choices with full name (abbrev) format"""
|
| 205 |
+
# Create reverse mapping from abbreviation to full name
|
| 206 |
+
abbrev_to_full = {v: k for k, v in PREDICT_COLUMN_ABBREV.items()}
|
| 207 |
+
|
| 208 |
+
choices = []
|
| 209 |
+
for col in dataframe.columns:
|
| 210 |
+
if col in ['Model', 'Overall']:
|
| 211 |
+
continue
|
| 212 |
+
if col in abbrev_to_full:
|
| 213 |
+
full_name = abbrev_to_full[col]
|
| 214 |
+
choices.append((f"{full_name} ({col})", col))
|
| 215 |
+
else:
|
| 216 |
+
choices.append((col, col))
|
| 217 |
+
|
| 218 |
+
return choices
|
| 219 |
+
|
| 220 |
+
|
| 221 |
def select_predict_domain_score():
|
| 222 |
"""Return domain score for checkbox selection"""
|
| 223 |
return gr.update(value=PREDICT_DOMAIN_SCORE_DIMENSIONS)
|
|
|
|
| 236 |
|
| 237 |
def on_predict_dimension_selection_change(selected_columns, full_df):
|
| 238 |
"""Handle dimension selection changes and update the dataframe"""
|
| 239 |
+
present_columns = ['Model', 'Overall']
|
|
|
|
| 240 |
|
|
|
|
| 241 |
for col in selected_columns:
|
| 242 |
if col not in present_columns and col in full_df.columns:
|
| 243 |
present_columns.append(col)
|
| 244 |
|
|
|
|
| 245 |
updated_data = full_df[present_columns]
|
| 246 |
|
|
|
|
| 247 |
datatypes = []
|
| 248 |
for col in present_columns:
|
| 249 |
+
if col == 'Model':
|
| 250 |
datatypes.append('markdown')
|
|
|
|
|
|
|
| 251 |
else:
|
| 252 |
datatypes.append('str')
|
| 253 |
|
|
|
|
| 268 |
# Determine datatypes dynamically
|
| 269 |
datatypes = []
|
| 270 |
for col in display_df.columns:
|
| 271 |
+
if col == 'Model':
|
| 272 |
datatypes.append('markdown')
|
|
|
|
|
|
|
| 273 |
else:
|
| 274 |
+
datatypes.append('str')
|
| 275 |
|
|
|
|
| 276 |
with gr.Row():
|
| 277 |
with gr.Column(scale=1):
|
| 278 |
domain_score_btn = gr.Button("Domain Score", size="md")
|
|
|
|
| 281 |
deselect_btn = gr.Button("Deselect All", size="md")
|
| 282 |
|
| 283 |
with gr.Column(scale=4):
|
| 284 |
+
# Get checkbox choices with "Full Name (Abbrev)" format
|
| 285 |
+
checkbox_choices = get_predict_checkbox_choices(dataframe)
|
|
|
|
| 286 |
|
| 287 |
checkbox_group = gr.CheckboxGroup(
|
| 288 |
+
choices=checkbox_choices,
|
| 289 |
+
value=[col for col in PREDICT_ALL_SELECTED_COLUMNS if col in dataframe.columns],
|
| 290 |
label="Evaluation Dimensions",
|
| 291 |
interactive=True,
|
| 292 |
)
|
|
|
|
| 298 |
interactive=False,
|
| 299 |
visible=True,
|
| 300 |
wrap=False,
|
| 301 |
+
column_widths=["320px"] + ["80px"] * (len(display_df.columns) - 1),
|
| 302 |
pinned_columns=1,
|
| 303 |
elem_id="predict_leaderboard",
|
| 304 |
max_height=10000,
|
|
|
|
| 355 |
return data_component
|
| 356 |
|
| 357 |
|
| 358 |
+
# ============================================================================
|
| 359 |
+
# Conditional Generation Tab Configuration and Utilities
|
| 360 |
+
# ============================================================================
|
| 361 |
+
|
| 362 |
+
TRANSFER_COLUMN_ORDER = [
|
| 363 |
+
'Model',
|
| 364 |
+
'Condition',
|
| 365 |
+
'Blur SSIM β',
|
| 366 |
+
'Edge F1 β',
|
| 367 |
+
'Depth si-RMSE β',
|
| 368 |
+
'Mask mIoU β',
|
| 369 |
+
'Quality Score β',
|
| 370 |
+
'Diversity β'
|
| 371 |
+
]
|
| 372 |
+
|
| 373 |
+
TRANSFER_HIDDEN_COLUMNS = []
|
| 374 |
+
|
| 375 |
+
TRANSFER_QUALITY_DIMENSIONS = [
|
| 376 |
+
'Blur SSIM β',
|
| 377 |
+
'Edge F1 β',
|
| 378 |
+
'Depth si-RMSE β',
|
| 379 |
+
'Mask mIoU β',
|
| 380 |
+
'Quality Score β',
|
| 381 |
+
'Diversity β',
|
| 382 |
+
]
|
| 383 |
+
|
| 384 |
+
TRANSFER_ALL_SELECTED_COLUMNS = TRANSFER_QUALITY_DIMENSIONS
|
| 385 |
+
|
| 386 |
+
TRANSFER_NEVER_HIDDEN_COLUMNS = ['Model', 'Condition']
|
| 387 |
+
|
| 388 |
+
TRANSFER_DEFAULT_DISPLAYED_COLUMNS = TRANSFER_NEVER_HIDDEN_COLUMNS + TRANSFER_ALL_SELECTED_COLUMNS
|
| 389 |
+
|
| 390 |
+
|
| 391 |
+
def load_transfer_json(json_path):
|
| 392 |
+
"""Load conditional generation leaderboard JSON"""
|
| 393 |
+
df = pd.read_json(json_path, orient='records')
|
| 394 |
+
|
| 395 |
+
if 'model' in df.columns and 'url' in df.columns:
|
| 396 |
+
def create_link(row):
|
| 397 |
+
if pd.notna(row['url']):
|
| 398 |
+
display_name = row['model'].split('/')[-1] if '/' in row['model'] else row['model']
|
| 399 |
+
return f"[{display_name}]({row['url']})"
|
| 400 |
+
return row['model']
|
| 401 |
+
|
| 402 |
+
df['model'] = df.apply(create_link, axis=1)
|
| 403 |
+
df = df.drop(columns=['url'])
|
| 404 |
+
|
| 405 |
+
df = df.rename(columns={'model': 'Model'})
|
| 406 |
+
|
| 407 |
+
for col in df.columns:
|
| 408 |
+
if col not in ['Model', 'Condition'] and pd.api.types.is_numeric_dtype(df[col]):
|
| 409 |
+
df[col] = df[col].apply(lambda x: f"{x:.3f}" if pd.notna(x) else x)
|
| 410 |
+
|
| 411 |
+
return df
|
| 412 |
+
|
| 413 |
+
|
| 414 |
+
def select_transfer_all():
|
| 415 |
+
"""Select all dimensions"""
|
| 416 |
+
return gr.update(value=TRANSFER_ALL_SELECTED_COLUMNS)
|
| 417 |
+
|
| 418 |
+
|
| 419 |
+
def deselect_transfer_all():
|
| 420 |
+
"""Deselect all dimensions"""
|
| 421 |
+
return gr.update(value=[])
|
| 422 |
+
|
| 423 |
+
|
| 424 |
+
def on_transfer_dimension_selection_change(selected_columns, full_df):
|
| 425 |
+
"""Handle dimension selection changes and update the dataframe"""
|
| 426 |
+
present_columns = ['Model', 'Condition']
|
| 427 |
+
|
| 428 |
+
for col in selected_columns:
|
| 429 |
+
if col not in present_columns and col in full_df.columns:
|
| 430 |
+
present_columns.append(col)
|
| 431 |
+
|
| 432 |
+
updated_data = full_df[present_columns]
|
| 433 |
+
|
| 434 |
+
datatypes = []
|
| 435 |
+
for col in present_columns:
|
| 436 |
+
if col == 'Model':
|
| 437 |
+
datatypes.append('markdown')
|
| 438 |
+
else:
|
| 439 |
+
datatypes.append('str')
|
| 440 |
+
|
| 441 |
+
return gr.update(value=updated_data, datatype=datatypes, headers=present_columns)
|
| 442 |
+
|
| 443 |
+
|
| 444 |
+
def init_transfer_leaderboard(dataframe):
|
| 445 |
+
"""Initialize the Conditional Generation leaderboard with given dataframe"""
|
| 446 |
+
if dataframe is None or dataframe.empty:
|
| 447 |
+
raise ValueError("Leaderboard DataFrame is empty or None.")
|
| 448 |
+
|
| 449 |
+
available_default_cols = [col for col in TRANSFER_DEFAULT_DISPLAYED_COLUMNS if col in dataframe.columns]
|
| 450 |
+
|
| 451 |
+
display_df = dataframe[available_default_cols]
|
| 452 |
+
|
| 453 |
+
datatypes = []
|
| 454 |
+
for col in display_df.columns:
|
| 455 |
+
if col == 'Model':
|
| 456 |
+
datatypes.append('markdown')
|
| 457 |
+
else:
|
| 458 |
+
datatypes.append('str')
|
| 459 |
+
|
| 460 |
+
with gr.Row():
|
| 461 |
+
with gr.Column(scale=1):
|
| 462 |
+
select_all_btn = gr.Button("Select All", size="md")
|
| 463 |
+
deselect_btn = gr.Button("Deselect All", size="md")
|
| 464 |
+
|
| 465 |
+
with gr.Column(scale=4):
|
| 466 |
+
dimension_choices = [col for col in dataframe.columns
|
| 467 |
+
if col not in TRANSFER_NEVER_HIDDEN_COLUMNS]
|
| 468 |
+
|
| 469 |
+
checkbox_group = gr.CheckboxGroup(
|
| 470 |
+
choices=dimension_choices,
|
| 471 |
+
value=[col for col in TRANSFER_DEFAULT_DISPLAYED_COLUMNS if col in dimension_choices],
|
| 472 |
+
label="Evaluation Dimensions",
|
| 473 |
+
interactive=True,
|
| 474 |
+
)
|
| 475 |
+
|
| 476 |
+
data_component = gr.Dataframe(
|
| 477 |
+
value=display_df,
|
| 478 |
+
headers=list(display_df.columns),
|
| 479 |
+
datatype=datatypes,
|
| 480 |
+
interactive=False,
|
| 481 |
+
visible=True,
|
| 482 |
+
wrap=False,
|
| 483 |
+
column_widths=["280px", "120px"] + ["150px"] * (len(display_df.columns) - 2),
|
| 484 |
+
pinned_columns=2,
|
| 485 |
+
elem_id="transfer_leaderboard",
|
| 486 |
+
max_height=10000,
|
| 487 |
+
)
|
| 488 |
+
|
| 489 |
+
deselect_btn.click(
|
| 490 |
+
deselect_transfer_all,
|
| 491 |
+
inputs=None,
|
| 492 |
+
outputs=[checkbox_group]
|
| 493 |
+
).then(
|
| 494 |
+
fn=on_transfer_dimension_selection_change,
|
| 495 |
+
inputs=[checkbox_group, gr.State(dataframe)],
|
| 496 |
+
outputs=data_component
|
| 497 |
+
)
|
| 498 |
+
|
| 499 |
+
select_all_btn.click(
|
| 500 |
+
select_transfer_all,
|
| 501 |
+
inputs=None,
|
| 502 |
+
outputs=[checkbox_group]
|
| 503 |
+
).then(
|
| 504 |
+
fn=on_transfer_dimension_selection_change,
|
| 505 |
+
inputs=[checkbox_group, gr.State(dataframe)],
|
| 506 |
+
outputs=data_component
|
| 507 |
+
)
|
| 508 |
+
|
| 509 |
+
checkbox_group.change(
|
| 510 |
+
fn=on_transfer_dimension_selection_change,
|
| 511 |
+
inputs=[checkbox_group, gr.State(dataframe)],
|
| 512 |
+
outputs=data_component
|
| 513 |
+
)
|
| 514 |
+
|
| 515 |
+
return data_component
|
| 516 |
+
|
| 517 |
+
|
| 518 |
# ============================================================================
|
| 519 |
# Understanding Tab Configuration and Utilities
|
| 520 |
# ============================================================================
|
| 521 |
|
| 522 |
+
# Column name to abbreviation mapping for display
|
| 523 |
+
REASON_COLUMN_ABBREV = {
|
| 524 |
+
'Common Sense': 'CS',
|
| 525 |
+
'Embodied Reasoning': 'ER',
|
| 526 |
+
'BridgeData V2': 'BD',
|
| 527 |
+
'RoboVQA': 'RV',
|
| 528 |
+
'RoboFail': 'RF',
|
| 529 |
+
'Agibot': 'AB',
|
| 530 |
+
'HoloAssist': 'HA',
|
| 531 |
}
|
| 532 |
|
| 533 |
+
# Desired column order (full names from JSON)
|
| 534 |
REASON_COLUMN_ORDER = [
|
| 535 |
+
'Model',
|
| 536 |
+
'Thinking',
|
| 537 |
'Overall',
|
| 538 |
'Common Sense',
|
| 539 |
'Embodied Reasoning',
|
|
|
|
| 545 |
'RoboFail',
|
| 546 |
'Agibot',
|
| 547 |
'HoloAssist',
|
| 548 |
+
'AV'
|
|
|
|
|
|
|
| 549 |
]
|
| 550 |
|
| 551 |
# Columns to hide by default (but still available for filtering/selection)
|
| 552 |
+
REASON_HIDDEN_COLUMNS = []
|
| 553 |
|
| 554 |
+
# Reasoning dimensions (for selection button) - use abbreviations matching dataframe
|
| 555 |
REASON_COMMON_SENSE_DIMENSIONS = [
|
| 556 |
+
'CS',
|
| 557 |
'Space',
|
| 558 |
'Time',
|
| 559 |
'Physics',
|
| 560 |
]
|
| 561 |
|
| 562 |
+
# Domain dimensions (for selection button) - use abbreviations matching dataframe
|
| 563 |
REASON_EMBODIED_REASONING_DIMENSIONS = [
|
| 564 |
+
'ER',
|
| 565 |
'Space',
|
| 566 |
'Time',
|
| 567 |
'Physics',
|
| 568 |
+
'BD', 'RV', 'RF', 'AB', 'HA', 'AV',
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 569 |
]
|
| 570 |
|
| 571 |
REASON_DESELECTED_COLUMNS = [
|
| 572 |
+
'CS',
|
| 573 |
+
'ER',
|
| 574 |
]
|
| 575 |
|
| 576 |
REASON_ALL_SELECTED_COLUMNS = [
|
| 577 |
+
'CS', 'ER',
|
| 578 |
+
'Space', 'Time', 'Physics',
|
| 579 |
+
'BD', 'RV', 'RF', 'AB', 'HA', 'AV',
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 580 |
]
|
| 581 |
|
| 582 |
# Columns that can never be deselected
|
| 583 |
+
REASON_NEVER_HIDDEN_COLUMNS = ['Model', 'Thinking', 'Overall']
|
| 584 |
|
| 585 |
# Columns displayed by default (using renamed column names)
|
| 586 |
REASON_DEFAULT_DISPLAYED_COLUMNS = REASON_NEVER_HIDDEN_COLUMNS + REASON_ALL_SELECTED_COLUMNS
|
| 587 |
|
| 588 |
|
| 589 |
+
def load_reason_json(json_path):
|
| 590 |
+
"""Load understanding leaderboard JSON"""
|
| 591 |
+
df = pd.read_json(json_path, orient='records')
|
| 592 |
|
| 593 |
+
if 'model' in df.columns and 'url' in df.columns:
|
| 594 |
+
def create_link(row):
|
| 595 |
+
if pd.notna(row['url']):
|
| 596 |
+
display_name = row['model'].split('/')[-1] if '/' in row['model'] else row['model']
|
| 597 |
+
return f"[{display_name}]({row['url']})"
|
| 598 |
+
return row['model']
|
| 599 |
|
| 600 |
+
df['model'] = df.apply(create_link, axis=1)
|
| 601 |
+
df = df.drop(columns=['url'])
|
|
|
|
| 602 |
|
| 603 |
+
df = df.rename(columns={'model': 'Model'})
|
|
|
|
|
|
|
| 604 |
|
|
|
|
| 605 |
for col in df.columns:
|
| 606 |
+
if col != 'Model' and pd.api.types.is_numeric_dtype(df[col]):
|
| 607 |
df[col] = df[col].apply(lambda x: f"{x:.1f}" if pd.notna(x) else x)
|
| 608 |
|
| 609 |
+
# Rename columns to abbreviations for display
|
| 610 |
+
df = df.rename(columns=REASON_COLUMN_ABBREV)
|
| 611 |
+
|
| 612 |
return df
|
| 613 |
|
| 614 |
|
| 615 |
+
def get_reason_checkbox_choices(dataframe):
|
| 616 |
+
"""Get checkbox choices with full name (abbrev) format"""
|
| 617 |
+
# Create reverse mapping from abbreviation to full name
|
| 618 |
+
abbrev_to_full = {v: k for k, v in REASON_COLUMN_ABBREV.items()}
|
| 619 |
+
|
| 620 |
+
choices = []
|
| 621 |
+
for col in dataframe.columns:
|
| 622 |
+
if col in ['Model', 'Thinking', 'Overall']:
|
| 623 |
+
continue
|
| 624 |
+
if col in abbrev_to_full:
|
| 625 |
+
full_name = abbrev_to_full[col]
|
| 626 |
+
choices.append((f"{full_name} ({col})", col))
|
| 627 |
+
else:
|
| 628 |
+
choices.append((col, col))
|
| 629 |
+
|
| 630 |
+
return choices
|
| 631 |
+
|
| 632 |
+
|
| 633 |
def select_reason_common_sense_dimensions():
|
| 634 |
"""Return reasoning dimensions for checkbox selection"""
|
| 635 |
return gr.update(value=REASON_COMMON_SENSE_DIMENSIONS)
|
|
|
|
| 652 |
|
| 653 |
def on_reason_dimension_selection_change(selected_columns, full_df):
|
| 654 |
"""Handle dimension selection changes and update the dataframe"""
|
| 655 |
+
present_columns = ['Model', 'Thinking', 'Overall']
|
|
|
|
| 656 |
|
|
|
|
| 657 |
for col in selected_columns:
|
| 658 |
if col not in present_columns and col in full_df.columns:
|
| 659 |
present_columns.append(col)
|
| 660 |
|
|
|
|
| 661 |
updated_data = full_df[present_columns]
|
| 662 |
|
|
|
|
| 663 |
datatypes = []
|
| 664 |
for col in present_columns:
|
| 665 |
+
if col == 'Model':
|
| 666 |
datatypes.append('markdown')
|
|
|
|
|
|
|
| 667 |
else:
|
| 668 |
datatypes.append('str')
|
| 669 |
|
|
|
|
| 684 |
# Determine datatypes dynamically
|
| 685 |
datatypes = []
|
| 686 |
for col in display_df.columns:
|
| 687 |
+
if col == 'Model':
|
| 688 |
datatypes.append('markdown')
|
|
|
|
|
|
|
| 689 |
else:
|
| 690 |
+
datatypes.append('str')
|
| 691 |
|
|
|
|
| 692 |
with gr.Row():
|
| 693 |
with gr.Column(scale=1):
|
| 694 |
common_sense_btn = gr.Button("Common Sense", size="md")
|
|
|
|
| 697 |
deselect_btn = gr.Button("Deselect All", size="md")
|
| 698 |
|
| 699 |
with gr.Column(scale=4):
|
| 700 |
+
# Get checkbox choices with "Full Name (Abbrev)" format
|
| 701 |
+
checkbox_choices = get_reason_checkbox_choices(dataframe)
|
|
|
|
| 702 |
|
| 703 |
checkbox_group = gr.CheckboxGroup(
|
| 704 |
+
choices=checkbox_choices,
|
| 705 |
+
value=[col for col in REASON_ALL_SELECTED_COLUMNS if col in dataframe.columns],
|
| 706 |
label="Evaluation Dimensions",
|
| 707 |
interactive=True,
|
| 708 |
)
|
|
|
|
| 713 |
datatype=datatypes,
|
| 714 |
interactive=False,
|
| 715 |
visible=True,
|
| 716 |
+
wrap=False,
|
| 717 |
+
column_widths=["320px", "100px"] + ["100px"] * (len(display_df.columns) - 2),
|
| 718 |
+
pinned_columns=2,
|
| 719 |
elem_id="reason_leaderboard",
|
| 720 |
max_height=10000,
|
|
|
|
| 721 |
)
|
| 722 |
|
| 723 |
# Setup event handlers
|
|
|
|
| 776 |
|
| 777 |
demo = gr.Blocks()
|
| 778 |
with demo:
|
| 779 |
+
gr.HTML(f"<style>{CSS}</style>")
|
| 780 |
gr.HTML(TITLE)
|
| 781 |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
| 782 |
|
| 783 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
| 784 |
with gr.TabItem("π¨ Generation", elem_id="predict-tab", id=0):
|
| 785 |
+
predict_df = load_predict_json("data/generation-leaderboard.json")
|
| 786 |
predict_leaderboard = init_predict_leaderboard(predict_df)
|
| 787 |
|
| 788 |
with gr.TabItem("π Conditional Generation", elem_id="transfer-tab", id=1):
|
| 789 |
+
transfer_df = load_transfer_json("data/conditional_generation-leaderboard.json")
|
| 790 |
+
transfer_leaderboard = init_transfer_leaderboard(transfer_df)
|
| 791 |
|
| 792 |
with gr.TabItem("π§ Understanding", elem_id="reason-tab", id=2):
|
| 793 |
+
reason_df = load_reason_json("data/understanding-leaderboard.json")
|
| 794 |
reason_leaderboard = init_reason_leaderboard(reason_df)
|
| 795 |
|
| 796 |
with gr.TabItem("βΉοΈ About", elem_id="about-tab", id=3):
|
| 797 |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
| 798 |
|
| 799 |
+
demo.launch()
|
|
|
data/conditional_generation-leaderboard.json
ADDED
|
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"model":"Cosmos-Transfer2.5-2B",
|
| 4 |
+
"Condition":"Blur",
|
| 5 |
+
"url":"https:\/\/huggingface.co\/nvidia\/Cosmos-Transfer2.5-2B",
|
| 6 |
+
"Blur SSIM β":0.905,
|
| 7 |
+
"Edge F1 β":0.259,
|
| 8 |
+
"Depth si-RMSE β":0.543,
|
| 9 |
+
"Mask mIoU β":0.753,
|
| 10 |
+
"Quality Score β":8.765,
|
| 11 |
+
"Diversity β":0.177
|
| 12 |
+
},
|
| 13 |
+
{
|
| 14 |
+
"model":"Cosmos-Transfer2.5-2B",
|
| 15 |
+
"Condition":"All",
|
| 16 |
+
"url":"https:\/\/huggingface.co\/nvidia\/Cosmos-Transfer2.5-2B",
|
| 17 |
+
"Blur SSIM β":0.896,
|
| 18 |
+
"Edge F1 β":0.448,
|
| 19 |
+
"Depth si-RMSE β":0.594,
|
| 20 |
+
"Mask mIoU β":0.765,
|
| 21 |
+
"Quality Score β":9.241,
|
| 22 |
+
"Diversity β":0.128
|
| 23 |
+
},
|
| 24 |
+
{
|
| 25 |
+
"model":"Cosmos-Transfer2.5-2B",
|
| 26 |
+
"Condition":"Edge",
|
| 27 |
+
"url":"https:\/\/huggingface.co\/nvidia\/Cosmos-Transfer2.5-2B",
|
| 28 |
+
"Blur SSIM β":0.759,
|
| 29 |
+
"Edge F1 β":0.392,
|
| 30 |
+
"Depth si-RMSE β":0.735,
|
| 31 |
+
"Mask mIoU β":0.744,
|
| 32 |
+
"Quality Score β":8.045,
|
| 33 |
+
"Diversity β":0.356
|
| 34 |
+
},
|
| 35 |
+
{
|
| 36 |
+
"model":"Cosmos-Transfer2.5-2B",
|
| 37 |
+
"Condition":"Depth",
|
| 38 |
+
"url":"https:\/\/huggingface.co\/nvidia\/Cosmos-Transfer2.5-2B",
|
| 39 |
+
"Blur SSIM β":0.695,
|
| 40 |
+
"Edge F1 β":0.17,
|
| 41 |
+
"Depth si-RMSE β":0.827,
|
| 42 |
+
"Mask mIoU β":0.718,
|
| 43 |
+
"Quality Score β":7.299,
|
| 44 |
+
"Diversity β":0.405
|
| 45 |
+
},
|
| 46 |
+
{
|
| 47 |
+
"model":"Wan2.2-Fun-A14B-Control",
|
| 48 |
+
"Condition":"Edge",
|
| 49 |
+
"url":"https:\/\/huggingface.co\/alibaba-pai\/Wan2.2-Fun-A14B-Control",
|
| 50 |
+
"Blur SSIM β":0.68,
|
| 51 |
+
"Edge F1 β":0.374,
|
| 52 |
+
"Depth si-RMSE β":0.839,
|
| 53 |
+
"Mask mIoU β":0.741,
|
| 54 |
+
"Quality Score β":9.001,
|
| 55 |
+
"Diversity β":0.384
|
| 56 |
+
},
|
| 57 |
+
{
|
| 58 |
+
"model":"Cosmos-Transfer2.5-2B",
|
| 59 |
+
"Condition":"Seg",
|
| 60 |
+
"url":"https:\/\/huggingface.co\/nvidia\/Cosmos-Transfer2.5-2B",
|
| 61 |
+
"Blur SSIM β":0.662,
|
| 62 |
+
"Edge F1 β":0.128,
|
| 63 |
+
"Depth si-RMSE β":1.073,
|
| 64 |
+
"Mask mIoU β":0.709,
|
| 65 |
+
"Quality Score β":7.868,
|
| 66 |
+
"Diversity β":0.436
|
| 67 |
+
},
|
| 68 |
+
{
|
| 69 |
+
"model":"Wan2.2-Fun-5B-Control",
|
| 70 |
+
"Condition":"Edge",
|
| 71 |
+
"url":"https:\/\/huggingface.co\/alibaba-pai\/Wan2.2-Fun-5B-Control",
|
| 72 |
+
"Blur SSIM β":0.61,
|
| 73 |
+
"Edge F1 β":0.271,
|
| 74 |
+
"Depth si-RMSE β":1.011,
|
| 75 |
+
"Mask mIoU β":0.71,
|
| 76 |
+
"Quality Score β":8.793,
|
| 77 |
+
"Diversity β":0.399
|
| 78 |
+
},
|
| 79 |
+
{
|
| 80 |
+
"model":"Wan2.2-Fun-A14B-Control",
|
| 81 |
+
"Condition":"Blur",
|
| 82 |
+
"url":"https:\/\/huggingface.co\/alibaba-pai\/Wan2.2-Fun-A14B-Control",
|
| 83 |
+
"Blur SSIM β":0.567,
|
| 84 |
+
"Edge F1 β":0.087,
|
| 85 |
+
"Depth si-RMSE β":2.109,
|
| 86 |
+
"Mask mIoU β":0.502,
|
| 87 |
+
"Quality Score β":8.808,
|
| 88 |
+
"Diversity β":0.53
|
| 89 |
+
},
|
| 90 |
+
{
|
| 91 |
+
"model":"Wan2.2-Fun-A14B-Control",
|
| 92 |
+
"Condition":"Depth",
|
| 93 |
+
"url":"https:\/\/huggingface.co\/alibaba-pai\/Wan2.2-Fun-A14B-Control",
|
| 94 |
+
"Blur SSIM β":0.559,
|
| 95 |
+
"Edge F1 β":0.109,
|
| 96 |
+
"Depth si-RMSE β":2.097,
|
| 97 |
+
"Mask mIoU β":0.577,
|
| 98 |
+
"Quality Score β":9.221,
|
| 99 |
+
"Diversity β":0.517
|
| 100 |
+
},
|
| 101 |
+
{
|
| 102 |
+
"model":"Wan2.2-Fun-5B-Control",
|
| 103 |
+
"Condition":"Depth",
|
| 104 |
+
"url":"https:\/\/huggingface.co\/alibaba-pai\/Wan2.2-Fun-5B-Control",
|
| 105 |
+
"Blur SSIM β":0.556,
|
| 106 |
+
"Edge F1 β":0.106,
|
| 107 |
+
"Depth si-RMSE β":1.819,
|
| 108 |
+
"Mask mIoU β":0.615,
|
| 109 |
+
"Quality Score β":9.317,
|
| 110 |
+
"Diversity β":0.481
|
| 111 |
+
},
|
| 112 |
+
{
|
| 113 |
+
"model":"Wan2.2-Fun-A14B-Control",
|
| 114 |
+
"Condition":"Seg",
|
| 115 |
+
"url":"https:\/\/huggingface.co\/alibaba-pai\/Wan2.2-Fun-A14B-Control",
|
| 116 |
+
"Blur SSIM β":0.472,
|
| 117 |
+
"Edge F1 β":0.097,
|
| 118 |
+
"Depth si-RMSE β":1.601,
|
| 119 |
+
"Mask mIoU β":0.663,
|
| 120 |
+
"Quality Score β":7.791,
|
| 121 |
+
"Diversity β":0.355
|
| 122 |
+
}
|
| 123 |
+
]
|
data/{predict-leaderboard.json β generation-leaderboard.json}
RENAMED
|
@@ -1,10 +1,31 @@
|
|
| 1 |
[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
{
|
| 3 |
"model":"Veo-3",
|
| 4 |
"url":"https:\/\/deepmind.google\/models\/veo",
|
| 5 |
"Overall":82.1,
|
| 6 |
-
"Domain
|
| 7 |
-
"Quality
|
| 8 |
"Common Sense":94.4,
|
| 9 |
"AV":68.7,
|
| 10 |
"Robot":86.9,
|
|
@@ -15,19 +36,38 @@
|
|
| 15 |
"Background Consistency":93.1,
|
| 16 |
"Motion Smoothness":99.2,
|
| 17 |
"Aesthetic Quality":51.9,
|
| 18 |
-
"
|
| 19 |
"Overall Consistency":21.7,
|
| 20 |
"I2V Subject":97.0,
|
| 21 |
-
"I2V Background":96.9
|
| 22 |
-
"params":null,
|
| 23 |
-
"activate_params":null
|
| 24 |
},
|
| 25 |
{
|
| 26 |
-
"model":"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
"url":"https:\/\/huggingface.co\/nvidia\/Cosmos-Predict2.5-2B",
|
| 28 |
"Overall":81.0,
|
| 29 |
-
"Domain
|
| 30 |
-
"Quality
|
| 31 |
"Common Sense":94.1,
|
| 32 |
"AV":66.1,
|
| 33 |
"Robot":80.8,
|
|
@@ -38,19 +78,17 @@
|
|
| 38 |
"Background Consistency":94.2,
|
| 39 |
"Motion Smoothness":99.1,
|
| 40 |
"Aesthetic Quality":52.4,
|
| 41 |
-
"
|
| 42 |
"Overall Consistency":20.1,
|
| 43 |
"I2V Subject":96.6,
|
| 44 |
-
"I2V Background":97.4
|
| 45 |
-
"params":2.0,
|
| 46 |
-
"activate_params":2.0
|
| 47 |
},
|
| 48 |
{
|
| 49 |
-
"model":"
|
| 50 |
"url":"https:\/\/huggingface.co\/Wan-AI\/Wan2.2-I2V-A14B",
|
| 51 |
"Overall":80.6,
|
| 52 |
-
"Domain
|
| 53 |
-
"Quality
|
| 54 |
"Common Sense":93.2,
|
| 55 |
"AV":66.3,
|
| 56 |
"Robot":81.7,
|
|
@@ -61,19 +99,17 @@
|
|
| 61 |
"Background Consistency":93.7,
|
| 62 |
"Motion Smoothness":98.3,
|
| 63 |
"Aesthetic Quality":51.2,
|
| 64 |
-
"
|
| 65 |
"Overall Consistency":20.4,
|
| 66 |
"I2V Subject":96.0,
|
| 67 |
-
"I2V Background":96.6
|
| 68 |
-
"params":14.0,
|
| 69 |
-
"activate_params":14.0
|
| 70 |
},
|
| 71 |
{
|
| 72 |
-
"model":"
|
| 73 |
"url":"https:\/\/huggingface.co\/Wan-AI\/Wan2.2-TI2V-5B",
|
| 74 |
"Overall":80.4,
|
| 75 |
-
"Domain
|
| 76 |
-
"Quality
|
| 77 |
"Common Sense":93.1,
|
| 78 |
"AV":65.2,
|
| 79 |
"Robot":79.3,
|
|
@@ -84,19 +120,38 @@
|
|
| 84 |
"Background Consistency":93.7,
|
| 85 |
"Motion Smoothness":98.8,
|
| 86 |
"Aesthetic Quality":51.9,
|
| 87 |
-
"
|
| 88 |
"Overall Consistency":20.3,
|
| 89 |
"I2V Subject":95.9,
|
| 90 |
-
"I2V Background":96.7
|
| 91 |
-
|
| 92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
},
|
| 94 |
{
|
| 95 |
-
"model":"
|
| 96 |
"url":"https:\/\/huggingface.co\/Wan-AI\/Wan2.1-I2V-14B-720P",
|
| 97 |
-
"Overall":79.
|
| 98 |
-
"Domain
|
| 99 |
-
"Quality
|
| 100 |
"Common Sense":90.6,
|
| 101 |
"AV":66.9,
|
| 102 |
"Robot":80.1,
|
|
@@ -107,19 +162,38 @@
|
|
| 107 |
"Background Consistency":93.1,
|
| 108 |
"Motion Smoothness":98.1,
|
| 109 |
"Aesthetic Quality":51.5,
|
| 110 |
-
"
|
| 111 |
"Overall Consistency":20.4,
|
| 112 |
"I2V Subject":95.2,
|
| 113 |
-
"I2V Background":96.0
|
| 114 |
-
"params":14.0,
|
| 115 |
-
"activate_params":14.0
|
| 116 |
},
|
| 117 |
{
|
| 118 |
-
"model":"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
"url":"https:\/\/huggingface.co\/sand-ai\/MAGI-1",
|
| 120 |
"Overall":78.5,
|
| 121 |
-
"Domain
|
| 122 |
-
"Quality
|
| 123 |
"Common Sense":90.6,
|
| 124 |
"AV":61.8,
|
| 125 |
"Robot":73.5,
|
|
@@ -130,19 +204,17 @@
|
|
| 130 |
"Background Consistency":92.4,
|
| 131 |
"Motion Smoothness":99.0,
|
| 132 |
"Aesthetic Quality":50.2,
|
| 133 |
-
"
|
| 134 |
"Overall Consistency":21.4,
|
| 135 |
"I2V Subject":96.8,
|
| 136 |
-
"I2V Background":97.9
|
| 137 |
-
"params":24.0,
|
| 138 |
-
"activate_params":24.0
|
| 139 |
},
|
| 140 |
{
|
| 141 |
-
"model":"
|
| 142 |
"url":"https:\/\/huggingface.co\/THUDM\/CogVideoX1.5-5B-I2V",
|
| 143 |
"Overall":78.3,
|
| 144 |
-
"Domain
|
| 145 |
-
"Quality
|
| 146 |
"Common Sense":89.1,
|
| 147 |
"AV":59.7,
|
| 148 |
"Robot":73.0,
|
|
@@ -153,19 +225,17 @@
|
|
| 153 |
"Background Consistency":93.9,
|
| 154 |
"Motion Smoothness":98.5,
|
| 155 |
"Aesthetic Quality":50.0,
|
| 156 |
-
"
|
| 157 |
"Overall Consistency":21.2,
|
| 158 |
"I2V Subject":95.0,
|
| 159 |
-
"I2V Background":96.1
|
| 160 |
-
"params":5.0,
|
| 161 |
-
"activate_params":5.0
|
| 162 |
},
|
| 163 |
{
|
| 164 |
-
"model":"
|
| 165 |
-
"url":"https:\/\/huggingface.co\/THUDM\/CogVideoX-
|
| 166 |
"Overall":77.9,
|
| 167 |
-
"Domain
|
| 168 |
-
"Quality
|
| 169 |
"Common Sense":87.7,
|
| 170 |
"AV":58.0,
|
| 171 |
"Robot":74.0,
|
|
@@ -176,19 +246,17 @@
|
|
| 176 |
"Background Consistency":93.4,
|
| 177 |
"Motion Smoothness":98.0,
|
| 178 |
"Aesthetic Quality":51.2,
|
| 179 |
-
"
|
| 180 |
"Overall Consistency":21.3,
|
| 181 |
"I2V Subject":94.1,
|
| 182 |
-
"I2V Background":95.9
|
| 183 |
-
"params":5.0,
|
| 184 |
-
"activate_params":5.0
|
| 185 |
},
|
| 186 |
{
|
| 187 |
-
"model":"
|
| 188 |
"url":"https:\/\/huggingface.co\/Lightricks\/LTX-Video",
|
| 189 |
"Overall":77.9,
|
| 190 |
-
"Domain
|
| 191 |
-
"Quality
|
| 192 |
"Common Sense":88.9,
|
| 193 |
"AV":55.3,
|
| 194 |
"Robot":70.1,
|
|
@@ -199,19 +267,17 @@
|
|
| 199 |
"Background Consistency":93.5,
|
| 200 |
"Motion Smoothness":99.0,
|
| 201 |
"Aesthetic Quality":53.5,
|
| 202 |
-
"
|
| 203 |
"Overall Consistency":21.4,
|
| 204 |
"I2V Subject":95.7,
|
| 205 |
-
"I2V Background":96.0
|
| 206 |
-
"params":13.0,
|
| 207 |
-
"activate_params":13.0
|
| 208 |
},
|
| 209 |
{
|
| 210 |
-
"model":"
|
| 211 |
-
"url":"https:\/\/huggingface.co\/
|
| 212 |
"Overall":77.4,
|
| 213 |
-
"Domain
|
| 214 |
-
"Quality
|
| 215 |
"Common Sense":87.4,
|
| 216 |
"AV":56.3,
|
| 217 |
"Robot":67.7,
|
|
@@ -222,42 +288,17 @@
|
|
| 222 |
"Background Consistency":95.3,
|
| 223 |
"Motion Smoothness":99.5,
|
| 224 |
"Aesthetic Quality":52.1,
|
| 225 |
-
"
|
| 226 |
"Overall Consistency":21.5,
|
| 227 |
"I2V Subject":98.6,
|
| 228 |
-
"I2V Background":97.6
|
| 229 |
-
"params":null,
|
| 230 |
-
"activate_params":null
|
| 231 |
},
|
| 232 |
{
|
| 233 |
-
"model":"
|
| 234 |
-
"url":"https:\/\/huggingface.co\/sand-ai\/MAGI-1",
|
| 235 |
-
"Overall":76.9,
|
| 236 |
-
"Domain Score":77.4,
|
| 237 |
-
"Quality Score":76.3,
|
| 238 |
-
"Common Sense":87.5,
|
| 239 |
-
"AV":56.3,
|
| 240 |
-
"Robot":71.6,
|
| 241 |
-
"Industry":79.8,
|
| 242 |
-
"Human":76.0,
|
| 243 |
-
"Physics":88.9,
|
| 244 |
-
"Subject Consistency":92.1,
|
| 245 |
-
"Background Consistency":93.3,
|
| 246 |
-
"Motion Smoothness":99.0,
|
| 247 |
-
"Aesthetic Quality":50.4,
|
| 248 |
-
"Image Quality":61.8,
|
| 249 |
-
"Overall Consistency":21.6,
|
| 250 |
-
"I2V Subject":94.5,
|
| 251 |
-
"I2V Background":98.1,
|
| 252 |
-
"params":4.5,
|
| 253 |
-
"activate_params":4.5
|
| 254 |
-
},
|
| 255 |
-
{
|
| 256 |
-
"model":"Lightricks\/LTX-Video-2B",
|
| 257 |
"url":"https:\/\/huggingface.co\/Lightricks\/LTX-Video",
|
| 258 |
"Overall":76.9,
|
| 259 |
-
"Domain
|
| 260 |
-
"Quality
|
| 261 |
"Common Sense":87.3,
|
| 262 |
"AV":53.6,
|
| 263 |
"Robot":67.1,
|
|
@@ -268,19 +309,38 @@
|
|
| 268 |
"Background Consistency":92.7,
|
| 269 |
"Motion Smoothness":98.7,
|
| 270 |
"Aesthetic Quality":53.2,
|
| 271 |
-
"
|
| 272 |
"Overall Consistency":21.1,
|
| 273 |
"I2V Subject":95.0,
|
| 274 |
-
"I2V Background":95.9
|
| 275 |
-
|
| 276 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 277 |
},
|
| 278 |
{
|
| 279 |
-
"model":"
|
| 280 |
"url":"https:\/\/huggingface.co\/Doubiiu\/DynamiCrafter_1024",
|
| 281 |
"Overall":69.7,
|
| 282 |
-
"Domain
|
| 283 |
-
"Quality
|
| 284 |
"Common Sense":75.2,
|
| 285 |
"AV":43.4,
|
| 286 |
"Robot":55.0,
|
|
@@ -291,11 +351,9 @@
|
|
| 291 |
"Background Consistency":92.5,
|
| 292 |
"Motion Smoothness":94.9,
|
| 293 |
"Aesthetic Quality":51.5,
|
| 294 |
-
"
|
| 295 |
"Overall Consistency":21.2,
|
| 296 |
"I2V Subject":84.5,
|
| 297 |
-
"I2V Background":86.2
|
| 298 |
-
"params":null,
|
| 299 |
-
"activate_params":null
|
| 300 |
}
|
| 301 |
]
|
|
|
|
| 1 |
[
|
| 2 |
+
{
|
| 3 |
+
"model":"Source",
|
| 4 |
+
"url":null,
|
| 5 |
+
"Overall":82.6,
|
| 6 |
+
"Domain":87.1,
|
| 7 |
+
"Quality":78.0,
|
| 8 |
+
"Common Sense":96.4,
|
| 9 |
+
"AV":71.3,
|
| 10 |
+
"Robot":86.2,
|
| 11 |
+
"Industry":88.6,
|
| 12 |
+
"Human":83.5,
|
| 13 |
+
"Physics":93.5,
|
| 14 |
+
"Subject Consistency":93.3,
|
| 15 |
+
"Background Consistency":94.2,
|
| 16 |
+
"Motion Smoothness":99.1,
|
| 17 |
+
"Aesthetic Quality":51.7,
|
| 18 |
+
"Imaging Quality":68.4,
|
| 19 |
+
"Overall Consistency":21.5,
|
| 20 |
+
"I2V Subject":97.8,
|
| 21 |
+
"I2V Background":98.2
|
| 22 |
+
},
|
| 23 |
{
|
| 24 |
"model":"Veo-3",
|
| 25 |
"url":"https:\/\/deepmind.google\/models\/veo",
|
| 26 |
"Overall":82.1,
|
| 27 |
+
"Domain":86.7,
|
| 28 |
+
"Quality":77.6,
|
| 29 |
"Common Sense":94.4,
|
| 30 |
"AV":68.7,
|
| 31 |
"Robot":86.9,
|
|
|
|
| 36 |
"Background Consistency":93.1,
|
| 37 |
"Motion Smoothness":99.2,
|
| 38 |
"Aesthetic Quality":51.9,
|
| 39 |
+
"Imaging Quality":69.8,
|
| 40 |
"Overall Consistency":21.7,
|
| 41 |
"I2V Subject":97.0,
|
| 42 |
+
"I2V Background":96.9
|
|
|
|
|
|
|
| 43 |
},
|
| 44 |
{
|
| 45 |
+
"model":"Cosmos-Predict2.5-14B",
|
| 46 |
+
"url":"https:\/\/huggingface.co\/nvidia\/Cosmos-Predict2.5-14B",
|
| 47 |
+
"Overall":81.0,
|
| 48 |
+
"Domain":83.8,
|
| 49 |
+
"Quality":78.1,
|
| 50 |
+
"Common Sense":94.2,
|
| 51 |
+
"AV":67.8,
|
| 52 |
+
"Robot":79.9,
|
| 53 |
+
"Industry":87.7,
|
| 54 |
+
"Human":80.0,
|
| 55 |
+
"Physics":93.5,
|
| 56 |
+
"Subject Consistency":93.4,
|
| 57 |
+
"Background Consistency":94.8,
|
| 58 |
+
"Motion Smoothness":99.1,
|
| 59 |
+
"Aesthetic Quality":52.5,
|
| 60 |
+
"Imaging Quality":70.0,
|
| 61 |
+
"Overall Consistency":20.1,
|
| 62 |
+
"I2V Subject":97.2,
|
| 63 |
+
"I2V Background":97.9
|
| 64 |
+
},
|
| 65 |
+
{
|
| 66 |
+
"model":"Cosmos-Predict2.5-2B",
|
| 67 |
"url":"https:\/\/huggingface.co\/nvidia\/Cosmos-Predict2.5-2B",
|
| 68 |
"Overall":81.0,
|
| 69 |
+
"Domain":84.0,
|
| 70 |
+
"Quality":77.9,
|
| 71 |
"Common Sense":94.1,
|
| 72 |
"AV":66.1,
|
| 73 |
"Robot":80.8,
|
|
|
|
| 78 |
"Background Consistency":94.2,
|
| 79 |
"Motion Smoothness":99.1,
|
| 80 |
"Aesthetic Quality":52.4,
|
| 81 |
+
"Imaging Quality":70.8,
|
| 82 |
"Overall Consistency":20.1,
|
| 83 |
"I2V Subject":96.6,
|
| 84 |
+
"I2V Background":97.4
|
|
|
|
|
|
|
| 85 |
},
|
| 86 |
{
|
| 87 |
+
"model":"Wan2.2-I2V-A14B",
|
| 88 |
"url":"https:\/\/huggingface.co\/Wan-AI\/Wan2.2-I2V-A14B",
|
| 89 |
"Overall":80.6,
|
| 90 |
+
"Domain":84.1,
|
| 91 |
+
"Quality":77.2,
|
| 92 |
"Common Sense":93.2,
|
| 93 |
"AV":66.3,
|
| 94 |
"Robot":81.7,
|
|
|
|
| 99 |
"Background Consistency":93.7,
|
| 100 |
"Motion Smoothness":98.3,
|
| 101 |
"Aesthetic Quality":51.2,
|
| 102 |
+
"Imaging Quality":69.6,
|
| 103 |
"Overall Consistency":20.4,
|
| 104 |
"I2V Subject":96.0,
|
| 105 |
+
"I2V Background":96.6
|
|
|
|
|
|
|
| 106 |
},
|
| 107 |
{
|
| 108 |
+
"model":"Wan2.2-TI2V-5B",
|
| 109 |
"url":"https:\/\/huggingface.co\/Wan-AI\/Wan2.2-TI2V-5B",
|
| 110 |
"Overall":80.4,
|
| 111 |
+
"Domain":83.4,
|
| 112 |
+
"Quality":77.4,
|
| 113 |
"Common Sense":93.1,
|
| 114 |
"AV":65.2,
|
| 115 |
"Robot":79.3,
|
|
|
|
| 120 |
"Background Consistency":93.7,
|
| 121 |
"Motion Smoothness":98.8,
|
| 122 |
"Aesthetic Quality":51.9,
|
| 123 |
+
"Imaging Quality":69.9,
|
| 124 |
"Overall Consistency":20.3,
|
| 125 |
"I2V Subject":95.9,
|
| 126 |
+
"I2V Background":96.7
|
| 127 |
+
},
|
| 128 |
+
{
|
| 129 |
+
"model":"Cosmos-Predict2-14B-Video2World",
|
| 130 |
+
"url":"https:\/\/huggingface.co\/nvidia\/Cosmos-Predict2-14B-Video2World",
|
| 131 |
+
"Overall":80.0,
|
| 132 |
+
"Domain":84.3,
|
| 133 |
+
"Quality":75.8,
|
| 134 |
+
"Common Sense":93.1,
|
| 135 |
+
"AV":67.1,
|
| 136 |
+
"Robot":80.3,
|
| 137 |
+
"Industry":86.9,
|
| 138 |
+
"Human":82.3,
|
| 139 |
+
"Physics":92.8,
|
| 140 |
+
"Subject Consistency":89.6,
|
| 141 |
+
"Background Consistency":92.8,
|
| 142 |
+
"Motion Smoothness":98.0,
|
| 143 |
+
"Aesthetic Quality":49.8,
|
| 144 |
+
"Imaging Quality":67.5,
|
| 145 |
+
"Overall Consistency":21.5,
|
| 146 |
+
"I2V Subject":92.2,
|
| 147 |
+
"I2V Background":94.9
|
| 148 |
},
|
| 149 |
{
|
| 150 |
+
"model":"Wan2.1-I2V-14B-720P",
|
| 151 |
"url":"https:\/\/huggingface.co\/Wan-AI\/Wan2.1-I2V-14B-720P",
|
| 152 |
+
"Overall":79.8,
|
| 153 |
+
"Domain":82.7,
|
| 154 |
+
"Quality":76.8,
|
| 155 |
"Common Sense":90.6,
|
| 156 |
"AV":66.9,
|
| 157 |
"Robot":80.1,
|
|
|
|
| 162 |
"Background Consistency":93.1,
|
| 163 |
"Motion Smoothness":98.1,
|
| 164 |
"Aesthetic Quality":51.5,
|
| 165 |
+
"Imaging Quality":70.1,
|
| 166 |
"Overall Consistency":20.4,
|
| 167 |
"I2V Subject":95.2,
|
| 168 |
+
"I2V Background":96.0
|
|
|
|
|
|
|
| 169 |
},
|
| 170 |
{
|
| 171 |
+
"model":"Cosmos-Predict2-2B-Video2World",
|
| 172 |
+
"url":"https:\/\/huggingface.co\/nvidia\/Cosmos-Predict2-2B-Video2World",
|
| 173 |
+
"Overall":79.6,
|
| 174 |
+
"Domain":83.9,
|
| 175 |
+
"Quality":75.2,
|
| 176 |
+
"Common Sense":92.0,
|
| 177 |
+
"AV":66.1,
|
| 178 |
+
"Robot":80.6,
|
| 179 |
+
"Industry":86.0,
|
| 180 |
+
"Human":82.8,
|
| 181 |
+
"Physics":92.0,
|
| 182 |
+
"Subject Consistency":88.7,
|
| 183 |
+
"Background Consistency":92.1,
|
| 184 |
+
"Motion Smoothness":97.6,
|
| 185 |
+
"Aesthetic Quality":49.3,
|
| 186 |
+
"Imaging Quality":65.9,
|
| 187 |
+
"Overall Consistency":21.6,
|
| 188 |
+
"I2V Subject":91.9,
|
| 189 |
+
"I2V Background":94.6
|
| 190 |
+
},
|
| 191 |
+
{
|
| 192 |
+
"model":"MAGI-1-24B",
|
| 193 |
"url":"https:\/\/huggingface.co\/sand-ai\/MAGI-1",
|
| 194 |
"Overall":78.5,
|
| 195 |
+
"Domain":80.5,
|
| 196 |
+
"Quality":76.5,
|
| 197 |
"Common Sense":90.6,
|
| 198 |
"AV":61.8,
|
| 199 |
"Robot":73.5,
|
|
|
|
| 204 |
"Background Consistency":92.4,
|
| 205 |
"Motion Smoothness":99.0,
|
| 206 |
"Aesthetic Quality":50.2,
|
| 207 |
+
"Imaging Quality":64.2,
|
| 208 |
"Overall Consistency":21.4,
|
| 209 |
"I2V Subject":96.8,
|
| 210 |
+
"I2V Background":97.9
|
|
|
|
|
|
|
| 211 |
},
|
| 212 |
{
|
| 213 |
+
"model":"CogVideoX1.5-5B-I2V",
|
| 214 |
"url":"https:\/\/huggingface.co\/THUDM\/CogVideoX1.5-5B-I2V",
|
| 215 |
"Overall":78.3,
|
| 216 |
+
"Domain":80.1,
|
| 217 |
+
"Quality":76.6,
|
| 218 |
"Common Sense":89.1,
|
| 219 |
"AV":59.7,
|
| 220 |
"Robot":73.0,
|
|
|
|
| 225 |
"Background Consistency":93.9,
|
| 226 |
"Motion Smoothness":98.5,
|
| 227 |
"Aesthetic Quality":50.0,
|
| 228 |
+
"Imaging Quality":66.5,
|
| 229 |
"Overall Consistency":21.2,
|
| 230 |
"I2V Subject":95.0,
|
| 231 |
+
"I2V Background":96.1
|
|
|
|
|
|
|
| 232 |
},
|
| 233 |
{
|
| 234 |
+
"model":"CogVideoX-5b-I2V",
|
| 235 |
+
"url":"https:\/\/huggingface.co\/THUDM\/CogVideoX-5b-I2V",
|
| 236 |
"Overall":77.9,
|
| 237 |
+
"Domain":79.5,
|
| 238 |
+
"Quality":76.3,
|
| 239 |
"Common Sense":87.7,
|
| 240 |
"AV":58.0,
|
| 241 |
"Robot":74.0,
|
|
|
|
| 246 |
"Background Consistency":93.4,
|
| 247 |
"Motion Smoothness":98.0,
|
| 248 |
"Aesthetic Quality":51.2,
|
| 249 |
+
"Imaging Quality":64.6,
|
| 250 |
"Overall Consistency":21.3,
|
| 251 |
"I2V Subject":94.1,
|
| 252 |
+
"I2V Background":95.9
|
|
|
|
|
|
|
| 253 |
},
|
| 254 |
{
|
| 255 |
+
"model":"LTX-Video-13B",
|
| 256 |
"url":"https:\/\/huggingface.co\/Lightricks\/LTX-Video",
|
| 257 |
"Overall":77.9,
|
| 258 |
+
"Domain":78.4,
|
| 259 |
+
"Quality":77.4,
|
| 260 |
"Common Sense":88.9,
|
| 261 |
"AV":55.3,
|
| 262 |
"Robot":70.1,
|
|
|
|
| 267 |
"Background Consistency":93.5,
|
| 268 |
"Motion Smoothness":99.0,
|
| 269 |
"Aesthetic Quality":53.5,
|
| 270 |
+
"Imaging Quality":69.5,
|
| 271 |
"Overall Consistency":21.4,
|
| 272 |
"I2V Subject":95.7,
|
| 273 |
+
"I2V Background":96.0
|
|
|
|
|
|
|
| 274 |
},
|
| 275 |
{
|
| 276 |
+
"model":"HunyuanVideo-I2V",
|
| 277 |
+
"url":"https:\/\/huggingface.co\/tencent\/HunyuanVideo-I2V",
|
| 278 |
"Overall":77.4,
|
| 279 |
+
"Domain":76.8,
|
| 280 |
+
"Quality":78.0,
|
| 281 |
"Common Sense":87.4,
|
| 282 |
"AV":56.3,
|
| 283 |
"Robot":67.7,
|
|
|
|
| 288 |
"Background Consistency":95.3,
|
| 289 |
"Motion Smoothness":99.5,
|
| 290 |
"Aesthetic Quality":52.1,
|
| 291 |
+
"Imaging Quality":65.2,
|
| 292 |
"Overall Consistency":21.5,
|
| 293 |
"I2V Subject":98.6,
|
| 294 |
+
"I2V Background":97.6
|
|
|
|
|
|
|
| 295 |
},
|
| 296 |
{
|
| 297 |
+
"model":"LTX-Video-2B",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 298 |
"url":"https:\/\/huggingface.co\/Lightricks\/LTX-Video",
|
| 299 |
"Overall":76.9,
|
| 300 |
+
"Domain":76.6,
|
| 301 |
+
"Quality":77.1,
|
| 302 |
"Common Sense":87.3,
|
| 303 |
"AV":53.6,
|
| 304 |
"Robot":67.1,
|
|
|
|
| 309 |
"Background Consistency":92.7,
|
| 310 |
"Motion Smoothness":98.7,
|
| 311 |
"Aesthetic Quality":53.2,
|
| 312 |
+
"Imaging Quality":71.3,
|
| 313 |
"Overall Consistency":21.1,
|
| 314 |
"I2V Subject":95.0,
|
| 315 |
+
"I2V Background":95.9
|
| 316 |
+
},
|
| 317 |
+
{
|
| 318 |
+
"model":"MAGI-1-4.5B",
|
| 319 |
+
"url":"https:\/\/huggingface.co\/sand-ai\/MAGI-1",
|
| 320 |
+
"Overall":76.9,
|
| 321 |
+
"Domain":77.4,
|
| 322 |
+
"Quality":76.3,
|
| 323 |
+
"Common Sense":87.5,
|
| 324 |
+
"AV":56.3,
|
| 325 |
+
"Robot":71.6,
|
| 326 |
+
"Industry":79.8,
|
| 327 |
+
"Human":76.0,
|
| 328 |
+
"Physics":88.9,
|
| 329 |
+
"Subject Consistency":92.1,
|
| 330 |
+
"Background Consistency":93.3,
|
| 331 |
+
"Motion Smoothness":99.0,
|
| 332 |
+
"Aesthetic Quality":50.4,
|
| 333 |
+
"Imaging Quality":61.8,
|
| 334 |
+
"Overall Consistency":21.6,
|
| 335 |
+
"I2V Subject":94.5,
|
| 336 |
+
"I2V Background":98.1
|
| 337 |
},
|
| 338 |
{
|
| 339 |
+
"model":"DynamiCrafter_1024",
|
| 340 |
"url":"https:\/\/huggingface.co\/Doubiiu\/DynamiCrafter_1024",
|
| 341 |
"Overall":69.7,
|
| 342 |
+
"Domain":65.6,
|
| 343 |
+
"Quality":73.7,
|
| 344 |
"Common Sense":75.2,
|
| 345 |
"AV":43.4,
|
| 346 |
"Robot":55.0,
|
|
|
|
| 351 |
"Background Consistency":92.5,
|
| 352 |
"Motion Smoothness":94.9,
|
| 353 |
"Aesthetic Quality":51.5,
|
| 354 |
+
"Imaging Quality":68.0,
|
| 355 |
"Overall Consistency":21.2,
|
| 356 |
"I2V Subject":84.5,
|
| 357 |
+
"I2V Background":86.2
|
|
|
|
|
|
|
| 358 |
}
|
| 359 |
]
|
data/reason-leaderboard.csv
DELETED
|
@@ -1,15 +0,0 @@
|
|
| 1 |
-
model,Overall,Common Sense,Embodied Reasoning,Space,Time,Physics,BridgeData V2,RoboVQA,RoboFail,Agibot,HoloAssist,AV,params,activate_params
|
| 2 |
-
GPT-5,70.0,72.7,67.4,67.5,72.8,74.3,53.0,90.9,68.0,55.0,73.0,62.0,,
|
| 3 |
-
Qwen/Qwen3-VL-235B-A22B-Instruct,64.8,65.2,64.4,56.2,69.8,62.4,42.0,93.6,71.0,45.0,76.0,56.0,235.0,22.0
|
| 4 |
-
Qwen/Qwen3-VL-30B-A3B-Instruct,60.6,59.9,61.3,52.5,62.1,59.7,36.0,89.1,67.0,43.0,81.0,49.0,30.0,3.0
|
| 5 |
-
Qwen/Qwen2.5-VL-72B-Instruct,56.8,57.9,55.7,56.2,62.8,52.2,35.0,90.9,73.0,35.0,58.0,39.0,72.0,72.0
|
| 6 |
-
OpenGVLab/InternVL3_5-38B,55.8,55.8,55.7,57.5,60.4,49.1,36.0,81.8,67.0,44.0,71.0,32.0,38.0,38.0
|
| 7 |
-
nvidia/Cosmos-Reason1-7B,54.3,50.7,57.9,57.5,53.7,44.2,41.0,91.8,65.0,42.0,57.0,47.0,7.0,7.0
|
| 8 |
-
GPT-4o,53.7,56.3,51.1,55.0,55.0,58.4,40.0,56.4,65.0,37.0,65.0,43.0,,
|
| 9 |
-
Qwen/Qwen2.5-VL-32B-Instruct,51.9,53.8,50.0,50.0,61.1,45.6,32.0,90.0,52.0,34.0,55.0,33.0,32.0,32.0
|
| 10 |
-
OpenGVLab/InternVL3_5-8B,50.5,50.5,50.5,48.8,54.7,45.6,32.0,77.3,66.0,38.0,49.0,38.0,8.0,8.0
|
| 11 |
-
Qwen/Qwen2.5-VL-7B-Instruct,50.3,47.7,53.0,47.5,55.4,37.6,33.0,83.6,62.0,44.0,47.0,45.0,7.0,7.0
|
| 12 |
-
OpenGVLab/InternVL3_5-14B,49.7,50.3,49.0,52.5,52.0,47.3,26.0,80.0,67.0,28.0,54.0,36.0,14.0,14.0
|
| 13 |
-
OpenGVLab/InternVL3_5-30B-A3B,49.5,49.5,49.5,47.5,54.4,43.8,37.0,78.2,60.0,27.0,55.0,37.0,30.0,3.0
|
| 14 |
-
Qwen/Qwen2.5-VL-3B-Instruct,48.1,47.4,48.9,47.5,50.7,42.9,31.0,82.7,63.0,36.0,48.0,29.0,3.0,3.0
|
| 15 |
-
zai-org/GLM-4.5V,45.5,46.0,44.9,46.2,50.7,39.8,26.0,83.6,69.0,25.0,24.0,38.0,,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data/understanding-leaderboard.json
ADDED
|
@@ -0,0 +1,376 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"model":"GPT-5",
|
| 4 |
+
"url":"https:\/\/openai.com\/gpt-5\/",
|
| 5 |
+
"Thinking":"Yes",
|
| 6 |
+
"Overall":69.8,
|
| 7 |
+
"Common Sense":71.4,
|
| 8 |
+
"Embodied Reasoning":68.2,
|
| 9 |
+
"Space":67.5,
|
| 10 |
+
"Time":73.2,
|
| 11 |
+
"Physics":70.4,
|
| 12 |
+
"BridgeData V2":49.0,
|
| 13 |
+
"RoboVQA":87.3,
|
| 14 |
+
"RoboFail":74.0,
|
| 15 |
+
"Agibot":60.0,
|
| 16 |
+
"HoloAssist":76.0,
|
| 17 |
+
"AV":61.0
|
| 18 |
+
},
|
| 19 |
+
{
|
| 20 |
+
"model":"Cosmos-Reason2-8B",
|
| 21 |
+
"url":"https:\/\/huggingface.co\/nvidia\/Cosmos-Reason2-8B",
|
| 22 |
+
"Thinking":"No",
|
| 23 |
+
"Overall":65.4,
|
| 24 |
+
"Common Sense":62.7,
|
| 25 |
+
"Embodied Reasoning":68.0,
|
| 26 |
+
"Space":68.8,
|
| 27 |
+
"Time":67.1,
|
| 28 |
+
"Physics":54.9,
|
| 29 |
+
"BridgeData V2":51.0,
|
| 30 |
+
"RoboVQA":92.7,
|
| 31 |
+
"RoboFail":71.0,
|
| 32 |
+
"Agibot":52.0,
|
| 33 |
+
"HoloAssist":67.0,
|
| 34 |
+
"AV":72.0
|
| 35 |
+
},
|
| 36 |
+
{
|
| 37 |
+
"model":"Qwen3-VL-235B-A22B-Instruct",
|
| 38 |
+
"url":"https:\/\/huggingface.co\/Qwen\/Qwen3-VL-235B-A22B-Instruct",
|
| 39 |
+
"Thinking":"No",
|
| 40 |
+
"Overall":64.7,
|
| 41 |
+
"Common Sense":64.9,
|
| 42 |
+
"Embodied Reasoning":64.4,
|
| 43 |
+
"Space":56.2,
|
| 44 |
+
"Time":69.5,
|
| 45 |
+
"Physics":61.9,
|
| 46 |
+
"BridgeData V2":42.0,
|
| 47 |
+
"RoboVQA":93.6,
|
| 48 |
+
"RoboFail":71.0,
|
| 49 |
+
"Agibot":45.0,
|
| 50 |
+
"HoloAssist":76.0,
|
| 51 |
+
"AV":56.0
|
| 52 |
+
},
|
| 53 |
+
{
|
| 54 |
+
"model":"Qwen3-VL-235B-A22B-Thinking",
|
| 55 |
+
"url":"https:\/\/huggingface.co\/Qwen\/Qwen3-VL-235B-A22B-Thinking",
|
| 56 |
+
"Thinking":"Yes",
|
| 57 |
+
"Overall":63.7,
|
| 58 |
+
"Common Sense":66.4,
|
| 59 |
+
"Embodied Reasoning":61.0,
|
| 60 |
+
"Space":72.5,
|
| 61 |
+
"Time":69.1,
|
| 62 |
+
"Physics":60.6,
|
| 63 |
+
"BridgeData V2":42.0,
|
| 64 |
+
"RoboVQA":92.7,
|
| 65 |
+
"RoboFail":66.0,
|
| 66 |
+
"Agibot":47.0,
|
| 67 |
+
"HoloAssist":74.0,
|
| 68 |
+
"AV":41.0
|
| 69 |
+
},
|
| 70 |
+
{
|
| 71 |
+
"model":"Qwen3-VL-32B-Instruct",
|
| 72 |
+
"url":"https:\/\/huggingface.co\/Qwen\/Qwen3-VL-32B-Instruct",
|
| 73 |
+
"Thinking":"No",
|
| 74 |
+
"Overall":62.0,
|
| 75 |
+
"Common Sense":62.9,
|
| 76 |
+
"Embodied Reasoning":61.1,
|
| 77 |
+
"Space":53.8,
|
| 78 |
+
"Time":67.8,
|
| 79 |
+
"Physics":59.7,
|
| 80 |
+
"BridgeData V2":42.0,
|
| 81 |
+
"RoboVQA":90.9,
|
| 82 |
+
"RoboFail":71.0,
|
| 83 |
+
"Agibot":50.0,
|
| 84 |
+
"HoloAssist":72.0,
|
| 85 |
+
"AV":38.0
|
| 86 |
+
},
|
| 87 |
+
{
|
| 88 |
+
"model":"Qwen3-VL-32B-Thinking",
|
| 89 |
+
"url":"https:\/\/huggingface.co\/Qwen\/Qwen3-VL-32B-Thinking",
|
| 90 |
+
"Thinking":"Yes",
|
| 91 |
+
"Overall":61.0,
|
| 92 |
+
"Common Sense":63.7,
|
| 93 |
+
"Embodied Reasoning":58.4,
|
| 94 |
+
"Space":66.2,
|
| 95 |
+
"Time":66.4,
|
| 96 |
+
"Physics":59.3,
|
| 97 |
+
"BridgeData V2":46.0,
|
| 98 |
+
"RoboVQA":93.6,
|
| 99 |
+
"RoboFail":61.0,
|
| 100 |
+
"Agibot":48.0,
|
| 101 |
+
"HoloAssist":67.0,
|
| 102 |
+
"AV":31.0
|
| 103 |
+
},
|
| 104 |
+
{
|
| 105 |
+
"model":"Qwen2.5-VL-72B-Instruct",
|
| 106 |
+
"url":"https:\/\/huggingface.co\/Qwen\/Qwen2.5-VL-72B-Instruct",
|
| 107 |
+
"Thinking":"No",
|
| 108 |
+
"Overall":60.8,
|
| 109 |
+
"Common Sense":58.6,
|
| 110 |
+
"Embodied Reasoning":63.0,
|
| 111 |
+
"Space":65.0,
|
| 112 |
+
"Time":57.7,
|
| 113 |
+
"Physics":57.5,
|
| 114 |
+
"BridgeData V2":50.0,
|
| 115 |
+
"RoboVQA":91.8,
|
| 116 |
+
"RoboFail":68.0,
|
| 117 |
+
"Agibot":52.0,
|
| 118 |
+
"HoloAssist":70.0,
|
| 119 |
+
"AV":43.0
|
| 120 |
+
},
|
| 121 |
+
{
|
| 122 |
+
"model":"Qwen3-VL-30B-A3B-Instruct",
|
| 123 |
+
"url":"https:\/\/huggingface.co\/Qwen\/Qwen3-VL-30B-A3B-Instruct",
|
| 124 |
+
"Thinking":"No",
|
| 125 |
+
"Overall":59.5,
|
| 126 |
+
"Common Sense":58.6,
|
| 127 |
+
"Embodied Reasoning":60.3,
|
| 128 |
+
"Space":52.5,
|
| 129 |
+
"Time":60.4,
|
| 130 |
+
"Physics":58.4,
|
| 131 |
+
"BridgeData V2":38.0,
|
| 132 |
+
"RoboVQA":90.9,
|
| 133 |
+
"RoboFail":69.0,
|
| 134 |
+
"Agibot":41.0,
|
| 135 |
+
"HoloAssist":73.0,
|
| 136 |
+
"AV":47.0
|
| 137 |
+
},
|
| 138 |
+
{
|
| 139 |
+
"model":"GLM-4.5V",
|
| 140 |
+
"url":"https:\/\/huggingface.co\/zai-org\/GLM-4.5V",
|
| 141 |
+
"Thinking":"No",
|
| 142 |
+
"Overall":59.2,
|
| 143 |
+
"Common Sense":60.9,
|
| 144 |
+
"Embodied Reasoning":57.5,
|
| 145 |
+
"Space":63.8,
|
| 146 |
+
"Time":65.4,
|
| 147 |
+
"Physics":54.0,
|
| 148 |
+
"BridgeData V2":37.0,
|
| 149 |
+
"RoboVQA":77.3,
|
| 150 |
+
"RoboFail":76.0,
|
| 151 |
+
"Agibot":39.0,
|
| 152 |
+
"HoloAssist":71.0,
|
| 153 |
+
"AV":43.0
|
| 154 |
+
},
|
| 155 |
+
{
|
| 156 |
+
"model":"Qwen3-VL-30B-A3B-Thinking",
|
| 157 |
+
"url":"https:\/\/huggingface.co\/Qwen\/Qwen3-VL-30B-A3B-Thinking",
|
| 158 |
+
"Thinking":"Yes",
|
| 159 |
+
"Overall":57.3,
|
| 160 |
+
"Common Sense":56.1,
|
| 161 |
+
"Embodied Reasoning":58.5,
|
| 162 |
+
"Space":55.0,
|
| 163 |
+
"Time":60.1,
|
| 164 |
+
"Physics":51.3,
|
| 165 |
+
"BridgeData V2":35.0,
|
| 166 |
+
"RoboVQA":91.8,
|
| 167 |
+
"RoboFail":66.0,
|
| 168 |
+
"Agibot":46.0,
|
| 169 |
+
"HoloAssist":76.0,
|
| 170 |
+
"AV":33.0
|
| 171 |
+
},
|
| 172 |
+
{
|
| 173 |
+
"model":"Qwen3-VL-8B-Thinking",
|
| 174 |
+
"url":"https:\/\/huggingface.co\/Qwen\/Qwen3-VL-8B-Thinking",
|
| 175 |
+
"Thinking":"Yes",
|
| 176 |
+
"Overall":57.3,
|
| 177 |
+
"Common Sense":57.0,
|
| 178 |
+
"Embodied Reasoning":57.7,
|
| 179 |
+
"Space":58.8,
|
| 180 |
+
"Time":61.4,
|
| 181 |
+
"Physics":50.4,
|
| 182 |
+
"BridgeData V2":36.0,
|
| 183 |
+
"RoboVQA":87.3,
|
| 184 |
+
"RoboFail":61.0,
|
| 185 |
+
"Agibot":48.0,
|
| 186 |
+
"HoloAssist":71.0,
|
| 187 |
+
"AV":40.0
|
| 188 |
+
},
|
| 189 |
+
{
|
| 190 |
+
"model":"Qwen3-VL-8B-Instruct",
|
| 191 |
+
"url":"https:\/\/huggingface.co\/Qwen\/Qwen3-VL-8B-Instruct",
|
| 192 |
+
"Thinking":"No",
|
| 193 |
+
"Overall":56.8,
|
| 194 |
+
"Common Sense":55.0,
|
| 195 |
+
"Embodied Reasoning":58.7,
|
| 196 |
+
"Space":53.8,
|
| 197 |
+
"Time":58.4,
|
| 198 |
+
"Physics":50.9,
|
| 199 |
+
"BridgeData V2":35.0,
|
| 200 |
+
"RoboVQA":89.1,
|
| 201 |
+
"RoboFail":61.0,
|
| 202 |
+
"Agibot":49.0,
|
| 203 |
+
"HoloAssist":75.0,
|
| 204 |
+
"AV":40.0
|
| 205 |
+
},
|
| 206 |
+
{
|
| 207 |
+
"model":"InternVL3.5-241B-A28B",
|
| 208 |
+
"url":"https:\/\/huggingface.co\/OpenGVLab\/InternVL3_5-241B-A28B",
|
| 209 |
+
"Thinking":"No",
|
| 210 |
+
"Overall":56.3,
|
| 211 |
+
"Common Sense":56.3,
|
| 212 |
+
"Embodied Reasoning":56.4,
|
| 213 |
+
"Space":60.0,
|
| 214 |
+
"Time":57.4,
|
| 215 |
+
"Physics":53.5,
|
| 216 |
+
"BridgeData V2":34.0,
|
| 217 |
+
"RoboVQA":78.2,
|
| 218 |
+
"RoboFail":66.0,
|
| 219 |
+
"Agibot":43.0,
|
| 220 |
+
"HoloAssist":75.0,
|
| 221 |
+
"AV":40.0
|
| 222 |
+
},
|
| 223 |
+
{
|
| 224 |
+
"model":"GPT-4o",
|
| 225 |
+
"url":"https:\/\/openai.com\/index\/hello-gpt-4o\/",
|
| 226 |
+
"Thinking":"No",
|
| 227 |
+
"Overall":56.2,
|
| 228 |
+
"Common Sense":58.6,
|
| 229 |
+
"Embodied Reasoning":53.8,
|
| 230 |
+
"Space":61.2,
|
| 231 |
+
"Time":57.0,
|
| 232 |
+
"Physics":59.7,
|
| 233 |
+
"BridgeData V2":44.0,
|
| 234 |
+
"RoboVQA":68.2,
|
| 235 |
+
"RoboFail":71.0,
|
| 236 |
+
"Agibot":45.0,
|
| 237 |
+
"HoloAssist":55.0,
|
| 238 |
+
"AV":38.0
|
| 239 |
+
},
|
| 240 |
+
{
|
| 241 |
+
"model":"InternVL3.5-38B",
|
| 242 |
+
"url":"https:\/\/huggingface.co\/OpenGVLab\/InternVL3_5-38B",
|
| 243 |
+
"Thinking":"No",
|
| 244 |
+
"Overall":55.8,
|
| 245 |
+
"Common Sense":55.8,
|
| 246 |
+
"Embodied Reasoning":55.7,
|
| 247 |
+
"Space":58.8,
|
| 248 |
+
"Time":59.7,
|
| 249 |
+
"Physics":49.6,
|
| 250 |
+
"BridgeData V2":36.0,
|
| 251 |
+
"RoboVQA":82.7,
|
| 252 |
+
"RoboFail":66.0,
|
| 253 |
+
"Agibot":44.0,
|
| 254 |
+
"HoloAssist":69.0,
|
| 255 |
+
"AV":34.0
|
| 256 |
+
},
|
| 257 |
+
{
|
| 258 |
+
"model":"Cosmos-Reason1-7B",
|
| 259 |
+
"url":"https:\/\/huggingface.co\/nvidia\/Cosmos-Reason1-7B",
|
| 260 |
+
"Thinking":"No",
|
| 261 |
+
"Overall":55.7,
|
| 262 |
+
"Common Sense":53.1,
|
| 263 |
+
"Embodied Reasoning":58.2,
|
| 264 |
+
"Space":63.8,
|
| 265 |
+
"Time":55.7,
|
| 266 |
+
"Physics":46.0,
|
| 267 |
+
"BridgeData V2":41.0,
|
| 268 |
+
"RoboVQA":91.8,
|
| 269 |
+
"RoboFail":66.0,
|
| 270 |
+
"Agibot":41.0,
|
| 271 |
+
"HoloAssist":59.0,
|
| 272 |
+
"AV":47.0
|
| 273 |
+
},
|
| 274 |
+
{
|
| 275 |
+
"model":"Qwen2.5-VL-32B-Instruct",
|
| 276 |
+
"url":"https:\/\/huggingface.co\/Qwen\/Qwen2.5-VL-32B-Instruct",
|
| 277 |
+
"Thinking":"No",
|
| 278 |
+
"Overall":55.3,
|
| 279 |
+
"Common Sense":55.5,
|
| 280 |
+
"Embodied Reasoning":55.1,
|
| 281 |
+
"Space":50.0,
|
| 282 |
+
"Time":62.1,
|
| 283 |
+
"Physics":48.7,
|
| 284 |
+
"BridgeData V2":35.0,
|
| 285 |
+
"RoboVQA":93.6,
|
| 286 |
+
"RoboFail":65.0,
|
| 287 |
+
"Agibot":45.0,
|
| 288 |
+
"HoloAssist":56.0,
|
| 289 |
+
"AV":32.0
|
| 290 |
+
},
|
| 291 |
+
{
|
| 292 |
+
"model":"Qwen2.5-VL-7B-Instruct",
|
| 293 |
+
"url":"https:\/\/huggingface.co\/Qwen\/Qwen2.5-VL-7B-Instruct",
|
| 294 |
+
"Thinking":"No",
|
| 295 |
+
"Overall":51.0,
|
| 296 |
+
"Common Sense":45.7,
|
| 297 |
+
"Embodied Reasoning":56.2,
|
| 298 |
+
"Space":51.2,
|
| 299 |
+
"Time":48.7,
|
| 300 |
+
"Physics":39.8,
|
| 301 |
+
"BridgeData V2":35.0,
|
| 302 |
+
"RoboVQA":87.3,
|
| 303 |
+
"RoboFail":63.0,
|
| 304 |
+
"Agibot":53.0,
|
| 305 |
+
"HoloAssist":60.0,
|
| 306 |
+
"AV":36.0
|
| 307 |
+
},
|
| 308 |
+
{
|
| 309 |
+
"model":"InternVL3.5-8B",
|
| 310 |
+
"url":"https:\/\/huggingface.co\/OpenGVLab\/InternVL3_5-8B",
|
| 311 |
+
"Thinking":"No",
|
| 312 |
+
"Overall":49.7,
|
| 313 |
+
"Common Sense":50.5,
|
| 314 |
+
"Embodied Reasoning":48.9,
|
| 315 |
+
"Space":50.0,
|
| 316 |
+
"Time":55.0,
|
| 317 |
+
"Physics":44.7,
|
| 318 |
+
"BridgeData V2":29.0,
|
| 319 |
+
"RoboVQA":75.5,
|
| 320 |
+
"RoboFail":63.0,
|
| 321 |
+
"Agibot":39.0,
|
| 322 |
+
"HoloAssist":49.0,
|
| 323 |
+
"AV":35.0
|
| 324 |
+
},
|
| 325 |
+
{
|
| 326 |
+
"model":"InternVL3.5-30B-A3B",
|
| 327 |
+
"url":"https:\/\/huggingface.co\/OpenGVLab\/InternVL3_5-30B-A3B",
|
| 328 |
+
"Thinking":"No",
|
| 329 |
+
"Overall":49.4,
|
| 330 |
+
"Common Sense":51.2,
|
| 331 |
+
"Embodied Reasoning":47.7,
|
| 332 |
+
"Space":48.8,
|
| 333 |
+
"Time":55.7,
|
| 334 |
+
"Physics":46.0,
|
| 335 |
+
"BridgeData V2":37.0,
|
| 336 |
+
"RoboVQA":74.5,
|
| 337 |
+
"RoboFail":60.0,
|
| 338 |
+
"Agibot":23.0,
|
| 339 |
+
"HoloAssist":55.0,
|
| 340 |
+
"AV":34.0
|
| 341 |
+
},
|
| 342 |
+
{
|
| 343 |
+
"model":"InternVL3.5-14B",
|
| 344 |
+
"url":"https:\/\/huggingface.co\/OpenGVLab\/InternVL3_5-14B",
|
| 345 |
+
"Thinking":"No",
|
| 346 |
+
"Overall":48.8,
|
| 347 |
+
"Common Sense":49.7,
|
| 348 |
+
"Embodied Reasoning":47.9,
|
| 349 |
+
"Space":50.0,
|
| 350 |
+
"Time":51.3,
|
| 351 |
+
"Physics":47.3,
|
| 352 |
+
"BridgeData V2":23.0,
|
| 353 |
+
"RoboVQA":80.0,
|
| 354 |
+
"RoboFail":67.0,
|
| 355 |
+
"Agibot":27.0,
|
| 356 |
+
"HoloAssist":56.0,
|
| 357 |
+
"AV":31.0
|
| 358 |
+
},
|
| 359 |
+
{
|
| 360 |
+
"model":"Claude-3.5-Sonnet",
|
| 361 |
+
"url":"https:\/\/www.anthropic.com\/news\/claude-3-5-sonnet",
|
| 362 |
+
"Thinking":"No",
|
| 363 |
+
"Overall":46.0,
|
| 364 |
+
"Common Sense":47.8,
|
| 365 |
+
"Embodied Reasoning":44.1,
|
| 366 |
+
"Space":55.0,
|
| 367 |
+
"Time":46.6,
|
| 368 |
+
"Physics":46.9,
|
| 369 |
+
"BridgeData V2":29.0,
|
| 370 |
+
"RoboVQA":74.5,
|
| 371 |
+
"RoboFail":58.0,
|
| 372 |
+
"Agibot":28.0,
|
| 373 |
+
"HoloAssist":38.0,
|
| 374 |
+
"AV":34.0
|
| 375 |
+
}
|
| 376 |
+
]
|
inspect_gradio.py
DELETED
|
@@ -1,5 +0,0 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
import inspect
|
| 3 |
-
|
| 4 |
-
with open("signature.txt", "w") as f:
|
| 5 |
-
f.write(str(inspect.signature(gr.Dataframe.__init__)))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|