Jiannan Huang
commited on
Commit
·
a90bfd0
0
Parent(s):
FIX Height of leaderboard
Browse files- .gitignore +2 -0
- README.md +77 -0
- app.py +628 -0
- data/predict-leaderboard.json +301 -0
- data/reason-leaderboard.csv +15 -0
- inspect_gradio.py +5 -0
- requirements.txt +2 -0
- signature.txt +1 -0
.gitignore
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
scripts/
|
| 2 |
+
__pycache__/
|
README.md
ADDED
|
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: Physical AI Bench Leaderboard
|
| 3 |
+
emoji: 🤖
|
| 4 |
+
colorFrom: blue
|
| 5 |
+
colorTo: purple
|
| 6 |
+
sdk: gradio
|
| 7 |
+
app_file: app.py
|
| 8 |
+
pinned: true
|
| 9 |
+
license: mit
|
| 10 |
+
short_description: Benchmark for Physical AI generation and understanding
|
| 11 |
+
sdk_version: 5.43.1
|
| 12 |
+
tags:
|
| 13 |
+
- leaderboard
|
| 14 |
+
- physical-ai
|
| 15 |
+
- world-models
|
| 16 |
+
- autonomous-driving
|
| 17 |
+
- robotics
|
| 18 |
+
- embodied-ai
|
| 19 |
+
---
|
| 20 |
+
|
| 21 |
+
# Physical AI Bench Leaderboard
|
| 22 |
+
|
| 23 |
+
**Physical AI Bench (PAI-Bench)** is a comprehensive benchmark suite for evaluating physical AI generation and understanding across diverse scenarios including autonomous vehicles, robotics, industrial spaces, and everyday ego-centric environments.
|
| 24 |
+
|
| 25 |
+
## Resources
|
| 26 |
+
|
| 27 |
+
- 🌐 [GitHub Repository](https://github.com/SHI-Labs/physical-ai-bench)
|
| 28 |
+
- 📊 [Predict Dataset](https://huggingface.co/datasets/shi-labs/physical-ai-bench-predict)
|
| 29 |
+
- 📊 [Transfer Dataset](https://huggingface.co/datasets/shi-labs/physical-ai-bench-transfer)
|
| 30 |
+
- 📊 [Reason Dataset](https://huggingface.co/datasets/shi-labs/physical-ai-bench-reason)
|
| 31 |
+
|
| 32 |
+
## Citation
|
| 33 |
+
|
| 34 |
+
```bibtex
|
| 35 |
+
@misc{PAIBench2025,
|
| 36 |
+
title={Physical AI Bench: A Comprehensive Benchmark for Physical AI Generation and Understanding},
|
| 37 |
+
author={Fengzhe Zhou and Jiannan Huang and Jialuo Li and Humphrey Shi},
|
| 38 |
+
year={2025},
|
| 39 |
+
url={https://github.com/SHI-Labs/physical-ai-bench}
|
| 40 |
+
}
|
| 41 |
+
```
|
| 42 |
+
|
| 43 |
+
---
|
| 44 |
+
|
| 45 |
+
# Configuration
|
| 46 |
+
|
| 47 |
+
Most of the variables to change for a default leaderboard are in `src/env.py` (replace the path for your leaderboard) and `src/about.py` (for tasks).
|
| 48 |
+
|
| 49 |
+
Results files should have the following format and be stored as json files:
|
| 50 |
+
```json
|
| 51 |
+
{
|
| 52 |
+
"config": {
|
| 53 |
+
"model_dtype": "torch.float16", # or torch.bfloat16 or 8bit or 4bit
|
| 54 |
+
"model_name": "path of the model on the hub: org/model",
|
| 55 |
+
"model_sha": "revision on the hub",
|
| 56 |
+
},
|
| 57 |
+
"results": {
|
| 58 |
+
"task_name": {
|
| 59 |
+
"metric_name": score,
|
| 60 |
+
},
|
| 61 |
+
"task_name2": {
|
| 62 |
+
"metric_name": score,
|
| 63 |
+
}
|
| 64 |
+
}
|
| 65 |
+
}
|
| 66 |
+
```
|
| 67 |
+
|
| 68 |
+
Request files are created automatically by this tool.
|
| 69 |
+
|
| 70 |
+
If you encounter problem on the space, don't hesitate to restart it to remove the create eval-queue, eval-queue-bk, eval-results and eval-results-bk created folder.
|
| 71 |
+
|
| 72 |
+
# Code logic for more complex edits
|
| 73 |
+
|
| 74 |
+
You'll find
|
| 75 |
+
- the main table' columns names and properties in `src/display/utils.py`
|
| 76 |
+
- the logic to read all results and request files, then convert them in dataframe lines, in `src/leaderboard/read_evals.py`, and `src/populate.py`
|
| 77 |
+
- the logic to allow or filter submissions in `src/submission/submit.py` and `src/submission/check_validity.py`
|
app.py
ADDED
|
@@ -0,0 +1,628 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import pandas as pd
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
# Your leaderboard name
|
| 6 |
+
TITLE = """<h1 align="center" id="space-title">Physical AI Bench Leaderboard</h1>"""
|
| 7 |
+
|
| 8 |
+
# CSS to make the leaderboard full height
|
| 9 |
+
CSS = """
|
| 10 |
+
#predict_leaderboard, #reason_leaderboard {
|
| 11 |
+
height: auto !important;
|
| 12 |
+
max-height: none !important;
|
| 13 |
+
}
|
| 14 |
+
#predict_leaderboard .wrap, #reason_leaderboard .wrap {
|
| 15 |
+
max-height: none !important;
|
| 16 |
+
height: auto !important;
|
| 17 |
+
}
|
| 18 |
+
#predict_leaderboard .tbody, #reason_leaderboard .tbody {
|
| 19 |
+
max-height: none !important;
|
| 20 |
+
height: auto !important;
|
| 21 |
+
overflow-x: auto !important;
|
| 22 |
+
overflow-y: hidden !important;
|
| 23 |
+
}
|
| 24 |
+
"""
|
| 25 |
+
|
| 26 |
+
# What does your leaderboard evaluate?
|
| 27 |
+
INTRODUCTION_TEXT = """
|
| 28 |
+
**Physical AI Bench (PAI-Bench)** is a comprehensive benchmark suite for evaluating physical AI generation and understanding across diverse scenarios including autonomous vehicles, robotics, industrial spaces, and everyday ego-centric environments.
|
| 29 |
+
"""
|
| 30 |
+
|
| 31 |
+
# Which evaluations are you running? how can people reproduce what you have?
|
| 32 |
+
LLM_BENCHMARKS_TEXT = """
|
| 33 |
+
## How it works
|
| 34 |
+
|
| 35 |
+
This leaderboard tracks model performance across three core dimensions:
|
| 36 |
+
|
| 37 |
+
- **🎨 Generation**: Evaluates world foundation models' ability to predict future states across 1,044 diverse physical scenarios
|
| 38 |
+
- **🔄 Conditional Generation**: Focuses on world model generation with complex control signals, featuring 600 videos across robotic arm operations, autonomous driving, and ego-centric scenes
|
| 39 |
+
- **🧠 Understanding**: Evaluates understanding and reasoning about physical scenes, with 1,214 embodied reasoning scenarios focused on autonomous vehicle actions
|
| 40 |
+
|
| 41 |
+
PAI-Bench covers multiple physical AI domains including autonomous driving, robotics, industrial spaces, physics simulations, human interactions, and common sense reasoning.
|
| 42 |
+
|
| 43 |
+
### Resources
|
| 44 |
+
- 🌐 [GitHub Repository](https://github.com/SHI-Labs/physical-ai-bench)
|
| 45 |
+
- 📊 [Generation Dataset](https://huggingface.co/datasets/shi-labs/physical-ai-bench-predict)
|
| 46 |
+
- 📊 [Conditional Generation Dataset](https://huggingface.co/datasets/shi-labs/physical-ai-bench-transfer)
|
| 47 |
+
- 📊 [Understanding Dataset](https://huggingface.co/datasets/shi-labs/physical-ai-bench-reason)
|
| 48 |
+
|
| 49 |
+
## Reproducibility
|
| 50 |
+
|
| 51 |
+
To evaluate your models on PAI-Bench, visit our [GitHub repository](https://github.com/SHI-Labs/physical-ai-bench) for evaluation scripts and detailed instructions.
|
| 52 |
+
|
| 53 |
+
## Citation
|
| 54 |
+
|
| 55 |
+
If you use Physical AI Bench in your research, please cite:
|
| 56 |
+
|
| 57 |
+
```bibtex
|
| 58 |
+
@misc{zhou2025paibenchcomprehensivebenchmarkphysical,
|
| 59 |
+
title={PAI-Bench: A Comprehensive Benchmark For Physical AI},
|
| 60 |
+
author={Fengzhe Zhou and Jiannan Huang and Jialuo Li and Deva Ramanan and Humphrey Shi},
|
| 61 |
+
year={2025},
|
| 62 |
+
eprint={2512.01989},
|
| 63 |
+
archivePrefix={arXiv},
|
| 64 |
+
primaryClass={cs.CV},
|
| 65 |
+
url={https://arxiv.org/abs/2512.01989},
|
| 66 |
+
}
|
| 67 |
+
```
|
| 68 |
+
"""
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
# ============================================================================
|
| 72 |
+
# Model Links Utility
|
| 73 |
+
# ============================================================================
|
| 74 |
+
|
| 75 |
+
def create_model_link(model_name):
|
| 76 |
+
"""
|
| 77 |
+
Convert a model name to a markdown link to Hugging Face.
|
| 78 |
+
|
| 79 |
+
Args:
|
| 80 |
+
model_name: Model name in format "org/model-name" or just a plain name
|
| 81 |
+
|
| 82 |
+
Returns:
|
| 83 |
+
Markdown formatted link or original name if format doesn't match
|
| 84 |
+
"""
|
| 85 |
+
if not isinstance(model_name, str):
|
| 86 |
+
return model_name
|
| 87 |
+
|
| 88 |
+
if '/' in model_name:
|
| 89 |
+
hf_url = f"https://huggingface.co/{model_name}"
|
| 90 |
+
display_name = model_name.split('/')[-1]
|
| 91 |
+
return f"[{display_name}]({hf_url})"
|
| 92 |
+
|
| 93 |
+
return model_name
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
# ============================================================================
|
| 97 |
+
# Generation Tab Configuration and Utilities
|
| 98 |
+
# ============================================================================
|
| 99 |
+
|
| 100 |
+
# Expected column order (the CSV should already have this order)
|
| 101 |
+
PREDICT_COLUMN_ORDER = [
|
| 102 |
+
'model',
|
| 103 |
+
'Overall',
|
| 104 |
+
'Domain Score',
|
| 105 |
+
'Quality Score',
|
| 106 |
+
'Common Sense',
|
| 107 |
+
'AV',
|
| 108 |
+
'Robot',
|
| 109 |
+
'Industry',
|
| 110 |
+
'Human',
|
| 111 |
+
'Physics',
|
| 112 |
+
'Subject Consistency',
|
| 113 |
+
'Background Consistency',
|
| 114 |
+
'Motion Smoothness',
|
| 115 |
+
'Aesthetic Quality',
|
| 116 |
+
'Image Quality',
|
| 117 |
+
'Overall Consistency',
|
| 118 |
+
'I2V Subject',
|
| 119 |
+
'I2V Background',
|
| 120 |
+
'params',
|
| 121 |
+
'activate_params'
|
| 122 |
+
]
|
| 123 |
+
|
| 124 |
+
# Columns to hide by default (but still available for filtering/selection)
|
| 125 |
+
PREDICT_HIDDEN_COLUMNS = ['params', 'activate_params']
|
| 126 |
+
|
| 127 |
+
# Semantic/Domain dimensions (for selection button)
|
| 128 |
+
PREDICT_DOMAIN_SCORE_DIMENSIONS = [
|
| 129 |
+
'Domain Score',
|
| 130 |
+
'Common Sense',
|
| 131 |
+
'AV',
|
| 132 |
+
'Robot',
|
| 133 |
+
'Industry',
|
| 134 |
+
'Human',
|
| 135 |
+
'Physics',
|
| 136 |
+
]
|
| 137 |
+
|
| 138 |
+
# Quality dimensions (for selection button)
|
| 139 |
+
PREDICT_QUALITY_SCORE_DIMENSIONS = [
|
| 140 |
+
'Quality Score',
|
| 141 |
+
'Subject Consistency',
|
| 142 |
+
'Background Consistency',
|
| 143 |
+
'Motion Smoothness',
|
| 144 |
+
'Aesthetic Quality',
|
| 145 |
+
'Image Quality',
|
| 146 |
+
'Overall Consistency',
|
| 147 |
+
'I2V Subject',
|
| 148 |
+
'I2V Background'
|
| 149 |
+
]
|
| 150 |
+
|
| 151 |
+
PREDICT_DESELECTED_COLUMNS = ['Domain Score', 'Quality Score']
|
| 152 |
+
|
| 153 |
+
PREDICT_ALL_SELECTED_COLUMNS = [
|
| 154 |
+
'Domain Score',
|
| 155 |
+
'Quality Score',
|
| 156 |
+
'Common Sense',
|
| 157 |
+
'AV',
|
| 158 |
+
'Robot',
|
| 159 |
+
'Industry',
|
| 160 |
+
'Human',
|
| 161 |
+
'Physics',
|
| 162 |
+
'Subject Consistency',
|
| 163 |
+
'Background Consistency',
|
| 164 |
+
'Motion Smoothness',
|
| 165 |
+
'Aesthetic Quality',
|
| 166 |
+
'Image Quality',
|
| 167 |
+
'Overall Consistency',
|
| 168 |
+
'I2V Subject',
|
| 169 |
+
'I2V Background'
|
| 170 |
+
]
|
| 171 |
+
|
| 172 |
+
# Columns that can never be deselected
|
| 173 |
+
PREDICT_NEVER_HIDDEN_COLUMNS = ['model', 'Overall']
|
| 174 |
+
|
| 175 |
+
# Columns displayed by default (using renamed column names)
|
| 176 |
+
PREDICT_DEFAULT_DISPLAYED_COLUMNS = PREDICT_NEVER_HIDDEN_COLUMNS + PREDICT_ALL_SELECTED_COLUMNS
|
| 177 |
+
|
| 178 |
+
def load_predict_json(json_path):
|
| 179 |
+
"""
|
| 180 |
+
Load generation leaderboard JSON.
|
| 181 |
+
|
| 182 |
+
The JSON should already be pre-processed by generate_predict_leaderboard.py
|
| 183 |
+
with correct column names, ordering, sorting, and separate model/url fields.
|
| 184 |
+
"""
|
| 185 |
+
df = pd.read_json(json_path, orient='records')
|
| 186 |
+
|
| 187 |
+
if 'model' in df.columns and 'url' in df.columns:
|
| 188 |
+
def create_link(row):
|
| 189 |
+
if pd.notna(row['url']):
|
| 190 |
+
display_name = row['model'].split('/')[-1] if '/' in row['model'] else row['model']
|
| 191 |
+
return f"[{display_name}]({row['url']})"
|
| 192 |
+
return row['model']
|
| 193 |
+
|
| 194 |
+
df['model'] = df.apply(create_link, axis=1)
|
| 195 |
+
df = df.drop(columns=['url'])
|
| 196 |
+
|
| 197 |
+
# Format numbers to ensure decimal places (1 decimal for numeric columns)
|
| 198 |
+
# Numbers should already be scaled to 0-100 by the generation script
|
| 199 |
+
for col in df.columns:
|
| 200 |
+
if col not in ['model', 'params', 'activate_params'] and pd.api.types.is_numeric_dtype(df[col]):
|
| 201 |
+
df[col] = df[col].apply(lambda x: f"{x:.1f}" if pd.notna(x) else x)
|
| 202 |
+
|
| 203 |
+
return df
|
| 204 |
+
|
| 205 |
+
|
| 206 |
+
def select_predict_domain_score():
|
| 207 |
+
"""Return domain score for checkbox selection"""
|
| 208 |
+
return gr.update(value=PREDICT_DOMAIN_SCORE_DIMENSIONS)
|
| 209 |
+
|
| 210 |
+
def select_predict_quality_score():
|
| 211 |
+
"""Return quality score for checkbox selection"""
|
| 212 |
+
return gr.update(value=PREDICT_QUALITY_SCORE_DIMENSIONS)
|
| 213 |
+
|
| 214 |
+
def deselect_predict_all():
|
| 215 |
+
"""Deselect all dimensions"""
|
| 216 |
+
return gr.update(value=PREDICT_DESELECTED_COLUMNS)
|
| 217 |
+
|
| 218 |
+
def select_predict_all():
|
| 219 |
+
"""Select all dimensions"""
|
| 220 |
+
return gr.update(value=PREDICT_ALL_SELECTED_COLUMNS)
|
| 221 |
+
|
| 222 |
+
def on_predict_dimension_selection_change(selected_columns, full_df):
|
| 223 |
+
"""Handle dimension selection changes and update the dataframe"""
|
| 224 |
+
# Always include model and Overall columns
|
| 225 |
+
present_columns = ['model', 'Overall']
|
| 226 |
+
|
| 227 |
+
# Add selected columns
|
| 228 |
+
for col in selected_columns:
|
| 229 |
+
if col not in present_columns and col in full_df.columns:
|
| 230 |
+
present_columns.append(col)
|
| 231 |
+
|
| 232 |
+
# Filter dataframe to show only selected columns
|
| 233 |
+
updated_data = full_df[present_columns]
|
| 234 |
+
|
| 235 |
+
# Determine datatypes
|
| 236 |
+
datatypes = []
|
| 237 |
+
for col in present_columns:
|
| 238 |
+
if col == 'model':
|
| 239 |
+
datatypes.append('markdown')
|
| 240 |
+
elif col in ['params', 'activate_params']:
|
| 241 |
+
datatypes.append('number')
|
| 242 |
+
else:
|
| 243 |
+
datatypes.append('str')
|
| 244 |
+
|
| 245 |
+
return gr.update(value=updated_data, datatype=datatypes, headers=present_columns)
|
| 246 |
+
|
| 247 |
+
|
| 248 |
+
def init_predict_leaderboard(dataframe):
|
| 249 |
+
"""Initialize the Generation leaderboard with given dataframe"""
|
| 250 |
+
if dataframe is None or dataframe.empty:
|
| 251 |
+
raise ValueError("Leaderboard DataFrame is empty or None.")
|
| 252 |
+
|
| 253 |
+
# Get columns that exist in the dataframe
|
| 254 |
+
available_default_cols = [col for col in PREDICT_DEFAULT_DISPLAYED_COLUMNS if col in dataframe.columns]
|
| 255 |
+
|
| 256 |
+
# Filter dataframe to show only default columns initially
|
| 257 |
+
display_df = dataframe[available_default_cols]
|
| 258 |
+
|
| 259 |
+
# Determine datatypes dynamically
|
| 260 |
+
datatypes = []
|
| 261 |
+
for col in display_df.columns:
|
| 262 |
+
if col == 'model':
|
| 263 |
+
datatypes.append('markdown')
|
| 264 |
+
elif col in ['params', 'activate_params']:
|
| 265 |
+
datatypes.append('number')
|
| 266 |
+
else:
|
| 267 |
+
datatypes.append('str') # All numeric columns are now formatted as strings
|
| 268 |
+
|
| 269 |
+
# Create the UI components
|
| 270 |
+
with gr.Row():
|
| 271 |
+
with gr.Column(scale=1):
|
| 272 |
+
domain_score_btn = gr.Button("Domain Score", size="md")
|
| 273 |
+
quality_score_btn = gr.Button("Quality Score", size="md")
|
| 274 |
+
select_all_btn = gr.Button("Select All", size="md")
|
| 275 |
+
deselect_btn = gr.Button("Deselect All", size="md")
|
| 276 |
+
|
| 277 |
+
with gr.Column(scale=4):
|
| 278 |
+
# Get all dimension columns (exclude model, Overall, scores, and params)
|
| 279 |
+
dimension_choices = [col for col in dataframe.columns
|
| 280 |
+
if col not in PREDICT_NEVER_HIDDEN_COLUMNS + PREDICT_HIDDEN_COLUMNS]
|
| 281 |
+
|
| 282 |
+
checkbox_group = gr.CheckboxGroup(
|
| 283 |
+
choices=dimension_choices,
|
| 284 |
+
value=[col for col in PREDICT_DEFAULT_DISPLAYED_COLUMNS if col in dimension_choices],
|
| 285 |
+
label="Evaluation Dimensions",
|
| 286 |
+
interactive=True,
|
| 287 |
+
)
|
| 288 |
+
|
| 289 |
+
data_component = gr.Dataframe(
|
| 290 |
+
value=display_df,
|
| 291 |
+
headers=list(display_df.columns),
|
| 292 |
+
datatype=datatypes,
|
| 293 |
+
interactive=False,
|
| 294 |
+
visible=True,
|
| 295 |
+
wrap=False,
|
| 296 |
+
column_widths=["320px"] + ["200px"] * (len(display_df.columns) - 1),
|
| 297 |
+
pinned_columns=1,
|
| 298 |
+
elem_id="predict_leaderboard",
|
| 299 |
+
max_height=10000,
|
| 300 |
+
)
|
| 301 |
+
|
| 302 |
+
# Setup event handlers
|
| 303 |
+
domain_score_btn.click(
|
| 304 |
+
select_predict_domain_score,
|
| 305 |
+
inputs=None,
|
| 306 |
+
outputs=[checkbox_group]
|
| 307 |
+
).then(
|
| 308 |
+
fn=on_predict_dimension_selection_change,
|
| 309 |
+
inputs=[checkbox_group, gr.State(dataframe)],
|
| 310 |
+
outputs=data_component
|
| 311 |
+
)
|
| 312 |
+
|
| 313 |
+
quality_score_btn.click(
|
| 314 |
+
select_predict_quality_score,
|
| 315 |
+
inputs=None,
|
| 316 |
+
outputs=[checkbox_group]
|
| 317 |
+
).then(
|
| 318 |
+
fn=on_predict_dimension_selection_change,
|
| 319 |
+
inputs=[checkbox_group, gr.State(dataframe)],
|
| 320 |
+
outputs=data_component
|
| 321 |
+
)
|
| 322 |
+
|
| 323 |
+
deselect_btn.click(
|
| 324 |
+
deselect_predict_all,
|
| 325 |
+
inputs=None,
|
| 326 |
+
outputs=[checkbox_group]
|
| 327 |
+
).then(
|
| 328 |
+
fn=on_predict_dimension_selection_change,
|
| 329 |
+
inputs=[checkbox_group, gr.State(dataframe)],
|
| 330 |
+
outputs=data_component
|
| 331 |
+
)
|
| 332 |
+
|
| 333 |
+
select_all_btn.click(
|
| 334 |
+
select_predict_all,
|
| 335 |
+
inputs=None,
|
| 336 |
+
outputs=[checkbox_group]
|
| 337 |
+
).then(
|
| 338 |
+
fn=on_predict_dimension_selection_change,
|
| 339 |
+
inputs=[checkbox_group, gr.State(dataframe)],
|
| 340 |
+
outputs=data_component
|
| 341 |
+
)
|
| 342 |
+
|
| 343 |
+
checkbox_group.change(
|
| 344 |
+
fn=on_predict_dimension_selection_change,
|
| 345 |
+
inputs=[checkbox_group, gr.State(dataframe)],
|
| 346 |
+
outputs=data_component
|
| 347 |
+
)
|
| 348 |
+
|
| 349 |
+
return data_component
|
| 350 |
+
|
| 351 |
+
|
| 352 |
+
# ============================================================================
|
| 353 |
+
# Understanding Tab Configuration and Utilities
|
| 354 |
+
# ============================================================================
|
| 355 |
+
|
| 356 |
+
# Column name mapping for display
|
| 357 |
+
REASON_COLUMN_MAPPING = {
|
| 358 |
+
'Physical world': 'Physics'
|
| 359 |
+
}
|
| 360 |
+
|
| 361 |
+
# Desired column order
|
| 362 |
+
REASON_COLUMN_ORDER = [
|
| 363 |
+
'model',
|
| 364 |
+
'Overall',
|
| 365 |
+
'Common Sense',
|
| 366 |
+
'Embodied Reasoning',
|
| 367 |
+
'Space',
|
| 368 |
+
'Time',
|
| 369 |
+
'Physics',
|
| 370 |
+
'BridgeData V2',
|
| 371 |
+
'RoboVQA',
|
| 372 |
+
'RoboFail',
|
| 373 |
+
'Agibot',
|
| 374 |
+
'HoloAssist',
|
| 375 |
+
'AV',
|
| 376 |
+
'params',
|
| 377 |
+
'activate_params'
|
| 378 |
+
]
|
| 379 |
+
|
| 380 |
+
# Columns to hide by default (but still available for filtering/selection)
|
| 381 |
+
REASON_HIDDEN_COLUMNS = ['params', 'activate_params']
|
| 382 |
+
|
| 383 |
+
# Reasoning dimensions (for selection button)
|
| 384 |
+
REASON_COMMON_SENSE_DIMENSIONS = [
|
| 385 |
+
'Common Sense',
|
| 386 |
+
'Space',
|
| 387 |
+
'Time',
|
| 388 |
+
'Physics',
|
| 389 |
+
]
|
| 390 |
+
|
| 391 |
+
# Domain dimensions (for selection button)
|
| 392 |
+
REASON_EMBODIED_REASONING_DIMENSIONS = [
|
| 393 |
+
'Embodied Reasoning',
|
| 394 |
+
'Space',
|
| 395 |
+
'Time',
|
| 396 |
+
'Physics',
|
| 397 |
+
'BridgeData V2',
|
| 398 |
+
'RoboVQA',
|
| 399 |
+
'RoboFail',
|
| 400 |
+
'Agibot',
|
| 401 |
+
'HoloAssist',
|
| 402 |
+
'AV',
|
| 403 |
+
]
|
| 404 |
+
|
| 405 |
+
REASON_DESELECTED_COLUMNS = [
|
| 406 |
+
'Common Sense',
|
| 407 |
+
'Embodied Reasoning',
|
| 408 |
+
]
|
| 409 |
+
|
| 410 |
+
REASON_ALL_SELECTED_COLUMNS = [
|
| 411 |
+
'Common Sense',
|
| 412 |
+
'Embodied Reasoning',
|
| 413 |
+
'Space',
|
| 414 |
+
'Time',
|
| 415 |
+
'Physics',
|
| 416 |
+
'BridgeData V2',
|
| 417 |
+
'RoboVQA',
|
| 418 |
+
'RoboFail',
|
| 419 |
+
'Agibot',
|
| 420 |
+
'HoloAssist',
|
| 421 |
+
'AV',
|
| 422 |
+
]
|
| 423 |
+
|
| 424 |
+
# Columns that can never be deselected
|
| 425 |
+
REASON_NEVER_HIDDEN_COLUMNS = ['model', 'Overall']
|
| 426 |
+
|
| 427 |
+
# Columns displayed by default (using renamed column names)
|
| 428 |
+
REASON_DEFAULT_DISPLAYED_COLUMNS = REASON_NEVER_HIDDEN_COLUMNS + REASON_ALL_SELECTED_COLUMNS
|
| 429 |
+
|
| 430 |
+
|
| 431 |
+
def load_reason_csv(csv_path):
|
| 432 |
+
"""Load CSV and apply column mapping and ordering"""
|
| 433 |
+
df = pd.read_csv(csv_path)
|
| 434 |
+
|
| 435 |
+
# Apply column mapping
|
| 436 |
+
df = df.rename(columns=REASON_COLUMN_MAPPING)
|
| 437 |
+
|
| 438 |
+
# Reorder columns (only keep columns that exist in the dataframe)
|
| 439 |
+
available_cols = [col for col in REASON_COLUMN_ORDER if col in df.columns]
|
| 440 |
+
df = df[available_cols]
|
| 441 |
+
|
| 442 |
+
# Convert model names to HuggingFace links
|
| 443 |
+
if 'model' in df.columns:
|
| 444 |
+
df['model'] = df['model'].apply(create_model_link)
|
| 445 |
+
|
| 446 |
+
# Format numbers to ensure decimal places (1 decimal for integers)
|
| 447 |
+
for col in df.columns:
|
| 448 |
+
if col not in ['model', 'params', 'activate_params'] and pd.api.types.is_numeric_dtype(df[col]):
|
| 449 |
+
df[col] = df[col].apply(lambda x: f"{x:.1f}" if pd.notna(x) else x)
|
| 450 |
+
|
| 451 |
+
return df
|
| 452 |
+
|
| 453 |
+
|
| 454 |
+
def select_reason_common_sense_dimensions():
|
| 455 |
+
"""Return reasoning dimensions for checkbox selection"""
|
| 456 |
+
return gr.update(value=REASON_COMMON_SENSE_DIMENSIONS)
|
| 457 |
+
|
| 458 |
+
|
| 459 |
+
def select_reason_embodied_reasoning_dimensions():
|
| 460 |
+
"""Return domain dimensions for checkbox selection"""
|
| 461 |
+
return gr.update(value=REASON_EMBODIED_REASONING_DIMENSIONS)
|
| 462 |
+
|
| 463 |
+
|
| 464 |
+
def deselect_reason_all():
|
| 465 |
+
"""Deselect all dimensions"""
|
| 466 |
+
return gr.update(value=REASON_DESELECTED_COLUMNS)
|
| 467 |
+
|
| 468 |
+
|
| 469 |
+
def select_reason_all():
|
| 470 |
+
"""Select all dimensions"""
|
| 471 |
+
return gr.update(value=REASON_ALL_SELECTED_COLUMNS)
|
| 472 |
+
|
| 473 |
+
|
| 474 |
+
def on_reason_dimension_selection_change(selected_columns, full_df):
|
| 475 |
+
"""Handle dimension selection changes and update the dataframe"""
|
| 476 |
+
# Always include model and Overall columns
|
| 477 |
+
present_columns = ['model', 'Overall']
|
| 478 |
+
|
| 479 |
+
# Add selected columns
|
| 480 |
+
for col in selected_columns:
|
| 481 |
+
if col not in present_columns and col in full_df.columns:
|
| 482 |
+
present_columns.append(col)
|
| 483 |
+
|
| 484 |
+
# Filter dataframe to show only selected columns
|
| 485 |
+
updated_data = full_df[present_columns]
|
| 486 |
+
|
| 487 |
+
# Determine datatypes
|
| 488 |
+
datatypes = []
|
| 489 |
+
for col in present_columns:
|
| 490 |
+
if col == 'model':
|
| 491 |
+
datatypes.append('markdown')
|
| 492 |
+
elif col in ['params', 'activate_params']:
|
| 493 |
+
datatypes.append('number')
|
| 494 |
+
else:
|
| 495 |
+
datatypes.append('str')
|
| 496 |
+
|
| 497 |
+
return gr.update(value=updated_data, datatype=datatypes, headers=present_columns)
|
| 498 |
+
|
| 499 |
+
|
| 500 |
+
def init_reason_leaderboard(dataframe):
|
| 501 |
+
"""Initialize the Understanding leaderboard with given dataframe"""
|
| 502 |
+
if dataframe is None or dataframe.empty:
|
| 503 |
+
raise ValueError("Leaderboard DataFrame is empty or None.")
|
| 504 |
+
|
| 505 |
+
# Get columns that exist in the dataframe
|
| 506 |
+
available_default_cols = [col for col in REASON_DEFAULT_DISPLAYED_COLUMNS if col in dataframe.columns]
|
| 507 |
+
|
| 508 |
+
# Filter dataframe to show only default columns initially
|
| 509 |
+
display_df = dataframe[available_default_cols]
|
| 510 |
+
|
| 511 |
+
# Determine datatypes dynamically
|
| 512 |
+
datatypes = []
|
| 513 |
+
for col in display_df.columns:
|
| 514 |
+
if col == 'model':
|
| 515 |
+
datatypes.append('markdown')
|
| 516 |
+
elif col in ['params', 'activate_params']:
|
| 517 |
+
datatypes.append('number')
|
| 518 |
+
else:
|
| 519 |
+
datatypes.append('str') # All numeric columns are now formatted as strings
|
| 520 |
+
|
| 521 |
+
# Create the UI components
|
| 522 |
+
with gr.Row():
|
| 523 |
+
with gr.Column(scale=1):
|
| 524 |
+
common_sense_btn = gr.Button("Common Sense", size="md")
|
| 525 |
+
embodied_reasoning_btn = gr.Button("Embodied Reasoning", size="md")
|
| 526 |
+
select_all_btn = gr.Button("Select All", size="md")
|
| 527 |
+
deselect_btn = gr.Button("Deselect All", size="md")
|
| 528 |
+
|
| 529 |
+
with gr.Column(scale=4):
|
| 530 |
+
# Get all dimension columns (exclude model, Overall, and params)
|
| 531 |
+
dimension_choices = [col for col in dataframe.columns
|
| 532 |
+
if col not in REASON_NEVER_HIDDEN_COLUMNS + REASON_HIDDEN_COLUMNS]
|
| 533 |
+
|
| 534 |
+
checkbox_group = gr.CheckboxGroup(
|
| 535 |
+
choices=dimension_choices,
|
| 536 |
+
value=[col for col in REASON_DEFAULT_DISPLAYED_COLUMNS if col in dimension_choices],
|
| 537 |
+
label="Evaluation Dimensions",
|
| 538 |
+
interactive=True,
|
| 539 |
+
)
|
| 540 |
+
|
| 541 |
+
data_component = gr.Dataframe(
|
| 542 |
+
value=display_df,
|
| 543 |
+
headers=list(display_df.columns),
|
| 544 |
+
datatype=datatypes,
|
| 545 |
+
interactive=False,
|
| 546 |
+
visible=True,
|
| 547 |
+
wrap=False, # Allow horizontal scrolling, don't wrap content
|
| 548 |
+
column_widths=["320px"] + ["200px"] * (len(display_df.columns) - 1),
|
| 549 |
+
pinned_columns=1,
|
| 550 |
+
elem_id="reason_leaderboard",
|
| 551 |
+
max_height=10000,
|
| 552 |
+
)
|
| 553 |
+
|
| 554 |
+
# Setup event handlers
|
| 555 |
+
common_sense_btn.click(
|
| 556 |
+
select_reason_common_sense_dimensions,
|
| 557 |
+
inputs=None,
|
| 558 |
+
outputs=[checkbox_group]
|
| 559 |
+
).then(
|
| 560 |
+
fn=on_reason_dimension_selection_change,
|
| 561 |
+
inputs=[checkbox_group, gr.State(dataframe)],
|
| 562 |
+
outputs=data_component
|
| 563 |
+
)
|
| 564 |
+
|
| 565 |
+
embodied_reasoning_btn.click(
|
| 566 |
+
select_reason_embodied_reasoning_dimensions,
|
| 567 |
+
inputs=None,
|
| 568 |
+
outputs=[checkbox_group]
|
| 569 |
+
).then(
|
| 570 |
+
fn=on_reason_dimension_selection_change,
|
| 571 |
+
inputs=[checkbox_group, gr.State(dataframe)],
|
| 572 |
+
outputs=data_component
|
| 573 |
+
)
|
| 574 |
+
|
| 575 |
+
deselect_btn.click(
|
| 576 |
+
deselect_reason_all,
|
| 577 |
+
inputs=None,
|
| 578 |
+
outputs=[checkbox_group]
|
| 579 |
+
).then(
|
| 580 |
+
fn=on_reason_dimension_selection_change,
|
| 581 |
+
inputs=[checkbox_group, gr.State(dataframe)],
|
| 582 |
+
outputs=data_component
|
| 583 |
+
)
|
| 584 |
+
|
| 585 |
+
select_all_btn.click(
|
| 586 |
+
select_reason_all,
|
| 587 |
+
inputs=None,
|
| 588 |
+
outputs=[checkbox_group]
|
| 589 |
+
).then(
|
| 590 |
+
fn=on_reason_dimension_selection_change,
|
| 591 |
+
inputs=[checkbox_group, gr.State(dataframe)],
|
| 592 |
+
outputs=data_component
|
| 593 |
+
)
|
| 594 |
+
|
| 595 |
+
checkbox_group.change(
|
| 596 |
+
fn=on_reason_dimension_selection_change,
|
| 597 |
+
inputs=[checkbox_group, gr.State(dataframe)],
|
| 598 |
+
outputs=data_component
|
| 599 |
+
)
|
| 600 |
+
|
| 601 |
+
return data_component
|
| 602 |
+
|
| 603 |
+
|
| 604 |
+
# ============================================================================
|
| 605 |
+
# Main Application
|
| 606 |
+
# ============================================================================
|
| 607 |
+
|
| 608 |
+
demo = gr.Blocks()
|
| 609 |
+
with demo:
|
| 610 |
+
gr.HTML(TITLE)
|
| 611 |
+
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
| 612 |
+
|
| 613 |
+
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
| 614 |
+
with gr.TabItem("🎨 Generation", elem_id="predict-tab", id=0):
|
| 615 |
+
predict_df = load_predict_json("data/predict-leaderboard.json")
|
| 616 |
+
predict_leaderboard = init_predict_leaderboard(predict_df)
|
| 617 |
+
|
| 618 |
+
with gr.TabItem("🔄 Conditional Generation", elem_id="transfer-tab", id=1):
|
| 619 |
+
gr.Markdown("## Coming Soon", elem_classes="markdown-text")
|
| 620 |
+
|
| 621 |
+
with gr.TabItem("🧠 Understanding", elem_id="reason-tab", id=2):
|
| 622 |
+
reason_df = load_reason_csv("data/reason-leaderboard.csv")
|
| 623 |
+
reason_leaderboard = init_reason_leaderboard(reason_df)
|
| 624 |
+
|
| 625 |
+
with gr.TabItem("ℹ️ About", elem_id="about-tab", id=3):
|
| 626 |
+
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
| 627 |
+
|
| 628 |
+
demo.launch(css=CSS)
|
data/predict-leaderboard.json
ADDED
|
@@ -0,0 +1,301 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"model":"Veo-3",
|
| 4 |
+
"url":"https:\/\/deepmind.google\/models\/veo",
|
| 5 |
+
"Overall":82.1,
|
| 6 |
+
"Domain Score":86.7,
|
| 7 |
+
"Quality Score":77.6,
|
| 8 |
+
"Common Sense":94.4,
|
| 9 |
+
"AV":68.7,
|
| 10 |
+
"Robot":86.9,
|
| 11 |
+
"Industry":89.7,
|
| 12 |
+
"Human":84.4,
|
| 13 |
+
"Physics":91.6,
|
| 14 |
+
"Subject Consistency":91.4,
|
| 15 |
+
"Background Consistency":93.1,
|
| 16 |
+
"Motion Smoothness":99.2,
|
| 17 |
+
"Aesthetic Quality":51.9,
|
| 18 |
+
"Image Quality":69.8,
|
| 19 |
+
"Overall Consistency":21.7,
|
| 20 |
+
"I2V Subject":97.0,
|
| 21 |
+
"I2V Background":96.9,
|
| 22 |
+
"params":null,
|
| 23 |
+
"activate_params":null
|
| 24 |
+
},
|
| 25 |
+
{
|
| 26 |
+
"model":"nvidia\/Cosmos-Predict2.5-2B",
|
| 27 |
+
"url":"https:\/\/huggingface.co\/nvidia\/Cosmos-Predict2.5-2B",
|
| 28 |
+
"Overall":81.0,
|
| 29 |
+
"Domain Score":84.0,
|
| 30 |
+
"Quality Score":77.9,
|
| 31 |
+
"Common Sense":94.1,
|
| 32 |
+
"AV":66.1,
|
| 33 |
+
"Robot":80.8,
|
| 34 |
+
"Industry":87.8,
|
| 35 |
+
"Human":81.4,
|
| 36 |
+
"Physics":93.9,
|
| 37 |
+
"Subject Consistency":92.5,
|
| 38 |
+
"Background Consistency":94.2,
|
| 39 |
+
"Motion Smoothness":99.1,
|
| 40 |
+
"Aesthetic Quality":52.4,
|
| 41 |
+
"Image Quality":70.8,
|
| 42 |
+
"Overall Consistency":20.1,
|
| 43 |
+
"I2V Subject":96.6,
|
| 44 |
+
"I2V Background":97.4,
|
| 45 |
+
"params":2.0,
|
| 46 |
+
"activate_params":2.0
|
| 47 |
+
},
|
| 48 |
+
{
|
| 49 |
+
"model":"Wan-AI\/Wan2.2-I2V-A14B",
|
| 50 |
+
"url":"https:\/\/huggingface.co\/Wan-AI\/Wan2.2-I2V-A14B",
|
| 51 |
+
"Overall":80.6,
|
| 52 |
+
"Domain Score":84.1,
|
| 53 |
+
"Quality Score":77.2,
|
| 54 |
+
"Common Sense":93.2,
|
| 55 |
+
"AV":66.3,
|
| 56 |
+
"Robot":81.7,
|
| 57 |
+
"Industry":89.2,
|
| 58 |
+
"Human":82.1,
|
| 59 |
+
"Physics":91.8,
|
| 60 |
+
"Subject Consistency":91.6,
|
| 61 |
+
"Background Consistency":93.7,
|
| 62 |
+
"Motion Smoothness":98.3,
|
| 63 |
+
"Aesthetic Quality":51.2,
|
| 64 |
+
"Image Quality":69.6,
|
| 65 |
+
"Overall Consistency":20.4,
|
| 66 |
+
"I2V Subject":96.0,
|
| 67 |
+
"I2V Background":96.6,
|
| 68 |
+
"params":14.0,
|
| 69 |
+
"activate_params":14.0
|
| 70 |
+
},
|
| 71 |
+
{
|
| 72 |
+
"model":"Wan-AI\/Wan2.2-TI2V-5B",
|
| 73 |
+
"url":"https:\/\/huggingface.co\/Wan-AI\/Wan2.2-TI2V-5B",
|
| 74 |
+
"Overall":80.4,
|
| 75 |
+
"Domain Score":83.4,
|
| 76 |
+
"Quality Score":77.4,
|
| 77 |
+
"Common Sense":93.1,
|
| 78 |
+
"AV":65.2,
|
| 79 |
+
"Robot":79.3,
|
| 80 |
+
"Industry":88.4,
|
| 81 |
+
"Human":83.0,
|
| 82 |
+
"Physics":91.5,
|
| 83 |
+
"Subject Consistency":91.8,
|
| 84 |
+
"Background Consistency":93.7,
|
| 85 |
+
"Motion Smoothness":98.8,
|
| 86 |
+
"Aesthetic Quality":51.9,
|
| 87 |
+
"Image Quality":69.9,
|
| 88 |
+
"Overall Consistency":20.3,
|
| 89 |
+
"I2V Subject":95.9,
|
| 90 |
+
"I2V Background":96.7,
|
| 91 |
+
"params":5.0,
|
| 92 |
+
"activate_params":5.0
|
| 93 |
+
},
|
| 94 |
+
{
|
| 95 |
+
"model":"Wan-AI\/Wan2.1-I2V-14B-720P",
|
| 96 |
+
"url":"https:\/\/huggingface.co\/Wan-AI\/Wan2.1-I2V-14B-720P",
|
| 97 |
+
"Overall":79.7,
|
| 98 |
+
"Domain Score":82.7,
|
| 99 |
+
"Quality Score":76.8,
|
| 100 |
+
"Common Sense":90.6,
|
| 101 |
+
"AV":66.9,
|
| 102 |
+
"Robot":80.1,
|
| 103 |
+
"Industry":89.7,
|
| 104 |
+
"Human":80.1,
|
| 105 |
+
"Physics":88.7,
|
| 106 |
+
"Subject Consistency":90.0,
|
| 107 |
+
"Background Consistency":93.1,
|
| 108 |
+
"Motion Smoothness":98.1,
|
| 109 |
+
"Aesthetic Quality":51.5,
|
| 110 |
+
"Image Quality":70.1,
|
| 111 |
+
"Overall Consistency":20.4,
|
| 112 |
+
"I2V Subject":95.2,
|
| 113 |
+
"I2V Background":96.0,
|
| 114 |
+
"params":14.0,
|
| 115 |
+
"activate_params":14.0
|
| 116 |
+
},
|
| 117 |
+
{
|
| 118 |
+
"model":"MAGI\/MAGI-1-24B",
|
| 119 |
+
"url":"https:\/\/huggingface.co\/sand-ai\/MAGI-1",
|
| 120 |
+
"Overall":78.5,
|
| 121 |
+
"Domain Score":80.5,
|
| 122 |
+
"Quality Score":76.5,
|
| 123 |
+
"Common Sense":90.6,
|
| 124 |
+
"AV":61.8,
|
| 125 |
+
"Robot":73.5,
|
| 126 |
+
"Industry":84.1,
|
| 127 |
+
"Human":79.8,
|
| 128 |
+
"Physics":87.7,
|
| 129 |
+
"Subject Consistency":90.0,
|
| 130 |
+
"Background Consistency":92.4,
|
| 131 |
+
"Motion Smoothness":99.0,
|
| 132 |
+
"Aesthetic Quality":50.2,
|
| 133 |
+
"Image Quality":64.2,
|
| 134 |
+
"Overall Consistency":21.4,
|
| 135 |
+
"I2V Subject":96.8,
|
| 136 |
+
"I2V Background":97.9,
|
| 137 |
+
"params":24.0,
|
| 138 |
+
"activate_params":24.0
|
| 139 |
+
},
|
| 140 |
+
{
|
| 141 |
+
"model":"THUDM\/CogVideoX1.5-5B-I2V",
|
| 142 |
+
"url":"https:\/\/huggingface.co\/THUDM\/CogVideoX1.5-5B-I2V",
|
| 143 |
+
"Overall":78.3,
|
| 144 |
+
"Domain Score":80.1,
|
| 145 |
+
"Quality Score":76.6,
|
| 146 |
+
"Common Sense":89.1,
|
| 147 |
+
"AV":59.7,
|
| 148 |
+
"Robot":73.0,
|
| 149 |
+
"Industry":84.4,
|
| 150 |
+
"Human":79.2,
|
| 151 |
+
"Physics":91.8,
|
| 152 |
+
"Subject Consistency":91.6,
|
| 153 |
+
"Background Consistency":93.9,
|
| 154 |
+
"Motion Smoothness":98.5,
|
| 155 |
+
"Aesthetic Quality":50.0,
|
| 156 |
+
"Image Quality":66.5,
|
| 157 |
+
"Overall Consistency":21.2,
|
| 158 |
+
"I2V Subject":95.0,
|
| 159 |
+
"I2V Background":96.1,
|
| 160 |
+
"params":5.0,
|
| 161 |
+
"activate_params":5.0
|
| 162 |
+
},
|
| 163 |
+
{
|
| 164 |
+
"model":"THUDM\/CogVideoX-5B-I2V",
|
| 165 |
+
"url":"https:\/\/huggingface.co\/THUDM\/CogVideoX-5B-I2V",
|
| 166 |
+
"Overall":77.9,
|
| 167 |
+
"Domain Score":79.5,
|
| 168 |
+
"Quality Score":76.3,
|
| 169 |
+
"Common Sense":87.7,
|
| 170 |
+
"AV":58.0,
|
| 171 |
+
"Robot":74.0,
|
| 172 |
+
"Industry":84.4,
|
| 173 |
+
"Human":79.0,
|
| 174 |
+
"Physics":90.2,
|
| 175 |
+
"Subject Consistency":91.4,
|
| 176 |
+
"Background Consistency":93.4,
|
| 177 |
+
"Motion Smoothness":98.0,
|
| 178 |
+
"Aesthetic Quality":51.2,
|
| 179 |
+
"Image Quality":64.6,
|
| 180 |
+
"Overall Consistency":21.3,
|
| 181 |
+
"I2V Subject":94.1,
|
| 182 |
+
"I2V Background":95.9,
|
| 183 |
+
"params":5.0,
|
| 184 |
+
"activate_params":5.0
|
| 185 |
+
},
|
| 186 |
+
{
|
| 187 |
+
"model":"Lightricks\/LTX-Video-13B",
|
| 188 |
+
"url":"https:\/\/huggingface.co\/Lightricks\/LTX-Video",
|
| 189 |
+
"Overall":77.9,
|
| 190 |
+
"Domain Score":78.4,
|
| 191 |
+
"Quality Score":77.4,
|
| 192 |
+
"Common Sense":88.9,
|
| 193 |
+
"AV":55.3,
|
| 194 |
+
"Robot":70.1,
|
| 195 |
+
"Industry":82.7,
|
| 196 |
+
"Human":78.3,
|
| 197 |
+
"Physics":90.1,
|
| 198 |
+
"Subject Consistency":90.6,
|
| 199 |
+
"Background Consistency":93.5,
|
| 200 |
+
"Motion Smoothness":99.0,
|
| 201 |
+
"Aesthetic Quality":53.5,
|
| 202 |
+
"Image Quality":69.5,
|
| 203 |
+
"Overall Consistency":21.4,
|
| 204 |
+
"I2V Subject":95.7,
|
| 205 |
+
"I2V Background":96.0,
|
| 206 |
+
"params":13.0,
|
| 207 |
+
"activate_params":13.0
|
| 208 |
+
},
|
| 209 |
+
{
|
| 210 |
+
"model":"Tencent\/HunyuanVideo-I2V",
|
| 211 |
+
"url":"https:\/\/huggingface.co\/Tencent\/HunyuanVideo-I2V",
|
| 212 |
+
"Overall":77.4,
|
| 213 |
+
"Domain Score":76.8,
|
| 214 |
+
"Quality Score":78.0,
|
| 215 |
+
"Common Sense":87.4,
|
| 216 |
+
"AV":56.3,
|
| 217 |
+
"Robot":67.7,
|
| 218 |
+
"Industry":83.0,
|
| 219 |
+
"Human":75.5,
|
| 220 |
+
"Physics":88.2,
|
| 221 |
+
"Subject Consistency":94.3,
|
| 222 |
+
"Background Consistency":95.3,
|
| 223 |
+
"Motion Smoothness":99.5,
|
| 224 |
+
"Aesthetic Quality":52.1,
|
| 225 |
+
"Image Quality":65.2,
|
| 226 |
+
"Overall Consistency":21.5,
|
| 227 |
+
"I2V Subject":98.6,
|
| 228 |
+
"I2V Background":97.6,
|
| 229 |
+
"params":null,
|
| 230 |
+
"activate_params":null
|
| 231 |
+
},
|
| 232 |
+
{
|
| 233 |
+
"model":"MAGI\/MAGI-1-4.5B",
|
| 234 |
+
"url":"https:\/\/huggingface.co\/sand-ai\/MAGI-1",
|
| 235 |
+
"Overall":76.9,
|
| 236 |
+
"Domain Score":77.4,
|
| 237 |
+
"Quality Score":76.3,
|
| 238 |
+
"Common Sense":87.5,
|
| 239 |
+
"AV":56.3,
|
| 240 |
+
"Robot":71.6,
|
| 241 |
+
"Industry":79.8,
|
| 242 |
+
"Human":76.0,
|
| 243 |
+
"Physics":88.9,
|
| 244 |
+
"Subject Consistency":92.1,
|
| 245 |
+
"Background Consistency":93.3,
|
| 246 |
+
"Motion Smoothness":99.0,
|
| 247 |
+
"Aesthetic Quality":50.4,
|
| 248 |
+
"Image Quality":61.8,
|
| 249 |
+
"Overall Consistency":21.6,
|
| 250 |
+
"I2V Subject":94.5,
|
| 251 |
+
"I2V Background":98.1,
|
| 252 |
+
"params":4.5,
|
| 253 |
+
"activate_params":4.5
|
| 254 |
+
},
|
| 255 |
+
{
|
| 256 |
+
"model":"Lightricks\/LTX-Video-2B",
|
| 257 |
+
"url":"https:\/\/huggingface.co\/Lightricks\/LTX-Video",
|
| 258 |
+
"Overall":76.9,
|
| 259 |
+
"Domain Score":76.6,
|
| 260 |
+
"Quality Score":77.1,
|
| 261 |
+
"Common Sense":87.3,
|
| 262 |
+
"AV":53.6,
|
| 263 |
+
"Robot":67.1,
|
| 264 |
+
"Industry":81.5,
|
| 265 |
+
"Human":77.1,
|
| 266 |
+
"Physics":87.6,
|
| 267 |
+
"Subject Consistency":89.2,
|
| 268 |
+
"Background Consistency":92.7,
|
| 269 |
+
"Motion Smoothness":98.7,
|
| 270 |
+
"Aesthetic Quality":53.2,
|
| 271 |
+
"Image Quality":71.3,
|
| 272 |
+
"Overall Consistency":21.1,
|
| 273 |
+
"I2V Subject":95.0,
|
| 274 |
+
"I2V Background":95.9,
|
| 275 |
+
"params":2.0,
|
| 276 |
+
"activate_params":2.0
|
| 277 |
+
},
|
| 278 |
+
{
|
| 279 |
+
"model":"Doubiiu\/DynamiCrafter_1024",
|
| 280 |
+
"url":"https:\/\/huggingface.co\/Doubiiu\/DynamiCrafter_1024",
|
| 281 |
+
"Overall":69.7,
|
| 282 |
+
"Domain Score":65.6,
|
| 283 |
+
"Quality Score":73.7,
|
| 284 |
+
"Common Sense":75.2,
|
| 285 |
+
"AV":43.4,
|
| 286 |
+
"Robot":55.0,
|
| 287 |
+
"Industry":72.5,
|
| 288 |
+
"Human":64.1,
|
| 289 |
+
"Physics":83.8,
|
| 290 |
+
"Subject Consistency":91.1,
|
| 291 |
+
"Background Consistency":92.5,
|
| 292 |
+
"Motion Smoothness":94.9,
|
| 293 |
+
"Aesthetic Quality":51.5,
|
| 294 |
+
"Image Quality":68.0,
|
| 295 |
+
"Overall Consistency":21.2,
|
| 296 |
+
"I2V Subject":84.5,
|
| 297 |
+
"I2V Background":86.2,
|
| 298 |
+
"params":null,
|
| 299 |
+
"activate_params":null
|
| 300 |
+
}
|
| 301 |
+
]
|
data/reason-leaderboard.csv
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
model,Overall,Common Sense,Embodied Reasoning,Space,Time,Physics,BridgeData V2,RoboVQA,RoboFail,Agibot,HoloAssist,AV,params,activate_params
|
| 2 |
+
GPT-5,70.0,72.7,67.4,67.5,72.8,74.3,53.0,90.9,68.0,55.0,73.0,62.0,,
|
| 3 |
+
Qwen/Qwen3-VL-235B-A22B-Instruct,64.8,65.2,64.4,56.2,69.8,62.4,42.0,93.6,71.0,45.0,76.0,56.0,235.0,22.0
|
| 4 |
+
Qwen/Qwen3-VL-30B-A3B-Instruct,60.6,59.9,61.3,52.5,62.1,59.7,36.0,89.1,67.0,43.0,81.0,49.0,30.0,3.0
|
| 5 |
+
Qwen/Qwen2.5-VL-72B-Instruct,56.8,57.9,55.7,56.2,62.8,52.2,35.0,90.9,73.0,35.0,58.0,39.0,72.0,72.0
|
| 6 |
+
OpenGVLab/InternVL3_5-38B,55.8,55.8,55.7,57.5,60.4,49.1,36.0,81.8,67.0,44.0,71.0,32.0,38.0,38.0
|
| 7 |
+
nvidia/Cosmos-Reason1-7B,54.3,50.7,57.9,57.5,53.7,44.2,41.0,91.8,65.0,42.0,57.0,47.0,7.0,7.0
|
| 8 |
+
GPT-4o,53.7,56.3,51.1,55.0,55.0,58.4,40.0,56.4,65.0,37.0,65.0,43.0,,
|
| 9 |
+
Qwen/Qwen2.5-VL-32B-Instruct,51.9,53.8,50.0,50.0,61.1,45.6,32.0,90.0,52.0,34.0,55.0,33.0,32.0,32.0
|
| 10 |
+
OpenGVLab/InternVL3_5-8B,50.5,50.5,50.5,48.8,54.7,45.6,32.0,77.3,66.0,38.0,49.0,38.0,8.0,8.0
|
| 11 |
+
Qwen/Qwen2.5-VL-7B-Instruct,50.3,47.7,53.0,47.5,55.4,37.6,33.0,83.6,62.0,44.0,47.0,45.0,7.0,7.0
|
| 12 |
+
OpenGVLab/InternVL3_5-14B,49.7,50.3,49.0,52.5,52.0,47.3,26.0,80.0,67.0,28.0,54.0,36.0,14.0,14.0
|
| 13 |
+
OpenGVLab/InternVL3_5-30B-A3B,49.5,49.5,49.5,47.5,54.4,43.8,37.0,78.2,60.0,27.0,55.0,37.0,30.0,3.0
|
| 14 |
+
Qwen/Qwen2.5-VL-3B-Instruct,48.1,47.4,48.9,47.5,50.7,42.9,31.0,82.7,63.0,36.0,48.0,29.0,3.0,3.0
|
| 15 |
+
zai-org/GLM-4.5V,45.5,46.0,44.9,46.2,50.7,39.8,26.0,83.6,69.0,25.0,24.0,38.0,,
|
inspect_gradio.py
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import inspect
|
| 3 |
+
|
| 4 |
+
with open("signature.txt", "w") as f:
|
| 5 |
+
f.write(str(inspect.signature(gr.Dataframe.__init__)))
|
requirements.txt
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
pandas
|
signature.txt
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
(self, value: 'pd.DataFrame | Styler | np.ndarray | pl.DataFrame | list | list[list] | dict | str | Callable | None' = None, *, headers: 'list[str] | None' = None, row_count: 'int | None' = None, row_limits: 'tuple[int | None, int | None] | None' = None, col_count: 'None' = None, column_count: 'int | None' = None, column_limits: 'tuple[int | None, int | None] | None' = None, datatype: "Literal['str', 'number', 'bool', 'date', 'markdown', 'html', 'image', 'auto'] | Sequence[Literal['str', 'number', 'bool', 'date', 'markdown', 'html']]" = 'str', type: "Literal['pandas', 'numpy', 'array', 'polars']" = 'pandas', latex_delimiters: 'list[dict[str, str | bool]] | None' = None, label: 'str | I18nData | None' = None, show_label: 'bool | None' = None, every: 'Timer | float | None' = None, inputs: 'Component | Sequence[Component] | set[Component] | None' = None, max_height: 'int | str' = 500, scale: 'int | None' = None, min_width: 'int' = 160, interactive: 'bool | None' = None, visible: "bool | Literal['hidden']" = True, elem_id: 'str | None' = None, elem_classes: 'list[str] | str | None' = None, render: 'bool' = True, key: 'int | str | tuple[int | str, ...] | None' = None, preserved_by_key: 'list[str] | str | None' = 'value', wrap: 'bool' = False, line_breaks: 'bool' = True, column_widths: 'list[str | int] | None' = None, buttons: "list[Literal['fullscreen', 'copy']] | None" = None, show_row_numbers: 'bool' = False, max_chars: 'int | None' = None, show_search: "Literal['none', 'search', 'filter']" = 'none', pinned_columns: 'int | None' = None, static_columns: 'list[int] | None' = None)
|