Spaces:
Build error
Build error
| import gradio as gr | |
| import numpy as np | |
| from matplotlib import pyplot as plt | |
| from sklearn import linear_model, datasets | |
| theme = gr.themes.Monochrome( | |
| primary_hue="indigo", | |
| secondary_hue="blue", | |
| neutral_hue="slate", | |
| ) | |
| model_card = f""" | |
| ## Description | |
| **Random sample consensus (RANSAC)** is a method to estimate a mathematical model from a set of observed data that may have some wrong information. | |
| The number of times it tries affects how likely it is to get a good answer. **RANSAC** is commonly used in photogrammetry to solve problems with linear or non-linear regression. | |
| It works by separating the input data into two groups: inliers (which may have some noise) and outliers (which are wrong data). It estimates the model only using the inliers. | |
| In this demo, a simulation regression dataset with noise is created, and then compare the results of fitting data in **Linear model** and **RANSAC**. | |
| You can play around with different ``number of samples`` and ``number of outliers`` to see the effect | |
| ## Dataset | |
| Simulation dataset | |
| """ | |
| def do_train(n_samples, n_outliers): | |
| X, y, coef = datasets.make_regression( | |
| n_samples=n_samples, | |
| n_features=1, | |
| n_informative=1, | |
| noise=10, | |
| coef=True, | |
| random_state=0, | |
| ) | |
| # Add outlier data | |
| np.random.seed(0) | |
| X[:n_outliers] = 3 + 0.5 * np.random.normal(size=(n_outliers, 1)) | |
| y[:n_outliers] = -3 + 10 * np.random.normal(size=n_outliers) | |
| # Fit line using all data | |
| lr = linear_model.LinearRegression() | |
| lr.fit(X, y) | |
| # Robustly fit linear model with RANSAC algorithm | |
| ransac = linear_model.RANSACRegressor() | |
| ransac.fit(X, y) | |
| inlier_mask = ransac.inlier_mask_ | |
| outlier_mask = np.logical_not(inlier_mask) | |
| # Predict data of estimated models | |
| line_X = np.arange(X.min(), X.max())[:, np.newaxis] | |
| line_y = lr.predict(line_X) | |
| line_y_ransac = ransac.predict(line_X) | |
| text = f"True coefficients: {coef:.4f}.\nLinear regression coefficients: {lr.coef_[0]:.4f}.\nRANSAC coefficients: {ransac.estimator_.coef_[0]:.4f}." | |
| fig, axes = plt.subplots() | |
| axes.scatter( | |
| X[inlier_mask], y[inlier_mask], color="yellowgreen", marker=".", label="Inliers" | |
| ) | |
| axes.scatter( | |
| X[outlier_mask], y[outlier_mask], color="gold", marker=".", label="Outliers" | |
| ) | |
| axes.plot(line_X, line_y, color="navy", linewidth=2, label="Linear regressor") | |
| axes.plot( | |
| line_X, | |
| line_y_ransac, | |
| color="cornflowerblue", | |
| linewidth=2, | |
| label="RANSAC regressor", | |
| ) | |
| axes.legend(loc="lower right") | |
| axes.set_xlabel("Input") | |
| axes.set_ylabel("Response") | |
| return fig, text | |
| with gr.Blocks(theme=theme) as demo: | |
| gr.Markdown(''' | |
| <div> | |
| <h1 style='text-align: center'>Robust linear model estimation using RANSAC</h1> | |
| </div> | |
| ''') | |
| gr.Markdown(model_card) | |
| gr.Markdown("Author: <a href=\"https://huggingface.co/vumichien\">Vu Minh Chien</a>. Based on the example from <a href=\"https://scikit-learn.org/stable/auto_examples/linear_model/plot_ransac.html#sphx-glr-auto-examples-linear-model-plot-ransac-py\">scikit-learn</a>") | |
| n_samples = gr.Slider(minimum=500, maximum=5000, step=500, value=500, label="Number of samples") | |
| n_outliers = gr.Slider(minimum=25, maximum=250, step=25, value=25, label="Number of outliers") | |
| with gr.Row(): | |
| with gr.Column(): | |
| plot = gr.Plot(label="Compare Linear regressor and RANSAC") | |
| with gr.Column(): | |
| results = gr.Textbox(label="Results") | |
| n_samples.change(fn=do_train, inputs=[n_samples, n_outliers], outputs=[plot, results]) | |
| n_outliers.change(fn=do_train, inputs=[n_samples, n_outliers], outputs=[plot, results]) | |
| demo.launch() |