Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,16 +2,13 @@ import numpy as np
|
|
| 2 |
import matplotlib.pyplot as plt
|
| 3 |
import matplotlib.animation as animation
|
| 4 |
from PIL import Image
|
| 5 |
-
import io
|
| 6 |
-
import os
|
| 7 |
import cv2
|
| 8 |
from math import tau
|
| 9 |
import gradio as gr
|
| 10 |
from concurrent.futures import ThreadPoolExecutor
|
| 11 |
import tempfile
|
| 12 |
|
| 13 |
-
def
|
| 14 |
-
# Convert PIL to OpenCV image
|
| 15 |
img = cv2.cvtColor(np.array(input_image), cv2.COLOR_RGB2BGR)
|
| 16 |
img = cv2.resize(img, (img_size, img_size), interpolation=cv2.INTER_AREA)
|
| 17 |
imgray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
|
@@ -19,17 +16,8 @@ def fourier_transform_drawing(input_image, frames, coefficients, img_size, blur_
|
|
| 19 |
_, thresh = cv2.threshold(blurred, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)
|
| 20 |
contours, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
| 21 |
|
| 22 |
-
# find the contour with the largest area
|
| 23 |
largest_contour_idx = np.argmax([cv2.contourArea(c) for c in contours])
|
| 24 |
largest_contour = contours[largest_contour_idx]
|
| 25 |
-
|
| 26 |
-
# def combine_all_contours(contours):
|
| 27 |
-
# combined_contour = np.array([], dtype=np.int32).reshape(0, 1, 2)
|
| 28 |
-
# for contour in contours:
|
| 29 |
-
# combined_contour = np.vstack((combined_contour, contour))
|
| 30 |
-
# return combined_contour
|
| 31 |
-
|
| 32 |
-
# largest_contour = combine_all_contours(contours)
|
| 33 |
verts = [tuple(coord) for coord in largest_contour.squeeze()]
|
| 34 |
xs, ys = np.asarray(list(zip(*verts)))
|
| 35 |
x_range, y_range = np.max(xs) - np.min(xs), np.max(ys) - np.min(ys)
|
|
@@ -37,23 +25,28 @@ def fourier_transform_drawing(input_image, frames, coefficients, img_size, blur_
|
|
| 37 |
xs = (xs - np.mean(xs)) * scale_x
|
| 38 |
ys = (-ys + np.mean(ys)) * scale_y
|
| 39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
t_list = np.linspace(0, tau, len(xs))
|
| 41 |
t_values = np.linspace(0, tau, num_points)
|
| 42 |
f_precomputed = np.interp(t_values, t_list, xs + 1j * ys)
|
| 43 |
|
| 44 |
-
def compute_cn(f_exp, n, t_values):
|
| 45 |
-
coef = np.trapz(f_exp * np.exp(-n * t_values * 1j), t_values) / tau
|
| 46 |
-
return coef
|
| 47 |
-
|
| 48 |
N = coefficients
|
| 49 |
indices = [0] + [j for i in range(1, N + 1) for j in (i, -i)]
|
| 50 |
-
|
| 51 |
with ThreadPoolExecutor(max_workers=8) as executor:
|
| 52 |
-
coefs = list(executor.map(lambda n:
|
|
|
|
|
|
|
| 53 |
|
|
|
|
| 54 |
fig, ax = plt.subplots()
|
| 55 |
-
circles = [ax.plot([], [], 'b-')[0] for _ in range(-
|
| 56 |
-
circle_lines = [ax.plot([], [], 'g-')[0] for _ in range(-
|
| 57 |
drawing, = ax.plot([], [], 'r-', linewidth=2)
|
| 58 |
|
| 59 |
ax.set_xlim(-desired_range, desired_range)
|
|
@@ -61,82 +54,75 @@ def fourier_transform_drawing(input_image, frames, coefficients, img_size, blur_
|
|
| 61 |
ax.set_axis_off()
|
| 62 |
ax.set_aspect('equal')
|
| 63 |
fig.set_size_inches(15, 15)
|
| 64 |
-
|
| 65 |
-
draw_x, draw_y = [], []
|
| 66 |
-
theta = np.linspace(0, tau, theta_points)
|
| 67 |
-
coefs_static = [(np.linalg.norm(c), fr) for c, fr in coefs]
|
| 68 |
-
last_image = None
|
| 69 |
-
|
| 70 |
-
# Initialize the background
|
| 71 |
fig.canvas.draw()
|
| 72 |
background = fig.canvas.copy_from_bbox(ax.bbox)
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
w, h = canvas.get_width_height()
|
| 103 |
-
buf = np.frombuffer(canvas.buffer_rgba(), dtype=np.uint8)
|
| 104 |
-
image = Image.fromarray(buf.reshape(h, w, 4), 'RGBA').convert('RGB')
|
| 105 |
-
last_image = image
|
| 106 |
-
|
| 107 |
-
yield (last_image, None)
|
| 108 |
-
|
| 109 |
-
# Generate and yield images for each frame
|
| 110 |
time = np.linspace(0, 1, num=frames)
|
| 111 |
-
|
| 112 |
-
|
| 113 |
|
| 114 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as temp_file:
|
| 116 |
-
anim = animation.FuncAnimation(fig, animate, frames=frames, interval=5, fargs=(coefs, np.linspace(0, 1, num=frames)))
|
| 117 |
anim.save(temp_file.name, fps=15)
|
|
|
|
| 118 |
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
gr.
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
)
|
| 138 |
|
| 139 |
if __name__ == "__main__":
|
| 140 |
-
|
| 141 |
interface.queue()
|
| 142 |
interface.launch()
|
|
|
|
| 2 |
import matplotlib.pyplot as plt
|
| 3 |
import matplotlib.animation as animation
|
| 4 |
from PIL import Image
|
|
|
|
|
|
|
| 5 |
import cv2
|
| 6 |
from math import tau
|
| 7 |
import gradio as gr
|
| 8 |
from concurrent.futures import ThreadPoolExecutor
|
| 9 |
import tempfile
|
| 10 |
|
| 11 |
+
def process_image(input_image, img_size, blur_kernel_size, desired_range):
|
|
|
|
| 12 |
img = cv2.cvtColor(np.array(input_image), cv2.COLOR_RGB2BGR)
|
| 13 |
img = cv2.resize(img, (img_size, img_size), interpolation=cv2.INTER_AREA)
|
| 14 |
imgray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
|
|
|
| 16 |
_, thresh = cv2.threshold(blurred, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)
|
| 17 |
contours, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
| 18 |
|
|
|
|
| 19 |
largest_contour_idx = np.argmax([cv2.contourArea(c) for c in contours])
|
| 20 |
largest_contour = contours[largest_contour_idx]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
verts = [tuple(coord) for coord in largest_contour.squeeze()]
|
| 22 |
xs, ys = np.asarray(list(zip(*verts)))
|
| 23 |
x_range, y_range = np.max(xs) - np.min(xs), np.max(ys) - np.min(ys)
|
|
|
|
| 25 |
xs = (xs - np.mean(xs)) * scale_x
|
| 26 |
ys = (-ys + np.mean(ys)) * scale_y
|
| 27 |
|
| 28 |
+
return xs, ys
|
| 29 |
+
|
| 30 |
+
def compute_cn(f_exp, n, t_values):
|
| 31 |
+
coef = np.trapz(f_exp * np.exp(-n * t_values * 1j), t_values) / tau
|
| 32 |
+
return coef
|
| 33 |
+
|
| 34 |
+
def calculate_fourier_coefficients(xs, ys, num_points, coefficients):
|
| 35 |
t_list = np.linspace(0, tau, len(xs))
|
| 36 |
t_values = np.linspace(0, tau, num_points)
|
| 37 |
f_precomputed = np.interp(t_values, t_list, xs + 1j * ys)
|
| 38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
N = coefficients
|
| 40 |
indices = [0] + [j for i in range(1, N + 1) for j in (i, -i)]
|
|
|
|
| 41 |
with ThreadPoolExecutor(max_workers=8) as executor:
|
| 42 |
+
coefs = list(executor.map(lambda n: compute_cn(f_precomputed, n, t_values), indices))
|
| 43 |
+
|
| 44 |
+
return coefs
|
| 45 |
|
| 46 |
+
def setup_animation_env(img_size, desired_range, coefficients):
|
| 47 |
fig, ax = plt.subplots()
|
| 48 |
+
circles = [ax.plot([], [], 'b-')[0] for _ in range(-coefficients, coefficients + 1)]
|
| 49 |
+
circle_lines = [ax.plot([], [], 'g-')[0] for _ in range(-coefficients, coefficients + 1)]
|
| 50 |
drawing, = ax.plot([], [], 'r-', linewidth=2)
|
| 51 |
|
| 52 |
ax.set_xlim(-desired_range, desired_range)
|
|
|
|
| 54 |
ax.set_axis_off()
|
| 55 |
ax.set_aspect('equal')
|
| 56 |
fig.set_size_inches(15, 15)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
fig.canvas.draw()
|
| 58 |
background = fig.canvas.copy_from_bbox(ax.bbox)
|
| 59 |
+
|
| 60 |
+
return fig, ax, background, circles, circle_lines, drawing
|
| 61 |
+
|
| 62 |
+
def animate(frame, coefs, time, fig, ax, background, circles, circle_lines, drawing, draw_x, draw_y, coefs_static, theta):
|
| 63 |
+
fig.canvas.restore_region(background)
|
| 64 |
+
|
| 65 |
+
center = (0, 0)
|
| 66 |
+
for idx, (r, fr) in enumerate(coefs_static):
|
| 67 |
+
c_dynamic = coefs[idx][0] * np.exp(1j * (fr * tau * time[frame]))
|
| 68 |
+
x, y = center[0] + r * np.cos(theta), center[1] + r * np.sin(theta)
|
| 69 |
+
circle_lines[idx].set_data([center[0], center[0] + np.real(c_dynamic)], [center[1], center[1] + np.imag(c_dynamic)])
|
| 70 |
+
circles[idx].set_data(x, y)
|
| 71 |
+
center = (center[0] + np.real(c_dynamic), center[1] + np.imag(c_dynamic))
|
| 72 |
+
|
| 73 |
+
draw_x.append(center[0])
|
| 74 |
+
draw_y.append(center[1])
|
| 75 |
+
drawing.set_data(draw_x, draw_y)
|
| 76 |
+
|
| 77 |
+
for circle in circles:
|
| 78 |
+
ax.draw_artist(circle)
|
| 79 |
+
for line in circle_lines:
|
| 80 |
+
ax.draw_artist(line)
|
| 81 |
+
ax.draw_artist(drawing)
|
| 82 |
+
|
| 83 |
+
fig.canvas.blit(ax.bbox)
|
| 84 |
+
|
| 85 |
+
def generate_animation(frames, coefs, img_size, desired_range, theta_points, coefficients):
|
| 86 |
+
fig, ax, background, circles, circle_lines, drawing = setup_animation_env(img_size, desired_range, coefficients)
|
| 87 |
+
coefs_static = [(np.linalg.norm(c), fr) for c, fr in coefs]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
time = np.linspace(0, 1, num=frames)
|
| 89 |
+
theta = np.linspace(0, tau, theta_points)
|
| 90 |
+
draw_x, draw_y = [], []
|
| 91 |
|
| 92 |
+
anim = animation.FuncAnimation(fig, animate, frames=frames, interval=5, fargs=(coefs, time, fig, ax, background, circles, circle_lines, drawing, draw_x, draw_y, coefs_static, theta))
|
| 93 |
+
|
| 94 |
+
return anim
|
| 95 |
+
|
| 96 |
+
def fourier_transform_drawing(input_image, frames, coefficients, img_size, blur_kernel_size, desired_range, num_points, theta_points):
|
| 97 |
+
xs, ys = process_image(input_image, img_size, blur_kernel_size, desired_range)
|
| 98 |
+
coefs = calculate_fourier_coefficients(xs, ys, num_points, coefficients)
|
| 99 |
+
anim = generate_animation(frames, coefs, img_size, desired_range, theta_points, coefficients)
|
| 100 |
+
|
| 101 |
+
# Saving the animation
|
| 102 |
with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as temp_file:
|
|
|
|
| 103 |
anim.save(temp_file.name, fps=15)
|
| 104 |
+
return Image.fromarray(np.zeros((img_size, img_size), dtype=np.uint8)), temp_file.name
|
| 105 |
|
| 106 |
+
def setup_gradio_interface():
|
| 107 |
+
interface = gr.Interface(
|
| 108 |
+
fn=fourier_transform_drawing,
|
| 109 |
+
inputs=[
|
| 110 |
+
gr.Image(label="Input Image", sources=['upload'], type="pil"),
|
| 111 |
+
gr.Slider(minimum=5, maximum=500, value=100, label="Number of Frames"),
|
| 112 |
+
gr.Slider(minimum=1, maximum=500, value=50, label="Number of Coefficients"),
|
| 113 |
+
gr.Number(value=224, label="Image Size (px)", precision=0),
|
| 114 |
+
gr.Slider(minimum=3, maximum=11, step=2, value=5, label="Blur Kernel Size (odd number)"),
|
| 115 |
+
gr.Number(value=400, label="Desired Range for Scaling", precision=0),
|
| 116 |
+
gr.Number(value=1000, label="Number of Points for Integration", precision=0),
|
| 117 |
+
gr.Slider(minimum=50, maximum=500, value=80, label="Theta Points for Animation")
|
| 118 |
+
],
|
| 119 |
+
outputs=["image", gr.Video()],
|
| 120 |
+
title="Fourier Transform Drawing",
|
| 121 |
+
description="Upload an image and generate a Fourier Transform drawing animation."
|
| 122 |
+
)
|
| 123 |
+
return interface
|
|
|
|
| 124 |
|
| 125 |
if __name__ == "__main__":
|
| 126 |
+
interface = setup_gradio_interface()
|
| 127 |
interface.queue()
|
| 128 |
interface.launch()
|