Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,6 +2,7 @@ import spaces
|
|
| 2 |
|
| 3 |
import torch
|
| 4 |
import torchvision.transforms.functional as TF
|
|
|
|
| 5 |
import numpy as np
|
| 6 |
import random
|
| 7 |
import os
|
|
@@ -21,6 +22,10 @@ from aspect_ratio_template import aspect_ratios
|
|
| 21 |
|
| 22 |
# global variable
|
| 23 |
base_model_path = 'SG161222/RealVisXL_V5.0'
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
face_detector = FaceAnalysis2(providers=['CPUExecutionProvider', 'CUDAExecutionProvider'], allowed_modules=['detection', 'recognition'])
|
| 25 |
face_detector.prepare(ctx_id=0, det_size=(640, 640))
|
| 26 |
|
|
@@ -64,6 +69,11 @@ pipe = PhotoMakerStableDiffusionXLAdapterPipeline.from_pretrained(
|
|
| 64 |
variant="fp16",
|
| 65 |
).to(device)
|
| 66 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
pipe.load_photomaker_adapter(
|
| 68 |
os.path.dirname(photomaker_ckpt),
|
| 69 |
subfolder="",
|
|
@@ -78,6 +88,11 @@ pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
|
|
| 78 |
pipe.fuse_lora()
|
| 79 |
pipe.to(device)
|
| 80 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
|
| 82 |
@spaces.GPU(duration=120)
|
| 83 |
def generate_image(
|
|
@@ -97,82 +112,85 @@ def generate_image(
|
|
| 97 |
adapter_conditioning_factor,
|
| 98 |
progress=gr.Progress(track_tqdm=True)
|
| 99 |
):
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
image_token_id = pipe.tokenizer.convert_tokens_to_ids(pipe.trigger_word)
|
| 115 |
-
input_ids = pipe.tokenizer.encode(prompt)
|
| 116 |
-
if image_token_id not in input_ids:
|
| 117 |
-
raise gr.Error(f"Cannot find the trigger word '{pipe.trigger_word}' in text prompt! Please refer to step 2οΈβ£")
|
| 118 |
-
|
| 119 |
-
if input_ids.count(image_token_id) > 1:
|
| 120 |
-
raise gr.Error(f"Cannot use multiple trigger words '{pipe.trigger_word}' in text prompt!")
|
| 121 |
-
|
| 122 |
-
# determine output dimensions by the aspect ratio
|
| 123 |
-
output_w, output_h = aspect_ratios[aspect_ratio_name]
|
| 124 |
-
print(f"[Debug] Generate image using aspect ratio [{aspect_ratio_name}] => {output_w} x {output_h}")
|
| 125 |
-
|
| 126 |
-
# apply the style template
|
| 127 |
-
prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt)
|
| 128 |
-
|
| 129 |
-
if upload_images is None:
|
| 130 |
-
raise gr.Error(f"Cannot find any input face image! Please refer to step 1οΈβ£")
|
| 131 |
-
|
| 132 |
-
input_id_images = []
|
| 133 |
-
for img in upload_images:
|
| 134 |
-
input_id_images.append(load_image(img))
|
| 135 |
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
if
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 147 |
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
adapter_conditioning_factor=adapter_conditioning_factor,
|
| 174 |
-
).images
|
| 175 |
-
return images, gr.update(visible=True)
|
| 176 |
|
| 177 |
def swap_to_gallery(images):
|
| 178 |
return gr.update(value=images, visible=True), gr.update(visible=True), gr.update(visible=False)
|
|
|
|
| 2 |
|
| 3 |
import torch
|
| 4 |
import torchvision.transforms.functional as TF
|
| 5 |
+
import tomesd
|
| 6 |
import numpy as np
|
| 7 |
import random
|
| 8 |
import os
|
|
|
|
| 22 |
|
| 23 |
# global variable
|
| 24 |
base_model_path = 'SG161222/RealVisXL_V5.0'
|
| 25 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
| 26 |
+
torch.backends.cudnn.allow_tf32 = True
|
| 27 |
+
torch.backends.cudnn.benchmark = True
|
| 28 |
+
torch.set_grad_enabled(False)
|
| 29 |
face_detector = FaceAnalysis2(providers=['CPUExecutionProvider', 'CUDAExecutionProvider'], allowed_modules=['detection', 'recognition'])
|
| 30 |
face_detector.prepare(ctx_id=0, det_size=(640, 640))
|
| 31 |
|
|
|
|
| 69 |
variant="fp16",
|
| 70 |
).to(device)
|
| 71 |
|
| 72 |
+
pipe.unet = pipe.unet.to(device=device, dtype=torch_dtype)
|
| 73 |
+
pipe.text_encoder = pipe.text_encoder.to(device=device, dtype=torch_dtype)
|
| 74 |
+
pipe.text_encoder_2 = pipe.text_encoder_2.to(device=device, dtype=torch_dtype)
|
| 75 |
+
pipe.vae = pipe.vae.to(device=device, dtype=torch_dtype)
|
| 76 |
+
|
| 77 |
pipe.load_photomaker_adapter(
|
| 78 |
os.path.dirname(photomaker_ckpt),
|
| 79 |
subfolder="",
|
|
|
|
| 88 |
pipe.fuse_lora()
|
| 89 |
pipe.to(device)
|
| 90 |
|
| 91 |
+
pipe.enable_vae_slicing()
|
| 92 |
+
pipe.enable_vae_tiling()
|
| 93 |
+
pipe.enable_xformers_memory_efficient_attention()
|
| 94 |
+
|
| 95 |
+
torch.cuda.empty_cache()
|
| 96 |
|
| 97 |
@spaces.GPU(duration=120)
|
| 98 |
def generate_image(
|
|
|
|
| 112 |
adapter_conditioning_factor,
|
| 113 |
progress=gr.Progress(track_tqdm=True)
|
| 114 |
):
|
| 115 |
+
with torch.inference_mode():
|
| 116 |
+
torch.cuda.empty_cache()
|
| 117 |
+
if use_doodle:
|
| 118 |
+
sketch_image = sketch_image["composite"]
|
| 119 |
+
r, g, b, a = sketch_image.split()
|
| 120 |
+
sketch_image = a.convert("RGB")
|
| 121 |
+
sketch_image = TF.to_tensor(sketch_image) > 0.5 # Inversion
|
| 122 |
+
sketch_image = TF.to_pil_image(sketch_image.to(torch.float32))
|
| 123 |
+
adapter_conditioning_scale = adapter_conditioning_scale
|
| 124 |
+
adapter_conditioning_factor = adapter_conditioning_factor
|
| 125 |
+
else:
|
| 126 |
+
adapter_conditioning_scale = 0.
|
| 127 |
+
adapter_conditioning_factor = 0.
|
| 128 |
+
sketch_image = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
|
| 130 |
+
# check the trigger word
|
| 131 |
+
image_token_id = pipe.tokenizer.convert_tokens_to_ids(pipe.trigger_word)
|
| 132 |
+
input_ids = pipe.tokenizer.encode(prompt)
|
| 133 |
+
if image_token_id not in input_ids:
|
| 134 |
+
raise gr.Error(f"Cannot find the trigger word '{pipe.trigger_word}' in text prompt! Please refer to step 2οΈβ£")
|
| 135 |
+
|
| 136 |
+
if input_ids.count(image_token_id) > 1:
|
| 137 |
+
raise gr.Error(f"Cannot use multiple trigger words '{pipe.trigger_word}' in text prompt!")
|
| 138 |
+
|
| 139 |
+
# determine output dimensions by the aspect ratio
|
| 140 |
+
output_w, output_h = aspect_ratios[aspect_ratio_name]
|
| 141 |
+
print(f"[Debug] Generate image using aspect ratio [{aspect_ratio_name}] => {output_w} x {output_h}")
|
| 142 |
+
|
| 143 |
+
# apply the style template
|
| 144 |
+
prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt)
|
| 145 |
+
|
| 146 |
+
if upload_images is None:
|
| 147 |
+
raise gr.Error(f"Cannot find any input face image! Please refer to step 1οΈβ£")
|
| 148 |
+
|
| 149 |
+
input_id_images = []
|
| 150 |
+
for img in upload_images:
|
| 151 |
+
input_id_images.append(load_image(img))
|
| 152 |
+
|
| 153 |
+
id_embed_list = []
|
| 154 |
+
|
| 155 |
+
for img in input_id_images:
|
| 156 |
+
img = np.array(img)
|
| 157 |
+
img = img[:, :, ::-1]
|
| 158 |
+
faces = analyze_faces(face_detector, img)
|
| 159 |
+
if len(faces) > 0:
|
| 160 |
+
id_embed_list.append(torch.from_numpy((faces[0]['embedding'])))
|
| 161 |
+
|
| 162 |
+
if len(id_embed_list) == 0:
|
| 163 |
+
raise gr.Error(f"No face detected, please update the input face image(s)")
|
| 164 |
+
|
| 165 |
+
id_embeds = torch.stack(id_embed_list)
|
| 166 |
+
|
| 167 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
| 168 |
|
| 169 |
+
print("Start inference...")
|
| 170 |
+
print(f"[Debug] Seed: {seed}")
|
| 171 |
+
print(f"[Debug] Prompt: {prompt}, \n[Debug] Neg Prompt: {negative_prompt}")
|
| 172 |
+
start_merge_step = int(float(style_strength_ratio) / 100 * num_steps)
|
| 173 |
+
if start_merge_step > 30:
|
| 174 |
+
start_merge_step = 30
|
| 175 |
+
print(start_merge_step)
|
| 176 |
+
tomesd.apply_patch(pipe, ratio=0.5)
|
| 177 |
+
images = pipe(
|
| 178 |
+
prompt=prompt,
|
| 179 |
+
width=output_w,
|
| 180 |
+
height=output_h,
|
| 181 |
+
input_id_images=input_id_images,
|
| 182 |
+
negative_prompt=negative_prompt,
|
| 183 |
+
num_images_per_prompt=num_outputs,
|
| 184 |
+
num_inference_steps=num_steps,
|
| 185 |
+
start_merge_step=start_merge_step,
|
| 186 |
+
generator=generator,
|
| 187 |
+
guidance_scale=guidance_scale,
|
| 188 |
+
id_embeds=id_embeds,
|
| 189 |
+
image=sketch_image,
|
| 190 |
+
adapter_conditioning_scale=adapter_conditioning_scale,
|
| 191 |
+
adapter_conditioning_factor=adapter_conditioning_factor,
|
| 192 |
+
).images
|
| 193 |
+
return images, gr.update(visible=True)
|
|
|
|
|
|
|
|
|
|
| 194 |
|
| 195 |
def swap_to_gallery(images):
|
| 196 |
return gr.update(value=images, visible=True), gr.update(visible=True), gr.update(visible=False)
|