Spaces:
Paused
Paused
| #!/usr/bin/env python | |
| from __future__ import annotations | |
| import os | |
| import gradio as gr | |
| from inference_followyourpose import merge_config_then_run | |
| HF_TOKEN = os.getenv('HF_TOKEN') | |
| pipe = merge_config_then_run() | |
| with gr.Blocks(css='style.css') as demo: | |
| gr.HTML( | |
| """ | |
| <div style="text-align: center; max-width: 1200px; margin: 20px auto;"> | |
| <h1 style="font-weight: 900; font-size: 2rem; margin: 0rem"> | |
| 🕺🕺🕺 Follow Your Pose 💃💃💃 </font></center> <br> <center>Pose-Guided Text-to-Video Generation using Pose-Free Videos | |
| </h1> | |
| <h2 style="font-weight: 450; font-size: 1rem; margin: 0rem"> | |
| <a href="https://mayuelala.github.io/">Yue Ma*</a> | |
| <a href="https://github.com/YingqingHe">Yingqing He*</a> , <a href="http://vinthony.github.io/">Xiaodong Cun</a>, | |
| <a href="https://xinntao.github.io/"> Xintao Wang </a>, | |
| <a href="https://scholar.google.com/citations?user=4oXBp9UAAAAJ&hl=zh-CN">Ying Shan</a>, | |
| <a href="https://scholar.google.com/citations?user=Xrh1OIUAAAAJ&hl=zh-CN">Xiu Li</a>, | |
| <a href="http://cqf.io">Qifeng Chen</a> | |
| </h2> | |
| <h2 style="font-weight: 450; font-size: 1rem; margin: 0rem"> | |
| <span class="link-block"> | |
| [<a href="https://arxiv.org/abs/2304.01186" target="_blank" | |
| class="external-link "> | |
| <span class="icon"> | |
| <i class="ai ai-arxiv"></i> | |
| </span> | |
| <span>arXiv</span> | |
| </a>] | |
| </span> | |
| <!-- Github link --> | |
| <span class="link-block"> | |
| [<a href="https://github.com/mayuelala/FollowYourPose" target="_blank" | |
| class="external-link "> | |
| <span class="icon"> | |
| <i class="fab fa-github"></i> | |
| </span> | |
| <span>Code</span> | |
| </a>] | |
| </span> | |
| <!-- Github link --> | |
| <span class="link-block"> | |
| [<a href="https://follow-your-pose.github.io/" target="_blank" | |
| class="external-link "> | |
| <span class="icon"> | |
| <i class="fab fa-github"></i> | |
| </span> | |
| <span>Homepage</span> | |
| </a>] | |
| </span> | |
| </h2> | |
| <h2 style="font-weight: 450; font-size: 1rem; margin-top: 0.5rem; margin-bottom: 0.5rem"> | |
| TL;DR: We tune 2D stable-diffusion to generate the character videos from pose and text description. | |
| </h2> | |
| </div> | |
| """) | |
| gr.HTML(""" | |
| <p>Alternatively, try our GitHub <a href=https://github.com/mayuelala/FollowYourPose> code </a> on your GPU. | |
| </p>""") | |
| with gr.Row(): | |
| with gr.Column(): | |
| with gr.Accordion('Input Video', open=True): | |
| # user_input_video = gr.File(label='Input Source Video') | |
| user_input_video = gr.Video(label='Input Source Video', source='upload', type='numpy', format="mp4", visible=True).style(height="auto") | |
| with gr.Accordion('Temporal Crop offset and Sampling Stride', open=False): | |
| n_sample_frame = gr.Slider(label='Number of Frames', | |
| minimum=0, | |
| maximum=32, | |
| step=1, | |
| value=8) | |
| stride = gr.Slider(label='Temporal stride', | |
| minimum=0, | |
| maximum=20, | |
| step=1, | |
| value=1) | |
| start_sample_frame = gr.Number(label='Start frame in the video', | |
| value=0, | |
| precision=0) | |
| with gr.Accordion('Spatial Crop offset', open=False): | |
| left_crop = gr.Number(label='Left crop', | |
| value=0, | |
| precision=0) | |
| right_crop = gr.Number(label='Right crop', | |
| value=0, | |
| precision=0) | |
| top_crop = gr.Number(label='Top crop', | |
| value=0, | |
| precision=0) | |
| bottom_crop = gr.Number(label='Bottom crop', | |
| value=0, | |
| precision=0) | |
| offset_list = [ | |
| left_crop, | |
| right_crop, | |
| top_crop, | |
| bottom_crop, | |
| ] | |
| ImageSequenceDataset_list = [ | |
| start_sample_frame, | |
| n_sample_frame, | |
| stride | |
| ] + offset_list | |
| # model_id = gr.Dropdown( | |
| # label='Model ID', | |
| # choices=[ | |
| # 'CompVis/stable-diffusion-v1-4', | |
| # # add shape editing ckpt here | |
| # ], | |
| # value='CompVis/stable-diffusion-v1-4') | |
| with gr.Accordion('Text Prompt', open=True): | |
| target_prompt = gr.Textbox(label='Target Prompt', | |
| info='The simple background may achieve better results(e.g., "beach", "moon" prompt is better than "street" and "market")', | |
| max_lines=1, | |
| placeholder='Example: "Iron man on the beach"', | |
| value='Iron man on the beach') | |
| run_button = gr.Button('Generate') | |
| with gr.Column(): | |
| result = gr.Video(label='Result') | |
| # result.style(height=512, width=512) | |
| with gr.Accordion('DDIM Parameters', open=True): | |
| num_steps = gr.Slider(label='Number of Steps', | |
| info='larger value has better editing capacity, but takes more time and memory.', | |
| minimum=0, | |
| maximum=50, | |
| step=1, | |
| value=50) | |
| guidance_scale = gr.Slider(label='CFG Scale', | |
| minimum=0, | |
| maximum=50, | |
| step=0.1, | |
| value=12.5) | |
| with gr.Row(): | |
| from example import style_example | |
| examples = style_example | |
| inputs = [ | |
| user_input_video, | |
| target_prompt, | |
| num_steps, | |
| guidance_scale, | |
| *ImageSequenceDataset_list | |
| ] | |
| target_prompt.submit(fn=pipe.run, inputs=inputs, outputs=result) | |
| run_button.click(fn=pipe.run, inputs=inputs, outputs=result) | |
| demo.queue().launch() | |
| # demo.queue().launch(share=False, server_name='0.0.0.0', server_port=7890) |