Spaces:
Sleeping
Sleeping
adjusted embedding now to e5-base
Browse files- app/embed_documents.py +19 -12
- app/notebooks/embed_documents.ipynb +23 -36
- app/notebooks/embed_documents.py +0 -137
- app/notebooks/rag_original.py +1 -1
- app/rag.py +1 -1
app/embed_documents.py
CHANGED
|
@@ -6,6 +6,7 @@ from langchain_core.documents import Document
|
|
| 6 |
from langchain_qdrant import QdrantVectorStore
|
| 7 |
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
| 8 |
from langchain_huggingface import HuggingFaceEmbeddings
|
|
|
|
| 9 |
|
| 10 |
import os
|
| 11 |
from pathlib import Path
|
|
@@ -13,6 +14,7 @@ from uuid import uuid4
|
|
| 13 |
|
| 14 |
# %%
|
| 15 |
QDRANT_URL = os.getenv('QDRANT_URL')
|
|
|
|
| 16 |
|
| 17 |
# %%
|
| 18 |
FAQ_COLLECTION = "faqs"
|
|
@@ -23,12 +25,12 @@ SUPPORT_COLLECTION = "support"
|
|
| 23 |
PRODUCT_COLLECTION = "product"
|
| 24 |
|
| 25 |
# %%
|
| 26 |
-
client = QdrantClient(url=QDRANT_URL,
|
| 27 |
-
embedding_model = "intfloat/e5-
|
| 28 |
embeddings = HuggingFaceEmbeddings(model_name=embedding_model)
|
| 29 |
|
| 30 |
# %%
|
| 31 |
-
data_directory = Path("
|
| 32 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=512, chunk_overlap=64)
|
| 33 |
|
| 34 |
# %%
|
|
@@ -39,6 +41,7 @@ def delete_collection(collection_name):
|
|
| 39 |
print(f"Collection '{collection_name}' deleted.")
|
| 40 |
|
| 41 |
# %%
|
|
|
|
| 42 |
def create_collection(collection_name):
|
| 43 |
if not client.collection_exists(collection_name):
|
| 44 |
client.create_collection(
|
|
@@ -70,6 +73,17 @@ def load_documents_from_folder(folder_path):
|
|
| 70 |
'topic': topic}
|
| 71 |
)
|
| 72 |
documents.append(doc)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
return documents
|
| 74 |
|
| 75 |
# %%
|
|
@@ -105,7 +119,7 @@ for topic in sub_folders:
|
|
| 105 |
print('\n')
|
| 106 |
|
| 107 |
# %%
|
| 108 |
-
collection_name = 'wellness_docs'
|
| 109 |
delete_collection(collection_name)
|
| 110 |
create_collection(collection_name)
|
| 111 |
|
|
@@ -118,13 +132,6 @@ for topic in sub_folders:
|
|
| 118 |
if docs:
|
| 119 |
split_and_upload_to_qdrant(collection_name, docs)
|
| 120 |
|
| 121 |
-
print('\n')
|
| 122 |
-
|
| 123 |
-
# %%
|
| 124 |
-
print(client.get_collections())
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
# %%
|
| 128 |
-
|
| 129 |
|
| 130 |
|
|
|
|
| 6 |
from langchain_qdrant import QdrantVectorStore
|
| 7 |
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
| 8 |
from langchain_huggingface import HuggingFaceEmbeddings
|
| 9 |
+
from langchain_community.document_loaders import PyPDFLoader
|
| 10 |
|
| 11 |
import os
|
| 12 |
from pathlib import Path
|
|
|
|
| 14 |
|
| 15 |
# %%
|
| 16 |
QDRANT_URL = os.getenv('QDRANT_URL')
|
| 17 |
+
QDRANT_API_KEY = os.getenv('QDRANT_API_KEY')
|
| 18 |
|
| 19 |
# %%
|
| 20 |
FAQ_COLLECTION = "faqs"
|
|
|
|
| 25 |
PRODUCT_COLLECTION = "product"
|
| 26 |
|
| 27 |
# %%
|
| 28 |
+
client = QdrantClient(url=QDRANT_URL, api_key=QDRANT_API_KEY)
|
| 29 |
+
embedding_model = "intfloat/e5-base-v2"
|
| 30 |
embeddings = HuggingFaceEmbeddings(model_name=embedding_model)
|
| 31 |
|
| 32 |
# %%
|
| 33 |
+
data_directory = Path(__file__).parent / "data"
|
| 34 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=512, chunk_overlap=64)
|
| 35 |
|
| 36 |
# %%
|
|
|
|
| 41 |
print(f"Collection '{collection_name}' deleted.")
|
| 42 |
|
| 43 |
# %%
|
| 44 |
+
#Create Collection
|
| 45 |
def create_collection(collection_name):
|
| 46 |
if not client.collection_exists(collection_name):
|
| 47 |
client.create_collection(
|
|
|
|
| 73 |
'topic': topic}
|
| 74 |
)
|
| 75 |
documents.append(doc)
|
| 76 |
+
|
| 77 |
+
for file_path in folder_path.rglob("*.pdf"):
|
| 78 |
+
try:
|
| 79 |
+
loader = PyPDFLoader(file_path)
|
| 80 |
+
docs = loader.load()
|
| 81 |
+
for doc in docs:
|
| 82 |
+
doc.metadata["topic"] = file_path.parent.name
|
| 83 |
+
documents.extend(docs)
|
| 84 |
+
except Exception as e:
|
| 85 |
+
print(f"Failed to load PDF {file_path}: {e}")
|
| 86 |
+
|
| 87 |
return documents
|
| 88 |
|
| 89 |
# %%
|
|
|
|
| 119 |
print('\n')
|
| 120 |
|
| 121 |
# %%
|
| 122 |
+
"""collection_name = 'wellness_docs'
|
| 123 |
delete_collection(collection_name)
|
| 124 |
create_collection(collection_name)
|
| 125 |
|
|
|
|
| 132 |
if docs:
|
| 133 |
split_and_upload_to_qdrant(collection_name, docs)
|
| 134 |
|
| 135 |
+
print('\n')"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
|
| 137 |
|
app/notebooks/embed_documents.ipynb
CHANGED
|
@@ -10,7 +10,7 @@
|
|
| 10 |
"name": "stderr",
|
| 11 |
"output_type": "stream",
|
| 12 |
"text": [
|
| 13 |
-
"
|
| 14 |
" from .autonotebook import tqdm as notebook_tqdm\n"
|
| 15 |
]
|
| 16 |
}
|
|
@@ -64,7 +64,7 @@
|
|
| 64 |
"outputs": [],
|
| 65 |
"source": [
|
| 66 |
"client = QdrantClient(url=QDRANT_URL, api_key=QDRANT_API_KEY)\n",
|
| 67 |
-
"embedding_model = \"intfloat/e5-
|
| 68 |
"embeddings = HuggingFaceEmbeddings(model_name=embedding_model)"
|
| 69 |
]
|
| 70 |
},
|
|
@@ -105,7 +105,7 @@
|
|
| 105 |
" if not client.collection_exists(collection_name):\n",
|
| 106 |
" client.create_collection(\n",
|
| 107 |
" collection_name=collection_name,\n",
|
| 108 |
-
" vectors_config=VectorParams(size=
|
| 109 |
" )\n",
|
| 110 |
" print(f\"Created Collection: {collection_name}\")"
|
| 111 |
]
|
|
@@ -187,57 +187,44 @@
|
|
| 187 |
"Processing: blogs\n",
|
| 188 |
"Collection 'blogs' deleted.\n",
|
| 189 |
"Created Collection: blogs\n",
|
| 190 |
-
"Loaded 105 docs from
|
| 191 |
"Uploaded 1045 chunks to blogs\n",
|
| 192 |
"\n",
|
| 193 |
"\n",
|
| 194 |
-
"Processing:
|
| 195 |
-
"Collection '
|
| 196 |
-
"Created Collection:
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
{
|
| 200 |
-
"name": "stderr",
|
| 201 |
-
"output_type": "stream",
|
| 202 |
-
"text": [
|
| 203 |
-
"Ignoring wrong pointing object 6 0 (offset 0)\n"
|
| 204 |
-
]
|
| 205 |
-
},
|
| 206 |
-
{
|
| 207 |
-
"name": "stdout",
|
| 208 |
-
"output_type": "stream",
|
| 209 |
-
"text": [
|
| 210 |
-
"Loaded 3 docs from ../data/technology\n",
|
| 211 |
-
"Uploaded 11 chunks to technology\n",
|
| 212 |
-
"\n",
|
| 213 |
-
"\n",
|
| 214 |
-
"Processing: revolution\n",
|
| 215 |
-
"Collection 'revolution' deleted.\n",
|
| 216 |
-
"Created Collection: revolution\n",
|
| 217 |
-
"Loaded 274 docs from ../data/revolution\n",
|
| 218 |
-
"Uploaded 1415 chunks to revolution\n",
|
| 219 |
"\n",
|
| 220 |
"\n",
|
| 221 |
"Processing: product\n",
|
| 222 |
"Collection 'product' deleted.\n",
|
| 223 |
"Created Collection: product\n",
|
| 224 |
-
"Loaded 19 docs from
|
| 225 |
"Uploaded 132 chunks to product\n",
|
| 226 |
"\n",
|
| 227 |
"\n",
|
| 228 |
-
"Processing:
|
| 229 |
-
"Collection '
|
| 230 |
-
"Created Collection:
|
| 231 |
-
"Loaded 1 docs from
|
| 232 |
-
"Uploaded
|
| 233 |
"\n",
|
| 234 |
"\n",
|
| 235 |
"Processing: support\n",
|
| 236 |
"Collection 'support' deleted.\n",
|
| 237 |
"Created Collection: support\n",
|
| 238 |
-
"Loaded 2 docs from
|
| 239 |
"Uploaded 15 chunks to support\n",
|
| 240 |
"\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 241 |
"\n"
|
| 242 |
]
|
| 243 |
}
|
|
|
|
| 10 |
"name": "stderr",
|
| 11 |
"output_type": "stream",
|
| 12 |
"text": [
|
| 13 |
+
"c:\\Users\\vip11\\Documents\\Projects\\Auro_Chatbot\\auro_chatbot_backend\\.venv\\Lib\\site-packages\\tqdm\\auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
|
| 14 |
" from .autonotebook import tqdm as notebook_tqdm\n"
|
| 15 |
]
|
| 16 |
}
|
|
|
|
| 64 |
"outputs": [],
|
| 65 |
"source": [
|
| 66 |
"client = QdrantClient(url=QDRANT_URL, api_key=QDRANT_API_KEY)\n",
|
| 67 |
+
"embedding_model = \"intfloat/e5-base-v2\"\n",
|
| 68 |
"embeddings = HuggingFaceEmbeddings(model_name=embedding_model)"
|
| 69 |
]
|
| 70 |
},
|
|
|
|
| 105 |
" if not client.collection_exists(collection_name):\n",
|
| 106 |
" client.create_collection(\n",
|
| 107 |
" collection_name=collection_name,\n",
|
| 108 |
+
" vectors_config=VectorParams(size=768, distance=Distance.COSINE),\n",
|
| 109 |
" )\n",
|
| 110 |
" print(f\"Created Collection: {collection_name}\")"
|
| 111 |
]
|
|
|
|
| 187 |
"Processing: blogs\n",
|
| 188 |
"Collection 'blogs' deleted.\n",
|
| 189 |
"Created Collection: blogs\n",
|
| 190 |
+
"Loaded 105 docs from ..\\data\\blogs\n",
|
| 191 |
"Uploaded 1045 chunks to blogs\n",
|
| 192 |
"\n",
|
| 193 |
"\n",
|
| 194 |
+
"Processing: faqs\n",
|
| 195 |
+
"Collection 'faqs' deleted.\n",
|
| 196 |
+
"Created Collection: faqs\n",
|
| 197 |
+
"Loaded 1 docs from ..\\data\\faqs\n",
|
| 198 |
+
"Uploaded 14 chunks to faqs\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 199 |
"\n",
|
| 200 |
"\n",
|
| 201 |
"Processing: product\n",
|
| 202 |
"Collection 'product' deleted.\n",
|
| 203 |
"Created Collection: product\n",
|
| 204 |
+
"Loaded 19 docs from ..\\data\\product\n",
|
| 205 |
"Uploaded 132 chunks to product\n",
|
| 206 |
"\n",
|
| 207 |
"\n",
|
| 208 |
+
"Processing: revolution\n",
|
| 209 |
+
"Collection 'revolution' deleted.\n",
|
| 210 |
+
"Created Collection: revolution\n",
|
| 211 |
+
"Loaded 1 docs from ..\\data\\revolution\n",
|
| 212 |
+
"Uploaded 32 chunks to revolution\n",
|
| 213 |
"\n",
|
| 214 |
"\n",
|
| 215 |
"Processing: support\n",
|
| 216 |
"Collection 'support' deleted.\n",
|
| 217 |
"Created Collection: support\n",
|
| 218 |
+
"Loaded 2 docs from ..\\data\\support\n",
|
| 219 |
"Uploaded 15 chunks to support\n",
|
| 220 |
"\n",
|
| 221 |
+
"\n",
|
| 222 |
+
"Processing: technology\n",
|
| 223 |
+
"Collection 'technology' deleted.\n",
|
| 224 |
+
"Created Collection: technology\n",
|
| 225 |
+
"Loaded 1 docs from ..\\data\\technology\n",
|
| 226 |
+
"Uploaded 8 chunks to technology\n",
|
| 227 |
+
"\n",
|
| 228 |
"\n"
|
| 229 |
]
|
| 230 |
}
|
app/notebooks/embed_documents.py
DELETED
|
@@ -1,137 +0,0 @@
|
|
| 1 |
-
# %%
|
| 2 |
-
from qdrant_client import QdrantClient
|
| 3 |
-
from qdrant_client.models import VectorParams, Distance
|
| 4 |
-
|
| 5 |
-
from langchain_core.documents import Document
|
| 6 |
-
from langchain_qdrant import QdrantVectorStore
|
| 7 |
-
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
| 8 |
-
from langchain_huggingface import HuggingFaceEmbeddings
|
| 9 |
-
from langchain_community.document_loaders import PyPDFLoader
|
| 10 |
-
|
| 11 |
-
import os
|
| 12 |
-
from pathlib import Path
|
| 13 |
-
from uuid import uuid4
|
| 14 |
-
|
| 15 |
-
# %%
|
| 16 |
-
QDRANT_URL = os.getenv('QDRANT_URL')
|
| 17 |
-
QDRANT_API_KEY = os.getenv('QDRANT_API_KEY')
|
| 18 |
-
|
| 19 |
-
# %%
|
| 20 |
-
FAQ_COLLECTION = "faqs"
|
| 21 |
-
BLOGS_COLLECTION = "blogs"
|
| 22 |
-
TECHNOLOGY_COLLECTION = "technology"
|
| 23 |
-
REVOLUTION_COLLECTION = "revolution"
|
| 24 |
-
SUPPORT_COLLECTION = "support"
|
| 25 |
-
PRODUCT_COLLECTION = "product"
|
| 26 |
-
|
| 27 |
-
# %%
|
| 28 |
-
client = QdrantClient(url=QDRANT_URL, api_key=QDRANT_API_KEY)
|
| 29 |
-
embedding_model = "intfloat/e5-large-v2"
|
| 30 |
-
embeddings = HuggingFaceEmbeddings(model_name=embedding_model)
|
| 31 |
-
|
| 32 |
-
# %%
|
| 33 |
-
data_directory = Path("../data")
|
| 34 |
-
text_splitter = RecursiveCharacterTextSplitter(chunk_size=512, chunk_overlap=64)
|
| 35 |
-
|
| 36 |
-
# %%
|
| 37 |
-
#Delete Collection
|
| 38 |
-
def delete_collection(collection_name):
|
| 39 |
-
if client.collection_exists(collection_name):
|
| 40 |
-
client.delete_collection(collection_name)
|
| 41 |
-
print(f"Collection '{collection_name}' deleted.")
|
| 42 |
-
|
| 43 |
-
# %%
|
| 44 |
-
#Create Collection
|
| 45 |
-
def create_collection(collection_name):
|
| 46 |
-
if not client.collection_exists(collection_name):
|
| 47 |
-
client.create_collection(
|
| 48 |
-
collection_name=collection_name,
|
| 49 |
-
vectors_config=VectorParams(size=1024, distance=Distance.COSINE),
|
| 50 |
-
)
|
| 51 |
-
print(f"Created Collection: {collection_name}")
|
| 52 |
-
|
| 53 |
-
# %%
|
| 54 |
-
def load_documents_from_folder(folder_path):
|
| 55 |
-
documents = []
|
| 56 |
-
|
| 57 |
-
for file_path in folder_path.rglob("*.txt"):
|
| 58 |
-
with open(file_path, 'r', encoding='utf-8') as f:
|
| 59 |
-
lines = f.readlines()
|
| 60 |
-
|
| 61 |
-
if not lines:
|
| 62 |
-
print(f"{file_path} is empty")
|
| 63 |
-
continue
|
| 64 |
-
|
| 65 |
-
source_url = lines[0].replace("Source URL:","").strip()
|
| 66 |
-
content = "".join(lines[1:]).strip()
|
| 67 |
-
topic = file_path.parent.name
|
| 68 |
-
|
| 69 |
-
if content:
|
| 70 |
-
doc = Document(
|
| 71 |
-
page_content=content,
|
| 72 |
-
metadata={'source': source_url,
|
| 73 |
-
'topic': topic}
|
| 74 |
-
)
|
| 75 |
-
documents.append(doc)
|
| 76 |
-
|
| 77 |
-
for file_path in folder_path.rglob("*.pdf"):
|
| 78 |
-
try:
|
| 79 |
-
loader = PyPDFLoader(file_path)
|
| 80 |
-
docs = loader.load()
|
| 81 |
-
for doc in docs:
|
| 82 |
-
doc.metadata["topic"] = file_path.parent.name
|
| 83 |
-
documents.extend(docs)
|
| 84 |
-
except Exception as e:
|
| 85 |
-
print(f"Failed to load PDF {file_path}: {e}")
|
| 86 |
-
|
| 87 |
-
return documents
|
| 88 |
-
|
| 89 |
-
# %%
|
| 90 |
-
def split_and_upload_to_qdrant(collection_name, documents):
|
| 91 |
-
splits = text_splitter.split_documents(documents)
|
| 92 |
-
uuids = [str(uuid4()) for _ in range(len(splits))]
|
| 93 |
-
|
| 94 |
-
vector_store = QdrantVectorStore(
|
| 95 |
-
client=client,
|
| 96 |
-
collection_name=collection_name,
|
| 97 |
-
embedding=embeddings
|
| 98 |
-
)
|
| 99 |
-
|
| 100 |
-
vector_store.add_documents(documents=splits, ids=uuids)
|
| 101 |
-
print(f"Uploaded {len(splits)} chunks to {collection_name}")
|
| 102 |
-
|
| 103 |
-
# %%
|
| 104 |
-
sub_folders = [sub_folder for sub_folder in data_directory.iterdir() if sub_folder.is_dir()]
|
| 105 |
-
|
| 106 |
-
for topic in sub_folders:
|
| 107 |
-
collection_name = topic.name
|
| 108 |
-
print(f"Processing: {topic.name}")
|
| 109 |
-
|
| 110 |
-
delete_collection(collection_name)
|
| 111 |
-
create_collection(collection_name)
|
| 112 |
-
|
| 113 |
-
docs = load_documents_from_folder(topic)
|
| 114 |
-
print(f"Loaded {len(docs)} docs from {topic}")
|
| 115 |
-
|
| 116 |
-
if docs:
|
| 117 |
-
split_and_upload_to_qdrant(collection_name, docs)
|
| 118 |
-
|
| 119 |
-
print('\n')
|
| 120 |
-
|
| 121 |
-
# %%
|
| 122 |
-
"""collection_name = 'wellness_docs'
|
| 123 |
-
delete_collection(collection_name)
|
| 124 |
-
create_collection(collection_name)
|
| 125 |
-
|
| 126 |
-
sub_folders = [sub_folder for sub_folder in data_directory.iterdir() if sub_folder.is_dir()]
|
| 127 |
-
for topic in sub_folders:
|
| 128 |
-
print(f"Processing: {topic.name}")
|
| 129 |
-
docs = load_documents_from_folder(topic)
|
| 130 |
-
print(f"Loaded {len(docs)} docs from {topic}")
|
| 131 |
-
|
| 132 |
-
if docs:
|
| 133 |
-
split_and_upload_to_qdrant(collection_name, docs)
|
| 134 |
-
|
| 135 |
-
print('\n')"""
|
| 136 |
-
|
| 137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app/notebooks/rag_original.py
CHANGED
|
@@ -23,7 +23,7 @@ console = Console()
|
|
| 23 |
|
| 24 |
client = QdrantClient(url="localhost", port=6333)
|
| 25 |
COLLECTION_NAME = "wellness_docs"
|
| 26 |
-
embedding_model = "intfloat/e5-
|
| 27 |
|
| 28 |
|
| 29 |
embeddings = HuggingFaceEmbeddings(model_name=embedding_model)
|
|
|
|
| 23 |
|
| 24 |
client = QdrantClient(url="localhost", port=6333)
|
| 25 |
COLLECTION_NAME = "wellness_docs"
|
| 26 |
+
embedding_model = "intfloat/e5-base-v2"
|
| 27 |
|
| 28 |
|
| 29 |
embeddings = HuggingFaceEmbeddings(model_name=embedding_model)
|
app/rag.py
CHANGED
|
@@ -27,7 +27,7 @@ session_histories: dict[str, list] = {}
|
|
| 27 |
LLM_MODEL = "mistral-medium-latest"
|
| 28 |
OPENROUTER_API_KEY = os.getenv('OPENROUTER_API_KEY')
|
| 29 |
COLLECTION_NAME = "wellness_docs"
|
| 30 |
-
EMBEDDING_MODEL = "intfloat/e5-
|
| 31 |
QDRANT_URL = os.getenv('QDRANT_URL')
|
| 32 |
QDRANT_API_KEY = os.getenv('QDRANT_API_KEY')
|
| 33 |
SUPABASE_URL = os.getenv('SUPABASE_URL')
|
|
|
|
| 27 |
LLM_MODEL = "mistral-medium-latest"
|
| 28 |
OPENROUTER_API_KEY = os.getenv('OPENROUTER_API_KEY')
|
| 29 |
COLLECTION_NAME = "wellness_docs"
|
| 30 |
+
EMBEDDING_MODEL = "intfloat/e5-base-v2"
|
| 31 |
QDRANT_URL = os.getenv('QDRANT_URL')
|
| 32 |
QDRANT_API_KEY = os.getenv('QDRANT_API_KEY')
|
| 33 |
SUPABASE_URL = os.getenv('SUPABASE_URL')
|