Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,222 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# app.py
|
| 2 |
+
"""
|
| 3 |
+
FastAPI app to inspect Hugging Face transformer model "sizing":
|
| 4 |
+
- total # parameters
|
| 5 |
+
- trainable # parameters
|
| 6 |
+
- approximate memory footprint in bytes (and human-readable)
|
| 7 |
+
- saved disk size (by saving model files temporarily)
|
| 8 |
+
- model config summary (hidden layers, hidden_size if available)
|
| 9 |
+
|
| 10 |
+
Usage:
|
| 11 |
+
pip install fastapi "uvicorn[standard]" transformers torch
|
| 12 |
+
uvicorn app:app --reload
|
| 13 |
+
|
| 14 |
+
Endpoints:
|
| 15 |
+
GET / -> simple HTML UI (submit model id, e.g. "bert-base-uncased")
|
| 16 |
+
GET /inspect?model=... -> JSON with sizing info
|
| 17 |
+
"""
|
| 18 |
+
|
| 19 |
+
import os
|
| 20 |
+
import shutil
|
| 21 |
+
import tempfile
|
| 22 |
+
import math
|
| 23 |
+
from typing import Optional
|
| 24 |
+
|
| 25 |
+
from fastapi import FastAPI, Query, HTTPException
|
| 26 |
+
from fastapi.responses import HTMLResponse, JSONResponse
|
| 27 |
+
from pydantic import BaseModel
|
| 28 |
+
from transformers import AutoModel, AutoConfig, AutoTokenizer, logging as hf_logging
|
| 29 |
+
import torch
|
| 30 |
+
|
| 31 |
+
# reduce transformers logging noise
|
| 32 |
+
hf_logging.set_verbosity_error()
|
| 33 |
+
|
| 34 |
+
app = FastAPI(title="HuggingFace Transformer Sizing API")
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def humanize_bytes(n: int) -> str:
|
| 38 |
+
"""Return human-readable size string (e.g. '1.2 GB')."""
|
| 39 |
+
if n < 1024:
|
| 40 |
+
return f"{n} B"
|
| 41 |
+
units = ["B", "KB", "MB", "GB", "TB", "PB"]
|
| 42 |
+
idx = int(math.floor(math.log(n, 1024)))
|
| 43 |
+
val = n / (1024 ** idx)
|
| 44 |
+
return f"{val:.2f} {units[idx]}"
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
def model_parameter_counts(model: torch.nn.Module):
|
| 48 |
+
"""Return total and trainable parameter counts and memory bytes (approx)"""
|
| 49 |
+
total = 0
|
| 50 |
+
trainable = 0
|
| 51 |
+
bytes_total = 0
|
| 52 |
+
bytes_trainable = 0
|
| 53 |
+
|
| 54 |
+
for p in model.parameters():
|
| 55 |
+
n_elem = p.numel()
|
| 56 |
+
elem_size = p.element_size() # bytes per element (e.g., 4 for float32)
|
| 57 |
+
total += n_elem
|
| 58 |
+
bytes_total += n_elem * elem_size
|
| 59 |
+
if p.requires_grad:
|
| 60 |
+
trainable += n_elem
|
| 61 |
+
bytes_trainable += n_elem * elem_size
|
| 62 |
+
|
| 63 |
+
return {
|
| 64 |
+
"total_params": total,
|
| 65 |
+
"trainable_params": trainable,
|
| 66 |
+
"approx_bytes": bytes_total,
|
| 67 |
+
"trainable_bytes": bytes_trainable,
|
| 68 |
+
"approx_bytes_human": humanize_bytes(bytes_total),
|
| 69 |
+
"trainable_bytes_human": humanize_bytes(bytes_trainable),
|
| 70 |
+
}
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
def folder_size_bytes(path: str) -> int:
|
| 74 |
+
"""Return total size in bytes of files under `path`."""
|
| 75 |
+
total = 0
|
| 76 |
+
for root, _, files in os.walk(path):
|
| 77 |
+
for f in files:
|
| 78 |
+
try:
|
| 79 |
+
total += os.path.getsize(os.path.join(root, f))
|
| 80 |
+
except OSError:
|
| 81 |
+
pass
|
| 82 |
+
return total
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
class InspectResult(BaseModel):
|
| 86 |
+
model_id: str
|
| 87 |
+
backbone_class: str
|
| 88 |
+
config: dict
|
| 89 |
+
sizing: dict
|
| 90 |
+
saved_size_bytes: Optional[int]
|
| 91 |
+
saved_size_human: Optional[str]
|
| 92 |
+
notes: Optional[str]
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
@app.get("/", response_class=HTMLResponse)
|
| 96 |
+
def index():
|
| 97 |
+
html = """
|
| 98 |
+
<html>
|
| 99 |
+
<head>
|
| 100 |
+
<title>Transformer Sizing Inspector</title>
|
| 101 |
+
<style>
|
| 102 |
+
body { font-family: Arial, sans-serif; max-width: 800px; margin: 40px auto; }
|
| 103 |
+
input[type=text] { width: 70%; padding: 8px; }
|
| 104 |
+
button { padding: 8px 12px; }
|
| 105 |
+
pre { background: #f7f7f7; padding: 12px; border-radius: 6px; }
|
| 106 |
+
</style>
|
| 107 |
+
</head>
|
| 108 |
+
<body>
|
| 109 |
+
<h2>Hugging Face Transformer Sizing</h2>
|
| 110 |
+
<form action="/inspect" method="get">
|
| 111 |
+
<label>Model ID (e.g. <code>bert-base-uncased</code>):</label><br/>
|
| 112 |
+
<input type="text" name="model" value="bert-base-uncased" />
|
| 113 |
+
<button type="submit">Inspect</button>
|
| 114 |
+
</form>
|
| 115 |
+
<p>Example models: <code>bert-base-uncased</code>, <code>roberta-base</code>, <code>google/bert_uncased_L-2_H-128_A-2</code>, <code>distilbert-base-uncased</code></p>
|
| 116 |
+
<hr/>
|
| 117 |
+
<p>Result will be shown in JSON. If the model is large it may take time to download.</p>
|
| 118 |
+
</body>
|
| 119 |
+
</html>
|
| 120 |
+
"""
|
| 121 |
+
return HTMLResponse(content=html)
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
@app.get("/inspect", response_model=InspectResult)
|
| 125 |
+
def inspect(model: str = Query(..., description="Hugging Face model identifier or local path (e.g. 'bert-base-uncased')"),
|
| 126 |
+
use_auth_token: Optional[str] = Query(None, description="Optional HF token if you need private model access"),
|
| 127 |
+
save_to_disk: bool = Query(True, description="If true, save model to temp dir to calculate saved disk size (default: true)")):
|
| 128 |
+
"""
|
| 129 |
+
Inspect a Hugging Face model's size and config.
|
| 130 |
+
|
| 131 |
+
Example:
|
| 132 |
+
GET /inspect?model=bert-base-uncased
|
| 133 |
+
"""
|
| 134 |
+
# Basic validation
|
| 135 |
+
if not model:
|
| 136 |
+
raise HTTPException(status_code=400, detail="model query parameter is required")
|
| 137 |
+
|
| 138 |
+
# Attempt to load config first (fast) to get basic info and avoid unnecessary download of large weights
|
| 139 |
+
try:
|
| 140 |
+
config = AutoConfig.from_pretrained(model, use_auth_token=use_auth_token)
|
| 141 |
+
except Exception as e:
|
| 142 |
+
raise HTTPException(status_code=400, detail=f"Failed to load model config for '{model}': {e}")
|
| 143 |
+
|
| 144 |
+
# Now load model weights into CPU (to inspect parameters). We'll use low_cpu_mem_usage if available.
|
| 145 |
+
# Note: large models may still consume a lot of RAM.
|
| 146 |
+
model_obj = None
|
| 147 |
+
notes = []
|
| 148 |
+
try:
|
| 149 |
+
# prefer CPU to avoid accidental GPU usage
|
| 150 |
+
model_obj = AutoModel.from_pretrained(model, config=config, torch_dtype=torch.float32, low_cpu_mem_usage=True, use_auth_token=use_auth_token).to("cpu")
|
| 151 |
+
except TypeError:
|
| 152 |
+
# older transformers may not support low_cpu_mem_usage param
|
| 153 |
+
model_obj = AutoModel.from_pretrained(model, config=config, use_auth_token=use_auth_token).to("cpu")
|
| 154 |
+
except Exception as e:
|
| 155 |
+
raise HTTPException(status_code=500, detail=f"Failed to load model weights for '{model}': {e}")
|
| 156 |
+
|
| 157 |
+
sizing = model_parameter_counts(model_obj)
|
| 158 |
+
|
| 159 |
+
# compute saved disk size by using model.save_pretrained to a temp dir
|
| 160 |
+
saved_size_bytes = None
|
| 161 |
+
saved_size_human = None
|
| 162 |
+
temp_dir = None
|
| 163 |
+
if save_to_disk:
|
| 164 |
+
try:
|
| 165 |
+
temp_dir = tempfile.mkdtemp(prefix="hf_model_")
|
| 166 |
+
# save model + config + tokenizer if available
|
| 167 |
+
model_obj.save_pretrained(temp_dir)
|
| 168 |
+
try:
|
| 169 |
+
tok = AutoTokenizer.from_pretrained(model, use_auth_token=use_auth_token)
|
| 170 |
+
tok.save_pretrained(temp_dir)
|
| 171 |
+
except Exception:
|
| 172 |
+
# tokenizer may not be available / may fail; that's ok
|
| 173 |
+
notes.append("tokenizer save failed or not available")
|
| 174 |
+
saved_size_bytes = folder_size_bytes(temp_dir)
|
| 175 |
+
saved_size_human = humanize_bytes(saved_size_bytes)
|
| 176 |
+
except Exception as e:
|
| 177 |
+
notes.append(f"Failed to save model to temp dir: {e}")
|
| 178 |
+
finally:
|
| 179 |
+
# clean up the temp dir (we measured size already)
|
| 180 |
+
if temp_dir and os.path.exists(temp_dir):
|
| 181 |
+
try:
|
| 182 |
+
shutil.rmtree(temp_dir)
|
| 183 |
+
except Exception:
|
| 184 |
+
pass
|
| 185 |
+
|
| 186 |
+
# attempt to surface useful common config items (hidden_size, num_hidden_layers, vocab_size)
|
| 187 |
+
config_summary = {}
|
| 188 |
+
for k in ("hidden_size", "d_model", "n_embd", "num_hidden_layers", "num_attention_heads", "vocab_size", "intermediate_size"):
|
| 189 |
+
if hasattr(config, k):
|
| 190 |
+
config_summary[k] = getattr(config, k)
|
| 191 |
+
|
| 192 |
+
result = {
|
| 193 |
+
"model_id": model,
|
| 194 |
+
"backbone_class": model_obj.__class__.__name__,
|
| 195 |
+
"config": config_summary,
|
| 196 |
+
"sizing": {
|
| 197 |
+
"total_params": sizing["total_params"],
|
| 198 |
+
"trainable_params": sizing["trainable_params"],
|
| 199 |
+
"approx_bytes": sizing["approx_bytes"],
|
| 200 |
+
"approx_bytes_human": sizing["approx_bytes_human"],
|
| 201 |
+
"trainable_bytes": sizing["trainable_bytes"],
|
| 202 |
+
"trainable_bytes_human": sizing["trainable_bytes_human"],
|
| 203 |
+
},
|
| 204 |
+
"saved_size_bytes": saved_size_bytes,
|
| 205 |
+
"saved_size_human": saved_size_human,
|
| 206 |
+
"notes": "; ".join(notes) if notes else None
|
| 207 |
+
}
|
| 208 |
+
|
| 209 |
+
# free model (optional)
|
| 210 |
+
try:
|
| 211 |
+
del model_obj
|
| 212 |
+
torch.cuda.empty_cache()
|
| 213 |
+
except Exception:
|
| 214 |
+
pass
|
| 215 |
+
|
| 216 |
+
return JSONResponse(content=result)
|
| 217 |
+
|
| 218 |
+
|
| 219 |
+
# If you prefer to run 'python app.py' directly for dev, include a simple runner.
|
| 220 |
+
if __name__ == "__main__":
|
| 221 |
+
import uvicorn
|
| 222 |
+
uvicorn.run("app:app", host="0.0.0.0", port=8000, reload=True)
|