Spaces:
Runtime error
Runtime error
Commit
·
c388795
1
Parent(s):
e53bc50
completed
Browse files- .gitignore +2 -0
- app.py +354 -0
- requirements.txt +5 -0
- sample_qa.json +0 -0
.gitignore
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
venv
|
| 2 |
+
trained_pytorch.pth
|
app.py
ADDED
|
@@ -0,0 +1,354 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf8
|
| 2 |
+
|
| 3 |
+
from transformers import AutoModel, AutoTokenizer, AutoConfig
|
| 4 |
+
import torch
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
from torch.utils.data import Dataset, DataLoader
|
| 7 |
+
import streamlit as st
|
| 8 |
+
import gdown
|
| 9 |
+
import numpy as np
|
| 10 |
+
import pandas as pd
|
| 11 |
+
import collections
|
| 12 |
+
from string import punctuation
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
class CONFIG:
|
| 16 |
+
#model params
|
| 17 |
+
model = 'deepset/xlm-roberta-large-squad2'
|
| 18 |
+
max_input_length = 384 #Hyperparameter to be tuned, following the guide from huggingface
|
| 19 |
+
doc_stride = 128 #Hyperparameter to be tuned, following the guide from huggingface
|
| 20 |
+
model_checkpoint = "pytorch_model.pth"
|
| 21 |
+
trained_model_url = 'https://drive.google.com/uc?id=16Vp918RglyLEFEyDlFuRD1HeNZ8SI7P5'
|
| 22 |
+
trained_model_output_fp = 'trained_pytorch.pth'
|
| 23 |
+
sample_df_fp = "sample_qa.json"
|
| 24 |
+
|
| 25 |
+
# model class
|
| 26 |
+
class ChaiModel(nn.Module):
|
| 27 |
+
def __init__(self, model_config):
|
| 28 |
+
super(ChaiModel, self).__init__()
|
| 29 |
+
self.backbone = AutoModel.from_pretrained(CONFIG.model)
|
| 30 |
+
self.linear = nn.Linear(model_config.hidden_size, 2)
|
| 31 |
+
|
| 32 |
+
def forward(self, input_ids, attention_mask):
|
| 33 |
+
model_output = self.backbone(input_ids, attention_mask=attention_mask)
|
| 34 |
+
sequence_output = model_output[0] # (batchsize, sequencelength, hidden_dim)
|
| 35 |
+
|
| 36 |
+
qa_logits = self.linear(sequence_output) # (batchsize, sequencelength, 2)
|
| 37 |
+
start_logit, end_logit = qa_logits.split(1, dim=-1) # (batchsize, sequencelength), 1), (batchsize, sequencelength, 1)
|
| 38 |
+
start_logits = start_logit.squeeze(-1) # remove last dim (batchsize, sequencelength)
|
| 39 |
+
end_logits = end_logit.squeeze(-1) #remove last dim (batchsize, sequencelength)
|
| 40 |
+
|
| 41 |
+
return start_logits, end_logits # (2,batchsize, sequencelength)
|
| 42 |
+
|
| 43 |
+
# dataset class
|
| 44 |
+
class ChaiDataset(Dataset):
|
| 45 |
+
def __init__(self, dataset, is_train=True):
|
| 46 |
+
super(ChaiDataset, self).__init__()
|
| 47 |
+
self.dataset = dataset #list of features
|
| 48 |
+
self.is_train= is_train
|
| 49 |
+
|
| 50 |
+
def __len__(self):
|
| 51 |
+
return len(self.dataset)
|
| 52 |
+
|
| 53 |
+
def __getitem__(self, index):
|
| 54 |
+
features = self.dataset[index]
|
| 55 |
+
if self.is_train:
|
| 56 |
+
return {
|
| 57 |
+
'input_ids': torch.tensor(features['input_ids'], dtype=torch.long),
|
| 58 |
+
'attention_mask': torch.tensor(features['attention_mask'], dtype=torch.long),
|
| 59 |
+
'offset_mapping':torch.tensor(features['offset_mapping'], dtype=torch.long),
|
| 60 |
+
'start_position':torch.tensor(features['start_position'], dtype=torch.long),
|
| 61 |
+
'end_position':torch.tensor(features['end_position'], dtype=torch.long)
|
| 62 |
+
}
|
| 63 |
+
else:
|
| 64 |
+
return {
|
| 65 |
+
'input_ids': torch.tensor(features['input_ids'], dtype=torch.long),
|
| 66 |
+
'attention_mask': torch.tensor(features['attention_mask'], dtype=torch.long),
|
| 67 |
+
'offset_mapping':torch.tensor(features['offset_mapping'], dtype=torch.long),
|
| 68 |
+
'sequence_ids':features['sequence_ids'],
|
| 69 |
+
'id':features['example_id'],
|
| 70 |
+
'context':features['context'],
|
| 71 |
+
'question':features['question']
|
| 72 |
+
}
|
| 73 |
+
|
| 74 |
+
def break_long_context(df, tokenizer, train=True):
|
| 75 |
+
if train:
|
| 76 |
+
n_examples = len(df)
|
| 77 |
+
full_set = []
|
| 78 |
+
for i in range(n_examples):
|
| 79 |
+
row = df.iloc[i]
|
| 80 |
+
# tokenizer parameters can be found here
|
| 81 |
+
# https://huggingface.co/transformers/internal/tokenization_utils.html#transformers.tokenization_utils_base.PreTrainedTokenizerBase
|
| 82 |
+
tokenized_examples = tokenizer(row['question'],
|
| 83 |
+
row['context'],
|
| 84 |
+
padding='max_length',
|
| 85 |
+
max_length=CONFIG.max_input_length,
|
| 86 |
+
truncation='only_second',
|
| 87 |
+
stride=CONFIG.doc_stride,
|
| 88 |
+
return_overflowing_tokens=True, #returns the number of over flow
|
| 89 |
+
return_offsets_mapping=True #returns the BPE mapping to the original word
|
| 90 |
+
)
|
| 91 |
+
|
| 92 |
+
# tokenized_example keys
|
| 93 |
+
#'input_ids', 'attention_mask', 'offset_mapping', 'overflow_to_sample_mapping'
|
| 94 |
+
sample_mappings = tokenized_examples.pop("overflow_to_sample_mapping")
|
| 95 |
+
offset_mappings = tokenized_examples.pop("offset_mapping")
|
| 96 |
+
|
| 97 |
+
final_examples = []
|
| 98 |
+
n_sub_examples = len(sample_mappings)
|
| 99 |
+
for j in range(n_sub_examples):
|
| 100 |
+
input_ids = tokenized_examples["input_ids"][j]
|
| 101 |
+
attention_mask = tokenized_examples["attention_mask"][j]
|
| 102 |
+
|
| 103 |
+
sliced_text = tokenizer.convert_tokens_to_string(tokenizer.convert_ids_to_tokens(input_ids))
|
| 104 |
+
final_example = dict(input_ids = input_ids,
|
| 105 |
+
attention_mask = attention_mask,
|
| 106 |
+
sliced_text = sliced_text,
|
| 107 |
+
offset_mapping=offset_mappings[j],
|
| 108 |
+
fold=row['fold'])
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
# Most of the time cls_index is 0
|
| 113 |
+
cls_index = input_ids.index(tokenizer.cls_token_id)
|
| 114 |
+
# None, 0, 0, .... None, None, 1, 1,.....
|
| 115 |
+
sequence_ids = tokenized_examples.sequence_ids(j)
|
| 116 |
+
|
| 117 |
+
sample_index = sample_mappings[j]
|
| 118 |
+
offset_map = offset_mappings[j]
|
| 119 |
+
|
| 120 |
+
if np.isnan(row["answer_start"]) : # if no answer, start and end position is cls_index
|
| 121 |
+
final_example['start_position'] = cls_index
|
| 122 |
+
final_example['end_position'] = cls_index
|
| 123 |
+
final_example['tokenized_answer'] = ""
|
| 124 |
+
final_example['answer_text'] = ""
|
| 125 |
+
else:
|
| 126 |
+
start_char = row["answer_start"]
|
| 127 |
+
end_char = start_char + len(row["answer_text"])
|
| 128 |
+
|
| 129 |
+
token_start_index = sequence_ids.index(1)
|
| 130 |
+
token_end_index = len(sequence_ids)- 1 - (sequence_ids[::-1].index(1))
|
| 131 |
+
|
| 132 |
+
if not (offset_map[token_start_index][0]<=start_char and offset_map[token_end_index][1] >= end_char):
|
| 133 |
+
final_example['start_position'] = cls_index
|
| 134 |
+
final_example['end_position'] = cls_index
|
| 135 |
+
final_example['tokenized_answer'] = ""
|
| 136 |
+
final_example['answer_text'] = ""
|
| 137 |
+
else:
|
| 138 |
+
#Move token_start_index to the correct context index
|
| 139 |
+
while token_start_index < len(offset_map) and offset_map[token_start_index][0] <= start_char:
|
| 140 |
+
token_start_index +=1
|
| 141 |
+
final_example['start_position'] = token_start_index -1
|
| 142 |
+
|
| 143 |
+
while offset_map[token_end_index][1] >= end_char: #Take note that we will want the end_index inclusively, we will need to slice properly later
|
| 144 |
+
token_end_index -=1
|
| 145 |
+
final_example['end_position'] = token_end_index + 1
|
| 146 |
+
tokenized_answer = tokenizer.convert_tokens_to_string(tokenizer.convert_ids_to_tokens(input_ids[final_example['start_position']:final_example['end_position']+1]))
|
| 147 |
+
final_example['tokenized_answer'] = tokenized_answer
|
| 148 |
+
final_example['answer_text'] = row['answer_text']
|
| 149 |
+
|
| 150 |
+
final_examples.append(final_example)
|
| 151 |
+
full_set += final_examples
|
| 152 |
+
|
| 153 |
+
else:
|
| 154 |
+
n_examples = len(df)
|
| 155 |
+
full_set = []
|
| 156 |
+
for i in range(n_examples):
|
| 157 |
+
row = df.iloc[i]
|
| 158 |
+
tokenized_examples = tokenizer(row['question'],
|
| 159 |
+
row['context'],
|
| 160 |
+
padding='max_length',
|
| 161 |
+
max_length=CONFIG.max_input_length,
|
| 162 |
+
truncation='only_second',
|
| 163 |
+
stride=CONFIG.doc_stride,
|
| 164 |
+
return_overflowing_tokens=True, #returns the number of over flow
|
| 165 |
+
return_offsets_mapping=True #returns the BPE mapping to the original word
|
| 166 |
+
)
|
| 167 |
+
|
| 168 |
+
sample_mappings = tokenized_examples.pop("overflow_to_sample_mapping")
|
| 169 |
+
offset_mappings = tokenized_examples.pop("offset_mapping")
|
| 170 |
+
n_sub_examples = len(sample_mappings)
|
| 171 |
+
|
| 172 |
+
final_examples = []
|
| 173 |
+
for j in range(n_sub_examples):
|
| 174 |
+
input_ids = tokenized_examples["input_ids"][j]
|
| 175 |
+
attention_mask = tokenized_examples["attention_mask"][j]
|
| 176 |
+
|
| 177 |
+
final_example = dict(
|
| 178 |
+
input_ids = input_ids,
|
| 179 |
+
attention_mask = attention_mask,
|
| 180 |
+
offset_mapping=offset_mappings[j],
|
| 181 |
+
example_id = row['id'],
|
| 182 |
+
context = row['context'],
|
| 183 |
+
question = row['question'],
|
| 184 |
+
sequence_ids = [0 if value is None else value for value in tokenized_examples.sequence_ids(j)]
|
| 185 |
+
)
|
| 186 |
+
|
| 187 |
+
final_examples.append(final_example)
|
| 188 |
+
full_set += final_examples
|
| 189 |
+
return full_set
|
| 190 |
+
|
| 191 |
+
def postprocess_qa_predictions(examples, features, raw_predictions, n_best_size = 20, max_answer_length = 30):
|
| 192 |
+
all_start_logits, all_end_logits = raw_predictions
|
| 193 |
+
|
| 194 |
+
example_id_to_index = {k: i for i, k in enumerate(examples["id"])}
|
| 195 |
+
features_per_example = collections.defaultdict(list)
|
| 196 |
+
for i, feature in enumerate(features):
|
| 197 |
+
features_per_example[example_id_to_index[feature["example_id"]]].append(i)
|
| 198 |
+
|
| 199 |
+
predictions = collections.OrderedDict()
|
| 200 |
+
|
| 201 |
+
print(f"Post-processing {len(examples)} example predictions split into {len(features)} features.")
|
| 202 |
+
|
| 203 |
+
for example_index, example in examples.iterrows():
|
| 204 |
+
feature_indices = features_per_example[example_index]
|
| 205 |
+
|
| 206 |
+
min_null_score = None
|
| 207 |
+
valid_answers = []
|
| 208 |
+
|
| 209 |
+
context = example["context"]
|
| 210 |
+
for feature_index in feature_indices:
|
| 211 |
+
start_logits = all_start_logits[feature_index]
|
| 212 |
+
end_logits = all_end_logits[feature_index]
|
| 213 |
+
|
| 214 |
+
sequence_ids = features[feature_index]["sequence_ids"]
|
| 215 |
+
context_index = 1
|
| 216 |
+
|
| 217 |
+
features[feature_index]["offset_mapping"] = [
|
| 218 |
+
(o if sequence_ids[k] == context_index else None)
|
| 219 |
+
for k, o in enumerate(features[feature_index]["offset_mapping"])
|
| 220 |
+
]
|
| 221 |
+
offset_mapping = features[feature_index]["offset_mapping"]
|
| 222 |
+
cls_index = features[feature_index]["input_ids"].index(tokenizer.cls_token_id)
|
| 223 |
+
feature_null_score = start_logits[cls_index] + end_logits[cls_index]
|
| 224 |
+
if min_null_score is None or min_null_score < feature_null_score:
|
| 225 |
+
min_null_score = feature_null_score
|
| 226 |
+
|
| 227 |
+
start_indexes = np.argsort(start_logits)[-1 : -n_best_size - 1 : -1].tolist()
|
| 228 |
+
end_indexes = np.argsort(end_logits)[-1 : -n_best_size - 1 : -1].tolist()
|
| 229 |
+
for start_index in start_indexes:
|
| 230 |
+
for end_index in end_indexes:
|
| 231 |
+
if (
|
| 232 |
+
start_index >= len(offset_mapping)
|
| 233 |
+
or end_index >= len(offset_mapping)
|
| 234 |
+
or offset_mapping[start_index] is None
|
| 235 |
+
or offset_mapping[end_index] is None
|
| 236 |
+
):
|
| 237 |
+
continue
|
| 238 |
+
# Don't consider answers with a length that is either < 0 or > max_answer_length.
|
| 239 |
+
if end_index < start_index or end_index - start_index + 1 > max_answer_length:
|
| 240 |
+
continue
|
| 241 |
+
|
| 242 |
+
start_char = offset_mapping[start_index][0]
|
| 243 |
+
end_char = offset_mapping[end_index][1]
|
| 244 |
+
valid_answers.append(
|
| 245 |
+
{
|
| 246 |
+
"score": start_logits[start_index] + end_logits[end_index],
|
| 247 |
+
"text": context[start_char: end_char]
|
| 248 |
+
}
|
| 249 |
+
)
|
| 250 |
+
|
| 251 |
+
if len(valid_answers) > 0:
|
| 252 |
+
best_answer = sorted(valid_answers, key=lambda x: x["score"], reverse=True)[0]
|
| 253 |
+
else:
|
| 254 |
+
best_answer = {"text": "", "score": 0.0}
|
| 255 |
+
|
| 256 |
+
predictions[example["id"]] = best_answer["text"]
|
| 257 |
+
|
| 258 |
+
|
| 259 |
+
return predictions
|
| 260 |
+
|
| 261 |
+
def download_finetuned_model():
|
| 262 |
+
gdown.download(url=CONFIG.trained_model_url, output=CONFIG.trained_model_output_fp, quiet=False)
|
| 263 |
+
|
| 264 |
+
def get_prediction(context:str, question:str, model, tokenizer) -> str:
|
| 265 |
+
# convert to dataframe format to make it consistent with training way
|
| 266 |
+
test_df = pd.DataFrame({"id":[1], "context":[context.strip()], "question":[question.strip()]})
|
| 267 |
+
test_set = break_long_context(test_df, tokenizer, train=False)
|
| 268 |
+
|
| 269 |
+
#create dataset and dataloader of batch 1 to prevent OOM
|
| 270 |
+
test_dataset = ChaiDataset(test_set, is_train=False)
|
| 271 |
+
test_dataloader = DataLoader(test_dataset,
|
| 272 |
+
batch_size=1,
|
| 273 |
+
shuffle=False,
|
| 274 |
+
drop_last=False
|
| 275 |
+
)
|
| 276 |
+
|
| 277 |
+
#main prediction function
|
| 278 |
+
start_logits =[]
|
| 279 |
+
end_logits=[]
|
| 280 |
+
|
| 281 |
+
for features in test_dataloader:
|
| 282 |
+
input_ids = features['input_ids']
|
| 283 |
+
attention_mask = features['attention_mask']
|
| 284 |
+
with torch.no_grad():
|
| 285 |
+
start_logit, end_logit = model(input_ids, attention_mask) #(batch, 384,1) , (batch, 384,1)
|
| 286 |
+
start_logits.append(start_logit.to("cpu").numpy())
|
| 287 |
+
end_logits.append(end_logit.to("cpu").numpy())
|
| 288 |
+
|
| 289 |
+
start_logits, end_logits = np.vstack(start_logits), np.vstack(end_logits)
|
| 290 |
+
|
| 291 |
+
predictions = postprocess_qa_predictions(test_df, test_set, (start_logits, end_logits))
|
| 292 |
+
predictions = list(predictions.items())[0][1]
|
| 293 |
+
predictions = predictions.strip(punctuation)
|
| 294 |
+
|
| 295 |
+
return predictions
|
| 296 |
+
|
| 297 |
+
@st.cache(allow_output_mutation=True)
|
| 298 |
+
def load_model():
|
| 299 |
+
gdown.download(url=CONFIG.trained_model_url, output=CONFIG.trained_model_output_fp, quiet=False)
|
| 300 |
+
print("Downloaded pretrained model")
|
| 301 |
+
config = AutoConfig.from_pretrained(CONFIG.model)
|
| 302 |
+
model = ChaiModel(config)
|
| 303 |
+
model.load_state_dict(torch.load(CONFIG.trained_model_output_fp, map_location=torch.device('cpu')))
|
| 304 |
+
model.eval()
|
| 305 |
+
tokenizer = AutoTokenizer.from_pretrained(CONFIG.model)
|
| 306 |
+
sample_df = pd.read_json(CONFIG.sample_df_fp)
|
| 307 |
+
return model, tokenizer, sample_df
|
| 308 |
+
|
| 309 |
+
|
| 310 |
+
|
| 311 |
+
model, tokenizer, sample_df = load_model()
|
| 312 |
+
|
| 313 |
+
|
| 314 |
+
## initialize session_state
|
| 315 |
+
if "context" not in st.session_state:
|
| 316 |
+
st.session_state["context"] = ""
|
| 317 |
+
if "question" not in st.session_state:
|
| 318 |
+
st.session_state['question'] = ""
|
| 319 |
+
if "answer" not in st.session_state:
|
| 320 |
+
st.session_state['answer'] = ""
|
| 321 |
+
|
| 322 |
+
|
| 323 |
+
## Layout
|
| 324 |
+
st.sidebar.title("Hindi/Tamil Extractive Question Answering")
|
| 325 |
+
st.sidebar.markdown("---")
|
| 326 |
+
random_button = st.sidebar.button("Random")
|
| 327 |
+
st.sidebar.write("Randomly Generates a Hindi/Tamil Context and Question")
|
| 328 |
+
st.sidebar.markdown("---")
|
| 329 |
+
answer_button = st.sidebar.button("Answer!")
|
| 330 |
+
|
| 331 |
+
if random_button:
|
| 332 |
+
sample = sample_df.sample(1)
|
| 333 |
+
st.session_state['context'] = sample['context'].item()
|
| 334 |
+
st.session_state['question'] = sample['question'].item()
|
| 335 |
+
st.session_state['answer'] = ""
|
| 336 |
+
|
| 337 |
+
if answer_button:
|
| 338 |
+
# if question or context is empty text
|
| 339 |
+
if len(st.session_state['context']) == 0 or len(st.session_state['question']) ==0:
|
| 340 |
+
st.session_state['answer'] = " "
|
| 341 |
+
else:
|
| 342 |
+
st.session_state['answer'] = get_prediction(st.session_state['context'], st.session_state['question'], model, tokenizer)
|
| 343 |
+
|
| 344 |
+
|
| 345 |
+
st.session_state["context"] = st.text_area("Context", value=st.session_state['context'], height=300)
|
| 346 |
+
|
| 347 |
+
with st.container():
|
| 348 |
+
col_1, col_2 = st.columns(2)
|
| 349 |
+
with col_1:
|
| 350 |
+
st.session_state['question'] = st.text_area("Question", value=st.session_state['question'], height=200)
|
| 351 |
+
|
| 352 |
+
with col_2:
|
| 353 |
+
st.text_area("Answer", value=st.session_state['answer'], height=200)
|
| 354 |
+
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch
|
| 2 |
+
sentencepiece
|
| 3 |
+
transformers
|
| 4 |
+
streamlit==1.0.0
|
| 5 |
+
gdown==4.2.0
|
sample_qa.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|