Spaces:
Runtime error
Runtime error
| from huggingface_hub import InferenceClient | |
| import gradio as gr | |
| # Upgraded to Mistral-7B-v0.3 | |
| client = InferenceClient( | |
| "mistralai/Mistral-7B-Instruct-v0.3" | |
| ) | |
| def format_prompt(message, history): | |
| prompt = "<s>" | |
| for user_prompt, bot_response in history: | |
| prompt += f"[INST] {user_prompt} [/INST]" | |
| prompt += f" {bot_response}</s> " | |
| prompt += f"[INST] {message} [/INST]" | |
| return prompt | |
| def generate( | |
| prompt, history, temperature=0.9, max_new_tokens=900, top_p=0.95, repetition_penalty=1.0, | |
| ): | |
| temperature = float(temperature) | |
| if temperature < 1e-2: | |
| temperature = 1e-2 | |
| top_p = float(top_p) | |
| generate_kwargs = dict( | |
| temperature=temperature, | |
| max_new_tokens=max_new_tokens, | |
| top_p=top_p, | |
| repetition_penalty=repetition_penalty, | |
| do_sample=True, | |
| seed=42, | |
| ) | |
| formatted_prompt = format_prompt(prompt, history) | |
| stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) | |
| output = "" | |
| for response in stream: | |
| output += response.token.text | |
| yield output | |
| return output | |
| additional_inputs=[ | |
| gr.Slider( | |
| label="Temperature", | |
| value=0.9, | |
| minimum=0.0, | |
| maximum=1.0, | |
| step=0.05, | |
| interactive=True, | |
| info="Higher values produce more diverse outputs", | |
| ), | |
| gr.Slider( | |
| label="Max new tokens", | |
| value=900, | |
| minimum=0, | |
| maximum=1048, | |
| step=64, | |
| interactive=True, | |
| info="The maximum numbers of new tokens", | |
| ), | |
| gr.Slider( | |
| label="Top-p (nucleus sampling)", | |
| value=0.90, | |
| minimum=0.0, | |
| maximum=1, | |
| step=0.05, | |
| interactive=True, | |
| info="Higher values sample more low-probability tokens", | |
| ), | |
| gr.Slider( | |
| label="Repetition penalty", | |
| value=1.2, | |
| minimum=1.0, | |
| maximum=2.0, | |
| step=0.05, | |
| interactive=True, | |
| info="Penalize repeated tokens", | |
| ) | |
| ] | |
| css = """ | |
| #mkd { | |
| height: 500px; | |
| overflow: auto; | |
| border: 1px solid #ccc; | |
| } | |
| """ | |
| with gr.Blocks(css=css) as ai_chat: | |
| gr.HTML("<h1><center>AI Conversation<h1><center>") | |
| gr.HTML("<h3><center>How can I help you? You can converse with me and say more💬<h3><center>") | |
| gr.HTML("<h3><center>To try, select a prompt from below and hit submit<h3><center>") | |
| gr.HTML("<h3><center>Have a wonderful day! 📚<h3><center>") | |
| gr.ChatInterface( | |
| generate, | |
| additional_inputs=additional_inputs, | |
| examples=[["List fun activities in Boston."], ["How to spend a weekend in San Francisco?"], ["What is the secret to life?"], ["Write me a recipe for a quick vegetarian breakfast."],["What is the future for full stack engineers?"], | |
| ["Create a complete plan for daily healthy habbits."], ["What is optogenetic simulation?"], ["How to conduct a neuroscience experiment using holography?"], ["What is non-invasive brain stimulation?"], ["Tell me lifestyle of people living in Auckland, NZ"], ["Make a tour plan for Los Angeles metro area."]] | |
| ) | |
| ''' | |
| By enabling the queue you can control when users know their position in the queue, and set a limit on maximum number of events allowed. | |
| Parameters: | |
| status_update_rate: If "auto", Queue will send status estimations to all clients whenever a job is finished. Otherwise Queue will send status at regular intervals set by this parameter as the number of seconds. | |
| api_open: If True, the REST routes of the backend will be open, allowing requests made directly to those endpoints to skip the queue. | |
| max_size: The maximum number of events the queue will store at any given moment. If the queue is full, new events will not be added and a user will receive a message saying that the queue is full. If None, the queue size will be unlimited. | |
| concurrency_count: Deprecated. Set the concurrency_limit directly on event listeners e.g. btn.click(fn, ..., concurrency_limit=10) or gr.Interface(concurrency_limit=10). If necessary, the total number of workers can be configured via `max_threads` in launch(). | |
| default_concurrency_limit: The default value of `concurrency_limit` to use for event listeners that don't specify a value. Can be set by environment variable GRADIO_DEFAULT_CONCURRENCY_LIMIT. Defaults to 1 if not set otherwise. | |
| replace deprecated concurency_count to concurrency_limit | |
| ''' | |
| #ai_chat.queue(concurrency_limit=None, max_size=250).launch(debug=True) | |
| ai_chat.queue(max_size=250).launch(debug=True) |