Spaces:
Sleeping
Sleeping
File size: 18,925 Bytes
74af434 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 |
import torch
import numpy as np
from transformers import GroundingDinoProcessor
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
import torch
def prepare_targets(points, caption, shapes, emb_size, device, llmdet_processor):
gt_points_b = [np.array(points) / np.array(shapes)[::-1]]
gt_points_b[0] = gt_points_b[0].squeeze(0)
gt_points = [torch.from_numpy(img_points).float() for img_points in gt_points_b]
gt_logits = [torch.zeros((img_points.shape[0], emb_size)) for img_points in gt_points]
tokenized = llmdet_processor.tokenizer(caption[0], padding="longest", return_tensors="pt")
end_idxes = [torch.where(ids == 1012)[0][-1] for ids in tokenized['input_ids']]
for i, end_idx in enumerate(end_idxes):
gt_logits[i][:, :end_idx] = 1.0
caption_sizes = [idx + 2 for idx in end_idxes]
targets = [{"points": p.to(device), "labels": l.to(device), "caption_size": c}
for p, l, c in zip(gt_points, gt_logits, caption_sizes)]
return targets
def post_process_grounded_object_detection(
outputs,
box_threshold: float = 0.4,
):
# for the fine-tuning model, the box threshold should be set to 0.50
logits, boxes = outputs.logits, outputs.pred_boxes
probs = torch.sigmoid(logits) # (batch_size, num_queries, 256)
scores = torch.max(probs, dim=-1)[0] # (batch_size, num_queries)
results = []
for idx, (s, b, p) in enumerate(zip(scores, boxes, probs)):
score = s[s > box_threshold]
box = b[s > box_threshold]
prob = p[s > box_threshold]
results.append({"scores": score, "boxes": box})
return results
class collator:
def __init__(self, processor=None, use_negative=True):
model_id = "fushh7/llmdet_swin_tiny_hf"
self.llmdet_processor = GroundingDinoProcessor.from_pretrained(model_id)
self.use_negative = use_negative
def __call__(self, batch):
# assume batch size is 1
example = batch[0]
image = example['image']
pil_image = example['image']
w, h = image.size
pos_caption = example['pos_caption']
neg_caption = example['neg_caption']
pos_points = example['pos_points']
neg_points = example['neg_points']
pos_count = example['pos_count']
neg_count = example['neg_count']
annotated_pos_count = example['annotated_pos_count']
annotated_neg_count = example['annotated_neg_count']
if 'type' in example:
sample_type = example['type']
else:
sample_type = 'eval'
category = example['category']
image_name = "{}_{}_{}_{}_{}".format(category, pos_caption, neg_caption, pos_count, neg_count)
pos_llm_det_inputs = self.llmdet_processor(images=image, text=pos_caption, return_tensors="pt", padding=True)
neg_llm_det_inputs = self.llmdet_processor(images=image, text=neg_caption, return_tensors="pt", padding=True)
pos_caption = [[pos_caption]]
neg_caption = [[neg_caption]]
shapes = [(w, h)]
pos_points = [pos_points]
neg_points = [neg_points]
# exemplars
if 'positive_exemplars' in example and 'negative_exemplars' in example and example[
'positive_exemplars'] is not None and example['negative_exemplars'] is not None:
pos_exemplars = example['positive_exemplars']
neg_exemplars = example['negative_exemplars']
img_height, img_width = pil_image.size
norm_pos_exemplars = []
norm_neg_exemplars = []
exemplar_valid = True
for exemplars in pos_exemplars:
tly, tlx, bry, brx = exemplars
tlx = tlx / img_width
tly = tly / img_height
brx = brx / img_width
bry = bry / img_height
if tlx < 0 or tly < 0 or tlx > 1.0 or tly > 1.0:
exemplar_valid = False
if brx < 0 or bry < 0 or brx > 1.0 or bry > 1.0:
exemplar_valid = False
if tlx >= brx or tly >= bry:
exemplar_valid = False
tlx = max(tlx, 0)
tly = max(tly, 0)
tly = min(tly, 1 - 1e-4)
tlx = min(tlx, 1 - 1e-4)
brx = min(brx, 1)
bry = min(bry, 1)
brx = max(brx, tlx)
bry = max(bry, tly)
assert tlx >= 0 and tly >= 0 and brx <= 1 and bry <= 1 and tlx <= brx and tly <= bry, f"tlx: {tlx}, tly: {tly}, brx: {brx}, bry: {bry}"
norm_pos_exemplars.append([tlx, tly, brx, bry])
for exemplars in neg_exemplars:
tly, tlx, bry, brx = exemplars
tlx = tlx / img_width
tly = tly / img_height
brx = brx / img_width
bry = bry / img_height
if tlx < 0 or tly < 0 or tlx > 1.0 or tly > 1.0:
exemplar_valid = False
if brx < 0 or bry < 0 or brx > 1.0 or bry > 1.0:
exemplar_valid = False
if tlx >= brx or tly >= bry:
exemplar_valid = False
tlx = max(tlx, 0)
tly = max(tly, 0)
tly = min(tly, 1 - 1e-4)
tlx = min(tlx, 1 - 1e-4)
brx = min(brx, 1)
bry = min(bry, 1)
brx = max(brx, tlx)
bry = max(bry, tly)
assert tlx >= 0 and tly >= 0 and brx <= 1 and bry <= 1 and tlx <= brx and tly <= bry, f"tlx: {tlx}, tly: {tly}, brx: {brx}, bry: {bry}"
norm_neg_exemplars.append([tlx, tly, brx, bry])
if exemplar_valid:
pos_exemplars = [torch.from_numpy(np.array(exemplars)).float() for exemplars in norm_pos_exemplars]
neg_exemplars = [torch.from_numpy(np.array(exemplars)).float() for exemplars in norm_neg_exemplars]
pos_exemplars = torch.stack(pos_exemplars)
neg_exemplars = torch.stack(neg_exemplars)
batch_dict = {
'pos_llm_det_inputs': pos_llm_det_inputs,
'neg_llm_det_inputs': neg_llm_det_inputs,
'pos_caption': pos_caption,
'neg_caption': neg_caption,
'shapes': shapes,
'pos_points': pos_points,
'neg_points': neg_points,
'pos_count': pos_count,
'neg_count': neg_count,
'annotated_pos_count': annotated_pos_count,
'annotated_neg_count': annotated_neg_count,
'image': pil_image,
'category': category,
'type': sample_type,
'pos_exemplars': pos_exemplars,
'neg_exemplars': neg_exemplars,
'image_name': image_name,
}
else:
batch_dict = {
'pos_llm_det_inputs': pos_llm_det_inputs,
'neg_llm_det_inputs': neg_llm_det_inputs,
'pos_caption': pos_caption,
'neg_caption': neg_caption,
'shapes': shapes,
'pos_points': pos_points,
'neg_points': neg_points,
'pos_count': pos_count,
'neg_count': neg_count,
'annotated_pos_count': annotated_pos_count,
'annotated_neg_count': annotated_neg_count,
'image': pil_image,
'category': category,
'type': sample_type,
'image_name': image_name,
}
else:
batch_dict = {
'pos_llm_det_inputs': pos_llm_det_inputs,
'neg_llm_det_inputs': neg_llm_det_inputs,
'pos_caption': pos_caption,
'neg_caption': neg_caption,
'shapes': shapes,
'pos_points': pos_points,
'neg_points': neg_points,
'pos_count': pos_count,
'neg_count': neg_count,
'annotated_pos_count': annotated_pos_count,
'annotated_neg_count': annotated_neg_count,
'image': pil_image,
'category': category,
'type': sample_type,
'image_name': image_name,
}
return batch_dict
import torch.distributed as dist
def rank0_print(*args):
if dist.is_initialized():
if dist.get_rank() == 0:
print(f"Rank {dist.get_rank()}: ", *args)
else:
print(*args)
def build_dataset(data_args):
from datasets import load_from_disk, concatenate_datasets
categories = ["FOO", "FUN", "OFF", "OTR", "HOU"]
if data_args.data_split not in categories:
rank0_print(f"Warning: Invalid data_split '{data_args.data_split}'. Switching to 'all' mode.")
data_args.data_split = "all"
if data_args.data_split == "all":
train_dataset = load_from_disk(data_args.train_data_path)
train_dataset = concatenate_datasets(
[train_dataset["FOO"], train_dataset["FUN"], train_dataset["OFF"], train_dataset["OTR"],
train_dataset["HOU"]])
val_dataset = load_from_disk(data_args.val_data_path)
val_dataset = concatenate_datasets(
[val_dataset["FOO"], val_dataset["FUN"], val_dataset["OFF"], val_dataset["OTR"], val_dataset["HOU"]])
test_dataset = load_from_disk(data_args.test_data_path)
test_dataset = concatenate_datasets(
[test_dataset["FOO"], test_dataset["FUN"], test_dataset["OFF"], test_dataset["OTR"], test_dataset["HOU"]])
weakly_supervised_data = load_from_disk(data_args.weakly_supervised_data_path)
weakly_supervised_data = concatenate_datasets(
[weakly_supervised_data["FOO"], weakly_supervised_data["FUN"], weakly_supervised_data["OFF"],
weakly_supervised_data["OTR"], weakly_supervised_data["HOU"]])
rank0_print("Using 'all' mode: all categories for train/val/test")
else:
test_category = data_args.data_split
train_categories = [cat for cat in categories if cat != test_category]
train_dataset = load_from_disk(data_args.train_data_path)
print(train_categories, train_dataset.keys())
train_datasets = [train_dataset[cat] for cat in train_categories]
train_dataset = concatenate_datasets(train_datasets)
weakly_supervised_data = load_from_disk(data_args.weakly_supervised_data_path)
weakly_supervised_data = [weakly_supervised_data[cat] for cat in train_categories]
weakly_supervised_data = concatenate_datasets(weakly_supervised_data)
val_dataset = load_from_disk(data_args.val_data_path)
val_dataset = val_dataset[test_category]
test_dataset = load_from_disk(data_args.test_data_path)
test_dataset = test_dataset[test_category]
rank0_print(f"Cross-validation mode: using {train_categories} for train, {test_category} for val/test")
rank0_print('train_dataset: ', len(train_dataset))
rank0_print('val_dataset: ', len(val_dataset))
rank0_print('test_dataset: ', len(test_dataset))
rank0_print('weakly_supervised_data: ', len(weakly_supervised_data))
return train_dataset, val_dataset, test_dataset, weakly_supervised_data
def generate_pseudo_density_map(points_norm: torch.Tensor,
output_size: tuple[int, int],
sigma: float = 4.0,
normalize: bool = True) -> torch.Tensor:
device = points_norm.device
H, W = output_size
N = points_norm.shape[0]
ys = torch.arange(H, device=device).float()
xs = torch.arange(W, device=device).float()
grid_y, grid_x = torch.meshgrid(ys, xs, indexing='ij') # (H, W)
pts_px = points_norm.clone()
pts_px[:, 0] *= (W - 1) # x
pts_px[:, 1] *= (H - 1) # y
dx = grid_x.unsqueeze(0) - pts_px[:, 0].view(-1, 1, 1) # (N, H, W)
dy = grid_y.unsqueeze(0) - pts_px[:, 1].view(-1, 1, 1) # (N, H, W)
dist2 = dx ** 2 + dy ** 2
gaussians = torch.exp(-dist2 / (2 * sigma ** 2)) # (N, H, W)
density_map = gaussians.sum(dim=0, keepdim=True) # (1, H, W)
if normalize and N > 0:
density_map = density_map * (N / density_map.sum())
return density_map.unsqueeze(0)
def show_density_map(density_map: torch.Tensor,
points_norm: torch.Tensor | None = None,
figsize: tuple[int, int] = (6, 8),
cmap: str = "jet") -> None:
dm = density_map.squeeze().detach().cpu().numpy() # (H, W)
H, W = dm.shape
plt.figure(figsize=figsize)
plt.imshow(dm, cmap=cmap, origin="upper")
plt.colorbar(label="Density")
if points_norm is not None and points_norm.numel() > 0:
pts = points_norm.detach().cpu().numpy()
xs = pts[:, 0] * (W - 1)
ys = pts[:, 1] * (H - 1)
plt.scatter(xs, ys, c="white", s=12, edgecolors="black", linewidths=0.5)
plt.title(f"Density map (sum = {dm.sum():.2f})")
plt.axis("off")
plt.tight_layout()
plt.show()
def show_image_with_density(pil_img: Image.Image,
density_map: torch.Tensor,
points_norm: torch.Tensor | None = None,
cmap: str = "jet",
alpha: float = 0.45,
figsize: tuple[int, int] = (6, 8)) -> None:
dm = density_map.squeeze().detach().cpu().numpy() # (H, W)
H, W = dm.shape
img_resized = pil_img.resize((W, H), Image.BILINEAR) # or LANCZOS
img_np = np.asarray(img_resized)
plt.figure(figsize=figsize)
plt.imshow(img_np, origin="upper")
plt.imshow(dm, cmap=cmap, alpha=alpha, origin="upper")
if points_norm is not None and points_norm.numel() > 0:
pts = points_norm.detach().cpu().numpy()
xs = pts[:, 0] * (W - 1)
ys = pts[:, 1] * (H - 1)
plt.scatter(xs, ys, c="white", s=12, edgecolors="black", linewidths=0.5)
plt.title(f"Overlay (density sum = {dm.sum():.2f})")
plt.axis("off")
plt.tight_layout()
plt.show()
def build_point_count_map(feat_maps: torch.Tensor,
pts_norm_list: list[torch.Tensor]) -> torch.Tensor:
assert feat_maps.dim() == 4, "expect NHWC: (B,H,W,D)"
B, H, W, _ = feat_maps.shape
device = feat_maps.device
count_map = torch.zeros((B, H, W), dtype=torch.float32, device=device)
for b in range(B):
pts = pts_norm_list[b].to(device).float() # (Ni, 2)
if pts.numel() == 0:
continue
idx_xy = (pts * torch.tensor([W, H], device=device)).long()
idx_xy[..., 0].clamp_(0, W - 1) # x
idx_xy[..., 1].clamp_(0, H - 1) # y
lin_idx = idx_xy[:, 1] * W + idx_xy[:, 0] # (Ni,)
one = torch.ones_like(lin_idx, dtype=torch.float32)
flat = torch.zeros(H * W, dtype=torch.float32, device=device)
flat.scatter_add_(0, lin_idx, one)
count_map[b] = flat.view(H, W)
return count_map
import torch
import torch.nn.functional as F
def extract_pos_tokens_single(feat_maps: torch.Tensor,
count_map: torch.Tensor):
assert feat_maps.dim() == 4 and count_map.dim() == 3, "维度应为 (B,H,W,D) / (B,H,W)"
B, H, W, D = feat_maps.shape
assert B == 1, "当前函数假设 batch_size == 1"
feat = feat_maps[0] # (H,W,D)
cnt = count_map[0] # (H,W)
pos_mask = cnt > 0 # Bool (H,W)
if pos_mask.sum() == 0:
empty = torch.empty(0, device=feat.device)
return empty.reshape(0, D), empty.long()
pos_tokens = feat[pos_mask] # (N_pos, D)
y_idx, x_idx = torch.nonzero(pos_mask, as_tuple=True)
lin_index = y_idx * W + x_idx # (N_pos,)
return pos_tokens, lin_index
def filter_overlap(pos_tok, lin_pos, neg_tok, lin_neg):
pos_only_mask = ~torch.isin(lin_pos, lin_neg)
neg_only_mask = ~torch.isin(lin_neg, lin_pos)
return pos_tok[pos_only_mask], neg_tok[neg_only_mask]
# ------------------------------------------------------------
# 2) supervised contrastive loss
# ------------------------------------------------------------
def supcon_pos_neg(pos_tokens, neg_tokens, temperature=0.07):
"""
pos_tokens : (Np, D) Pos token
neg_tokens : (Nn, D) Neg token
"""
if pos_tokens.numel() == 0 or neg_tokens.numel() == 0:
return torch.tensor(0., device=pos_tokens.device, requires_grad=True)
pos_tokens = F.normalize(pos_tokens, dim=-1)
neg_tokens = F.normalize(neg_tokens, dim=-1)
feats = torch.cat([pos_tokens, neg_tokens], dim=0) # (N, D)
labels = torch.cat([torch.zeros(len(pos_tokens), device=feats.device, dtype=torch.long),
torch.ones(len(neg_tokens), device=feats.device, dtype=torch.long)], dim=0) # (N,)
logits = feats @ feats.T / temperature # (N, N)
logits.fill_diagonal_(-1e4)
mask_pos = labels.unsqueeze(0) == labels.unsqueeze(1) # (N, N)
mask_pos.fill_diagonal_(False)
exp_logits = logits.exp()
denom = exp_logits.sum(dim=1, keepdim=True) # Σ_{a≠i} exp
log_prob = logits - denom.log() # log softmax
loss_i = -(mask_pos * log_prob).sum(1) / mask_pos.sum(1).clamp_min(1)
loss = loss_i.mean()
return loss
def build_point_count_map(feat_maps: torch.Tensor,
pts_norm_list: list[torch.Tensor]) -> torch.Tensor:
assert feat_maps.dim() == 4, "expect NHWC: (B,H,W,D)"
B, H, W, _ = feat_maps.shape
device = feat_maps.device
count_map = torch.zeros((B, H, W), dtype=torch.float32, device=device)
for b in range(B):
pts = pts_norm_list[b].to(device).float() # (Ni, 2)
if pts.numel() == 0:
continue
idx_xy = (pts * torch.tensor([W, H], device=device)).long()
idx_xy[..., 0].clamp_(0, W - 1) # x
idx_xy[..., 1].clamp_(0, H - 1) # y
lin_idx = idx_xy[:, 1] * W + idx_xy[:, 0] # (Ni,)
one = torch.ones_like(lin_idx, dtype=torch.float32)
flat = torch.zeros(H * W, dtype=torch.float32, device=device)
flat.scatter_add_(0, lin_idx, one)
count_map[b] = flat.view(H, W)
return count_map
|