File size: 24,920 Bytes
74af434
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f028c47
 
 
74af434
 
 
 
 
 
f028c47
74af434
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e1cc8c
 
 
 
 
 
f028c47
5e1cc8c
f028c47
5e1cc8c
 
 
 
f028c47
 
5e1cc8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74af434
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e1cc8c
 
9115945
 
74af434
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
# coding=utf-8
"""
Negative Grounding DINO Model for Object Detection with Negative Caption Support.

This module extends the original GroundingDinoForObjectDetection to support negative captions
for improved object detection performance.
"""

import torch
import torch.nn as nn
from typing import Dict, List, Optional, Tuple, Union
from transformers.modeling_outputs import ModelOutput
import torch.nn.functional as F
from .modeling_grounding_dino import (
    GroundingDinoForObjectDetection,
    GroundingDinoObjectDetectionOutput,
    GroundingDinoEncoderOutput,
)


# density_fpn_head.py
import torch
import torch.nn as nn
import torch.nn.functional as F


def _bilinear(x, size):
    return F.interpolate(x, size=size, mode="bilinear", align_corners=False)


class DensityFPNHead(nn.Module):
    def __init__(self,
                 in_channels: int = 512,
                 mid_channels: int = 128,
                 act_layer=nn.ReLU,
                 norm_layer=nn.BatchNorm2d):
        super().__init__()

        # ---- 1×1 lateral convs (P3–P6) ----
        self.lateral = nn.ModuleList([
            nn.Conv2d(in_channels, mid_channels, 1) for _ in range(4)
        ])

        # ---- smooth convs after add ----
        self.smooth = nn.ModuleList([
            nn.Sequential(
                nn.Conv2d(mid_channels, mid_channels, 3, padding=1, bias=False),
                norm_layer(mid_channels),
                act_layer(inplace=True),
            ) for _ in range(3)          # P6→P5, P5→P4, P4→P3
        ])

        self.up_blocks = nn.ModuleList([
            nn.Sequential(
                act_layer(inplace=True),
                nn.Conv2d(mid_channels, mid_channels, 3, padding=1, bias=False),
                norm_layer(mid_channels),
                act_layer(inplace=True),
            ) for _ in range(3)          # 167×94 → … → 1336×752
        ])

        # ---- output 3×3 conv -> 1 ----
        self.out_conv = nn.Conv2d(mid_channels, 1, 3, padding=1, bias=False)

    def forward(self, feats):
        assert len(feats) == 4, "Expect feats list = [P3,P4,P5,P6]"

        # lateral 1×1
        lat = [l(f) for l, f in zip(self.lateral, feats)]

        # top-down FPN fusion
        x = lat[-1]                              # P6
        for i in range(3)[::-1]:                 # P5,P4,P3
            x = _bilinear(x, lat[i].shape[-2:])
            x = x + lat[i]
            x = self.smooth[i](x)

        # three-stage upsample + conv
        for up in self.up_blocks:
            h, w = x.shape[-2], x.shape[-1]
            x = _bilinear(x, (h * 2, w * 2))
            x = up(x)

        x = self.out_conv(x)
        return F.relu(x)


import torch
import torch.nn as nn
import torch.nn.functional as F

def l2norm(x, dim=-1, eps=1e-6):
    return x / (x.norm(dim=dim, keepdim=True) + eps)

# -----------------------------------
# 1) CommonFinderSimple
#    learn r "common prototypes", representing the common representative of positive/negative
#    non fancy: only MHA pooling + two light regularizations (shareability + diversity)
# -----------------------------------
class CommonFinderSimple(nn.Module):
    """
    Inputs:
      Q_pos: [B, K, D]
      Q_neg: [B, K, D]
    Returns:
      C_rows: [B, r, D]   # batch copied r common prototypes (unitized)
      loss:   scalar      # small regularization: shareability + diversity
      stats:  dict
    """
    def __init__(self, d_model=256, r=64, nhead=4,
                 share_w=0.02, div_w=0.02, ln_after=False):
        super().__init__()
        self.r = r
        self.share_w = share_w
        self.div_w = div_w

        proto = torch.randn(r, d_model)
        self.proto = nn.Parameter(l2norm(proto, -1))     # r×D learnable "core queries"
        self.attn  = nn.MultiheadAttention(d_model, nhead, batch_first=True)
        self.post  = nn.Linear(d_model, d_model)
        self.ln    = nn.LayerNorm(d_model) if ln_after else nn.Identity()

    def forward(self, Q_pos: torch.Tensor, Q_neg: torch.Tensor):
        B, K, D = Q_pos.shape
        seeds = self.proto[None].expand(B, -1, -1).contiguous()   # [B,r,D]
        X = torch.cat([Q_pos, Q_neg], dim=1)                      # [B,2K,D]

        # use seeds to do one attention pooling on positive and negative sets, get r "common prototypes"
        C, _ = self.attn(query=seeds, key=X, value=X)             # [B,r,D]
        C = l2norm(self.ln(self.post(C)), -1)                     # unitization

        # ---- Simple regularization: encourage C to be close to both Q_pos and Q_neg, and diverse from each other ----
        # Shareability: average of maximum cosine similarity between C and Q_pos/Q_neg
        cos_pos = torch.einsum('brd,bkd->brk', C, l2norm(Q_pos, -1))  # [B,r,K]
        cos_neg = torch.einsum('brd,bkd->brk', C, l2norm(Q_neg, -1))
        share_term = -(cos_pos.amax(dim=-1).mean() + cos_neg.amax(dim=-1).mean())

        # Diversity: cosine between C should not collapse
        C0 = l2norm(self.proto, -1)                       # [r,D]
        gram = C0 @ C0.t()                                # [r,r]
        div_term = (gram - torch.eye(self.r, device=gram.device)).pow(2).mean()

        loss = self.share_w * share_term + self.div_w * div_term
        stats = {
            'share_term': share_term.detach(),
            'div_term':   div_term.detach(),
            'mean_cos_pos': cos_pos.mean().detach(),
            'mean_cos_neg': cos_neg.mean().detach()
        }
        return C, loss, stats


# -----------------------------------
# 2) NegExclusiveSimple
#    Remove "common" information from negative queries: two simple strategies can be used independently or together
#    (A) Soft removal: subtract the projection onto C (residual keeps non-common)
#    (B) Filtering: only keep the Top-M negative samples least similar to C
# -----------------------------------
class NegExclusiveSimple(nn.Module):
    """
    Inputs:
      Q_neg: [B,K,D]
      C_rows: [B,r,D]   # common prototypes
    Args:
      mode: 'residual' | 'filter' | 'both'
      M:    Top-M for 'filter'
      thresh: Filter threshold (max_cos_neg < thresh to keep), None means only use Top-M
    Returns:
      neg_refs: [B, M_or_K, D]  # as negative reference (for next fusion)
      aux: dict
    """
    def __init__(self, mode='residual', M=16, thresh=None):
        super().__init__()
        assert mode in ('residual', 'filter', 'both')
        self.mode = mode
        self.M = M
        self.thresh = thresh

    def forward(self, Q_neg: torch.Tensor, C_rows: torch.Tensor):
        B, K, D = Q_neg.shape
        r = C_rows.size(1)
        Qn = l2norm(Q_neg, -1)
        C  = l2norm(C_rows, -1)

        sim = torch.einsum('bkd,brd->bkr', Qn, C).amax(dim=-1)   # [B,K]

        outputs = {}
        if self.mode in ('residual', 'both'):
            # proj = (Q · C^T) C  -> [B,K,D]; first weight [B,K,r], then multiply C [B,r,D]
            w = torch.einsum('bkd,brd->bkr', Qn, C)              # [B,K,r]
            proj = torch.einsum('bkr,brd->bkd', w, C)            # [B,K,D]
            neg_resid = l2norm(Qn - proj, -1)                    # non-common residual
            outputs['residual'] = neg_resid

        if self.mode in ('filter', 'both'):
            excl_score = 1.0 - sim                               # large = away from common
            if self.thresh is not None:
                mask = (sim < self.thresh).float()
                excl_score = excl_score * mask + (-1e4) * (1 - mask)
            M = min(self.M, K)
            topv, topi = torch.topk(excl_score, k=M, dim=1)      # [B,M]
            neg_top = torch.gather(Qn, 1, topi.unsqueeze(-1).expand(-1, -1, D))
            outputs['filtered'] = neg_top

        if self.mode == 'residual':
            neg_refs = outputs['residual']
        elif self.mode == 'filter':
            neg_refs = outputs['filtered']
        else:
            R = outputs['residual']                  # [B,K,D]
            excl_score = 1.0 - sim
            M = min(self.M, K)
            topv, topi = torch.topk(excl_score, k=M, dim=1)
            neg_refs = torch.gather(R, 1, topi.unsqueeze(-1).expand(-1, -1, D))  # [B,M,D]

        aux = {
            'mean_sim_to_common': sim.mean().detach(),
            'kept_M': neg_refs.size(1)
        }
        return neg_refs, aux

import torch
import torch.nn as nn
import torch.nn.functional as F

def l2norm(x, dim=-1, eps=1e-6):
    return x / (x.norm(dim=dim, keepdim=True) + eps)

class FusionNoGate(nn.Module):
    """
    Direct fusion (no gating): fuse neg_ref into Q_pos via one cross-attn.
    Variants:
      - 'residual_sub': Q_new = Q_pos - scale * LN(Z)
      - 'residual_add': Q_new = Q_pos + scale * LN(Z)
      - 'concat_linear': Q_new = Q_pos + Linear([Q_pos; Z])
    """
    def __init__(self, d_model=256, nhead=4, fusion_mode='residual_sub',
                 init_scale=0.2, dropout_p=0.0):
        super().__init__()
        assert fusion_mode in ('residual_sub', 'residual_add', 'concat_linear')
        self.fusion_mode = fusion_mode
        self.attn = nn.MultiheadAttention(d_model, nhead, batch_first=True)
        self.ln_z = nn.LayerNorm(d_model)
        self.drop = nn.Dropout(dropout_p) if dropout_p > 0 else nn.Identity()
        self.scale = nn.Parameter(torch.tensor(float(init_scale)))
        if fusion_mode == 'concat_linear':
            self.mix = nn.Linear(2 * d_model, d_model)
            nn.init.zeros_(self.mix.weight)
            nn.init.zeros_(self.mix.bias)

    def forward(self, Q_pos: torch.Tensor, neg_ref: torch.Tensor):
        """
        Q_pos:   [B, K, D]
        neg_ref: [B, M, D]
        return:  Q_new [B, K, D], stats dict
        """
        B, K, D = Q_pos.shape
        M = neg_ref.size(1)
        if M == 0:
            return Q_pos, {'kept': 0, 'scale': self.scale.detach()}

        # 1) Cross-attention:
        Z, attn_w = self.attn(query=Q_pos, key=neg_ref, value=neg_ref)  # Z:[B,K,D]
        Z = self.ln_z(Z)
        Z = self.drop(Z)

        # 2) wo gating
        if self.fusion_mode == 'residual_sub':
            Q_new = Q_pos - self.scale * Z
            # print("z: ", Z.sum())
            # print(torch.abs(Q_new - Q_pos).sum())
        elif self.fusion_mode == 'residual_add':
            Q_new = Q_pos + self.scale * Z
        else:  # 'concat_linear'
            fused = torch.cat([Q_pos, Z], dim=-1)      # [B,K,2D]
            delta = self.mix(fused)                    # [B,K,D]
            Q_new = Q_pos + delta

        stats = {
            'kept': M,
            'attn_mean': attn_w.mean().detach(),
            'fusion_scale': self.scale.detach()
        }
        return Q_new, stats

class QuerySideNegNaive(nn.Module):
    def __init__(self, d_model=256, r=64, M=64, nhead=4,
                 excl_mode='both', excl_thresh=0.5, gamma_max=0.7,
                 share_w=0.02, div_w=0.02):
        super().__init__()
        self.common = CommonFinderSimple(d_model, r, nhead, share_w, div_w)
        self.excl   = NegExclusiveSimple(mode=excl_mode, M=M, thresh=excl_thresh)
        self.fuse = FusionNoGate(d_model=d_model,
                    nhead=4,
                    fusion_mode='residual_sub',   # or 'concat_linear'
                    init_scale=0.25,
                    dropout_p=0.1)

    def forward(self, Q_pos: torch.Tensor, Q_neg: torch.Tensor):
        C_rows, l_common, common_stats = self.common(Q_pos, Q_neg)
        neg_refs, excl_stats = self.excl(Q_neg, C_rows)
        Q_new, fuse_stats = self.fuse(Q_pos, neg_refs)
        loss = l_common
        stats = {}
        stats.update(common_stats); stats.update(excl_stats); stats.update(fuse_stats)
        return Q_new, loss, stats
    
    def set_fusion_scale(self, scale: float):
        del self.fuse.scale
        self.fuse.scale = nn.Parameter(torch.tensor(scale))


class CountEX(GroundingDinoForObjectDetection):
    """
    Grounding DINO Model with negative caption support for improved object detection.
    
    This model extends the original GroundingDinoForObjectDetection by adding
    support for negative captions, which helps improve detection accuracy by
    learning what NOT to detect.
    """
    
    def __init__(self, config):
        super().__init__(config)
        
        # Initialize negative fusion modules directly in __init__
        self.query_side_neg_pipeline = QuerySideNegNaive()
        self.density_head = DensityFPNHead()
        self.config = config
        self.box_threshold = getattr(config, 'box_threshold', 0.4)

    def forward(
        self,
        pixel_values: torch.FloatTensor,
        input_ids: torch.LongTensor,
        token_type_ids: torch.LongTensor = None,
        attention_mask: torch.LongTensor = None,
        pixel_mask: Optional[torch.BoolTensor] = None,
        encoder_outputs: Optional[Union[GroundingDinoEncoderOutput, Tuple]] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        labels: List[Dict[str, Union[torch.LongTensor, torch.FloatTensor]]] = None,
        # Negative prompt parameters
        neg_pixel_values: Optional[torch.FloatTensor] = None,
        neg_input_ids: Optional[torch.LongTensor] = None,
        neg_token_type_ids: Optional[torch.LongTensor] = None,
        neg_attention_mask: Optional[torch.LongTensor] = None,
        neg_pixel_mask: Optional[torch.BoolTensor] = None,
        **kwargs,
    ):  
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        use_neg = kwargs.get('use_neg', True)
        # Get positive outputs
        pos_kwargs = {
            'exemplars': kwargs.get('pos_exemplars', None),
        }
        outputs = self.model(
            pixel_values=pixel_values,
            input_ids=input_ids,
            token_type_ids=token_type_ids,
            attention_mask=attention_mask,
            pixel_mask=pixel_mask,
            encoder_outputs=encoder_outputs,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            **pos_kwargs,
        )

        spatial_shapes = outputs.spatial_shapes
        token_num = 0
        token_num_list = [0]
        for i in range(len(spatial_shapes)):
            token_num += spatial_shapes[i][0] * spatial_shapes[i][1]
            token_num_list.append(token_num.item())
        
        positive_feature_maps = []
        encoder_last_hidden_state_vision = outputs.encoder_last_hidden_state_vision
        for i in range(len(spatial_shapes)):
            feature_map = encoder_last_hidden_state_vision[:, token_num_list[i]:token_num_list[i+1], :]
            spatial_shape = spatial_shapes[i]
            b, t, d = feature_map.shape
            feature_map = feature_map.reshape(b, spatial_shape[0], spatial_shape[1], d)
            positive_feature_maps.append(feature_map)

        # Get negative outputs 
        neg_kwargs = {
            'exemplars': kwargs.get('neg_exemplars', None),
        }
        # print(kwargs)
        neg_outputs = self.model(
            pixel_values=neg_pixel_values,
            input_ids=neg_input_ids,
            token_type_ids=neg_token_type_ids,
            attention_mask=neg_attention_mask,
            pixel_mask=neg_pixel_mask,
            encoder_outputs=encoder_outputs,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            **neg_kwargs,
        )

        neg_encoder_last_hidden_state_vision = neg_outputs.encoder_last_hidden_state_vision
        neg_positive_feature_maps = []
        for i in range(len(spatial_shapes)):
            feature_map = neg_encoder_last_hidden_state_vision[:, token_num_list[i]:token_num_list[i+1], :]
            spatial_shape = spatial_shapes[i]
            b, t, d = feature_map.shape
            feature_map = feature_map.reshape(b, spatial_shape[0], spatial_shape[1], d)
            neg_positive_feature_maps.append(feature_map)

        if return_dict:
            hidden_states = outputs.intermediate_hidden_states
            neg_hidden_states = neg_outputs.intermediate_hidden_states
        else:
            hidden_states = outputs[2]
            neg_hidden_states = neg_outputs[2]
        
        idx = 5 + (1 if output_attentions else 0) + (1 if output_hidden_states else 0)
        enc_text_hidden_state = outputs.encoder_last_hidden_state_text if return_dict else outputs[idx]
        hidden_states = outputs.intermediate_hidden_states if return_dict else outputs[2]
        init_reference_points = outputs.init_reference_points if return_dict else outputs[1]
        inter_references_points = outputs.intermediate_reference_points if return_dict else outputs[3]
        neg_inter_references_points = neg_outputs.intermediate_reference_points if return_dict else neg_outputs[3]
        neg_init_reference_points = neg_outputs.init_reference_points if return_dict else neg_outputs[1]
        neg_enc_text_hidden_state = neg_outputs.encoder_last_hidden_state_text if return_dict else neg_outputs[idx]

        # drop the exemplar tokens if used 
        pos_exemplars = pos_kwargs.get('pos_exemplars', None)
        neg_exemplars = neg_kwargs.get('neg_exemplars', None)
        if pos_exemplars is not None or neg_exemplars is not None or attention_mask.shape[1] != enc_text_hidden_state.shape[1]:
            enc_text_hidden_state = enc_text_hidden_state[:, :enc_text_hidden_state.shape[1] - 3, :]
            neg_enc_text_hidden_state = neg_enc_text_hidden_state[:, :neg_enc_text_hidden_state.shape[1] - 3, :]
        # class logits + predicted bounding boxes
        outputs_classes = []
        outputs_coords = []

        # Apply negative fusion
        if use_neg:
            # print("Using negative fusions")
            #neg_hidden_states = self.negative_semantic_extractor(neg_hidden_states)
            #hidden_states = self.negative_fusion_module(hidden_states, neg_hidden_states)
            hidden_states = hidden_states.squeeze(0)
            neg_hidden_states = neg_hidden_states.squeeze(0)
            hidden_states, extra_loss, logs = self.query_side_neg_pipeline(hidden_states, neg_hidden_states)
            hidden_states = hidden_states.unsqueeze(0)
            neg_hidden_states = neg_hidden_states.unsqueeze(0)
            # print("extra_loss: ", extra_loss)
        else:
            # print("Not using negative fusions")
            extra_loss = None
            logs = None
            # print("Not using negative fusion")
        # print("extra_loss: ", extra_loss)
        
        # predict class and bounding box deltas for each stage
        num_levels = hidden_states.shape[1]
        for level in range(num_levels):
            if level == 0:
                reference = init_reference_points
            else:
                reference = inter_references_points[:, level - 1]
            reference = torch.special.logit(reference, eps=1e-5)

            # print("hidden_states[:, level]: ", hidden_states[:, level].shape)
            # print("enc_text_hidden_state: ", enc_text_hidden_state.shape)
            # print("attention_mask: ", attention_mask.shape)

            assert attention_mask.shape[1] == enc_text_hidden_state.shape[1], "Attention mask and text hidden state have different lengths: {} != {}".format(attention_mask.shape[1], enc_text_hidden_state.shape[1])
            outputs_class = self.class_embed[level](
                vision_hidden_state=hidden_states[:, level],
                text_hidden_state=enc_text_hidden_state,
                text_token_mask=attention_mask.bool(),
            )
            delta_bbox = self.bbox_embed[level](hidden_states[:, level])

            reference_coordinates = reference.shape[-1]
            if reference_coordinates == 4:
                outputs_coord_logits = delta_bbox + reference
            elif reference_coordinates == 2:
                delta_bbox[..., :2] += reference
                outputs_coord_logits = delta_bbox
            else:
                raise ValueError(f"reference.shape[-1] should be 4 or 2, but got {reference.shape[-1]}")
            outputs_coord = outputs_coord_logits.sigmoid()
            outputs_classes.append(outputs_class)
            outputs_coords.append(outputs_coord)
        outputs_class = torch.stack(outputs_classes)
        outputs_coord = torch.stack(outputs_coords)

        logits = outputs_class[-1]
        pred_boxes = outputs_coord[-1]

        # INSERT_YOUR_CODE
        # ==== Get negative branch's logits and pred_boxes ====
        neg_outputs_classes = []
        neg_outputs_coords = []
        for level in range(num_levels):
            if level == 0:
                neg_reference = neg_init_reference_points
            else:
                neg_reference = neg_inter_references_points[:, level - 1]
            neg_reference = torch.special.logit(neg_reference, eps=1e-5)

            neg_outputs_class = self.class_embed[level](
                vision_hidden_state=neg_hidden_states[:, level],
                text_hidden_state=neg_enc_text_hidden_state,
                text_token_mask=neg_attention_mask.bool(),
            )
            neg_delta_bbox = self.bbox_embed[level](neg_hidden_states[:, level])

            neg_reference_coordinates = neg_reference.shape[-1]
            if neg_reference_coordinates == 4:
                neg_outputs_coord_logits = neg_delta_bbox + neg_reference
            elif neg_reference_coordinates == 2:
                neg_delta_bbox[..., :2] += neg_reference
                neg_outputs_coord_logits = neg_delta_bbox
            else:
                raise ValueError(f"neg_reference.shape[-1] should be 4 or 2, but got {neg_reference.shape[-1]}")
            neg_outputs_coord = neg_outputs_coord_logits.sigmoid()
            neg_outputs_classes.append(neg_outputs_class)
            neg_outputs_coords.append(neg_outputs_coord)
        neg_outputs_class = torch.stack(neg_outputs_classes)
        neg_outputs_coord = torch.stack(neg_outputs_coords)

        neg_logits = neg_outputs_class[-1]  
        neg_pred_boxes = neg_outputs_coord[-1]

        loss, loss_dict, auxiliary_outputs = None, None, None
        if not return_dict:
            if auxiliary_outputs is not None:
                output = (logits, pred_boxes) + auxiliary_outputs + outputs
            else:
                output = (logits, pred_boxes) + outputs
            tuple_outputs = ((loss, loss_dict) + output) if loss is not None else output

            return tuple_outputs
        
        all_feats = []
        for pf, npf in zip(positive_feature_maps, neg_positive_feature_maps):
            pf = pf.permute(0, 3, 1, 2)
            npf = npf.permute(0, 3, 1, 2)
            all_feats.append(torch.cat([pf, npf], dim=1))
        
        
        # pos_feat = positive_feature_maps[0].permute(0, 3, 1, 2)
        # neg_feat = neg_positive_feature_maps[0].permute(0, 3, 1, 2)
        # pos_minus_neg_feat = F.relu(pos_feat - neg_feat)
        # density_feat_map = torch.cat([pos_feat, neg_feat, pos_minus_neg_feat], dim=1)
        # density_feat_map = torch.cat([pos_feat, neg_feat], dim=1)
        density_map_pred = self.density_head(all_feats)

        dict_outputs = GroundingDinoObjectDetectionOutput(
            loss=loss,
            loss_dict=loss_dict,
            logits=logits,
            pred_boxes=pred_boxes,
            last_hidden_state=outputs.last_hidden_state,
            auxiliary_outputs=auxiliary_outputs,
            decoder_hidden_states=outputs.decoder_hidden_states,
            decoder_attentions=outputs.decoder_attentions,
            encoder_last_hidden_state_vision=outputs.encoder_last_hidden_state_vision,
            encoder_last_hidden_state_text=outputs.encoder_last_hidden_state_text,
            encoder_vision_hidden_states=outputs.encoder_vision_hidden_states,
            encoder_text_hidden_states=outputs.encoder_text_hidden_states,
            encoder_attentions=outputs.encoder_attentions,
            intermediate_hidden_states=outputs.intermediate_hidden_states,
            intermediate_reference_points=outputs.intermediate_reference_points,
            init_reference_points=outputs.init_reference_points,
            enc_outputs_class=outputs.enc_outputs_class,
            enc_outputs_coord_logits=outputs.enc_outputs_coord_logits,
            spatial_shapes=outputs.spatial_shapes,
            positive_feature_maps=positive_feature_maps,
            negative_feature_maps=neg_positive_feature_maps,
            density_map_pred=density_map_pred,
            extra_loss=extra_loss,
            extra_logs=logs,
            neg_logits=neg_logits,
            neg_pred_boxes=neg_pred_boxes,
            pos_queries=hidden_states,
            neg_queries=neg_hidden_states,
        )

        return dict_outputs