Spaces:
Sleeping
Sleeping
File size: 11,965 Bytes
74af434 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
# mmdet to groundingdino
import argparse
from collections import OrderedDict
import torch
from mmengine.runner import CheckpointLoader
# convert the functions from mmdet to groundingdino
def correct_unfold_reduction_order(x):
out_channel, in_channel = x.shape
x = x.reshape(out_channel, in_channel // 4, 4).transpose(1, 2)
x = x[:, [0, 2, 1, 3], :]
x = x.reshape(out_channel, in_channel)
return x
def correct_unfold_norm_order(x):
in_channel = x.shape[0]
x = x.reshape(in_channel // 4, 4).transpose(0, 1)
x = x[[0, 2, 1, 3], :]
x = x.reshape(in_channel)
return x
def convert(ckpt):
"""Inverse mapping of checkpoint parameters to their original names."""
# Create a dictionary to hold the reversed checkpoint
new_ckpt = OrderedDict()
for k, v in list(ckpt.items()):
new_v = v # Start with the original value
# Inverse rules based on the convert function (from specific to general)
if k.startswith('decoder'):
new_k = k.replace('decoder', 'module.transformer.decoder')
if 'norms.2' in new_k:
new_k = new_k.replace('norms.2', 'norm1')
if 'norms.1' in new_k:
new_k = new_k.replace('norms.1', 'catext_norm')
if 'norms.0' in new_k:
new_k = new_k.replace('norms.0', 'norm2')
if 'norms.3' in new_k:
new_k = new_k.replace('norms.3', 'norm3')
if 'cross_attn_text' in new_k:
new_k = new_k.replace('cross_attn_text', 'ca_text')
new_k = new_k.replace('attn.in_proj_weight', 'in_proj_weight')
new_k = new_k.replace('attn.in_proj_bias', 'in_proj_bias')
new_k = new_k.replace('attn.out_proj.weight', 'out_proj.weight')
new_k = new_k.replace('attn.out_proj.bias', 'out_proj.bias')
if 'ffn.layers.0.0' in new_k:
new_k = new_k.replace('ffn.layers.0.0', 'linear1')
if 'ffn.layers.1' in new_k:
new_k = new_k.replace('ffn.layers.1', 'linear2')
if 'self_attn.attn' in new_k:
new_k = new_k.replace('self_attn.attn', 'self_attn')
new_ckpt[new_k] = new_v # Add the key and value to the original checkpoint dict
#########################################################################
# encoder部分最后的reg_layer_id是6,和decoder区分开来
elif k.startswith('bbox_head.reg_branches.6'):
if k.startswith('bbox_head.reg_branches.6.0'):
new_k = k.replace('bbox_head.reg_branches.6.0',
'module.transformer.enc_out_bbox_embed.layers.0')
if k.startswith('bbox_head.reg_branches.6.2'):
new_k = k.replace('bbox_head.reg_branches.6.2',
'module.transformer.enc_out_bbox_embed.layers.1')
if k.startswith('bbox_head.reg_branches.6.4'):
new_k = k.replace('bbox_head.reg_branches.6.4',
'module.transformer.enc_out_bbox_embed.layers.2')
new_ckpt[new_k] = new_v # Add the key and value to the original checkpoint dict
#########################################################################
elif k.startswith('query_embedding'):
new_k = k.replace('query_embedding', 'module.transformer.tgt_embed')
new_ckpt[new_k] = new_v # Add the key and value to the original checkpoint dict
#########################################################################
elif k.startswith('bbox_head.reg_branches'):
# mmdet直接省略了参数名的一部分,需要查看groundingdino的checkpoint
# groundingdino有两部分参数值是一致的
# 分别是module.bbox_embed和module.transformer.decoder.embed
# 所以mmdet直接将两部分参数进行了“合并”
reg_layer_id = int(k.split('.')[2])
linear_id = int(k.split('.')[3])
weight_or_bias = k.split('.')[-1]
new_k1 = 'module.transformer.decoder.bbox_embed.' + \
str(reg_layer_id) + '.layers.' + str(linear_id // 2) + '.' + weight_or_bias
new_k2 = 'module.bbox_embed.' + \
str(reg_layer_id) + '.layers.' + str(linear_id // 2) + '.' + weight_or_bias
new_ckpt[new_k1] = new_v # Add the key and value to the original checkpoint dict
new_ckpt[new_k2] = new_v # Add the key and value to the original checkpoint dict
#########################################################################
elif k.startswith('bbox_head.cls_branches.6'):
# mmdet在contrastive_embed中添加了bias项
# 但是decoder应该是0~5,所以6应该是采取两阶段微调后对应的enc_out.class_embed
new_k = 'module.transformer.enc_out_class_embed.bias'
new_ckpt[new_k] = new_v # Add the key and value to the original checkpoint dict
#########################################################################
elif k.startswith('bbox_head.cls_branches'):
# mmdet在contrastive_embed中添加了bias项
new_k1 = 'module.transformer.decoder.class_embed.' + k[-6:]
new_k2 = 'module.class_embed.' + k[-6:]
new_ckpt[new_k1] = new_v # Add the key and value to the original checkpoint dict
new_ckpt[new_k2] = new_v # Add the key and value to the original checkpoint dict
#########################################################################
elif k.startswith('memory_trans_'):
if k.startswith('memory_trans_fc'):
new_k = k.replace('memory_trans_fc', 'module.transformer.enc_output')
elif k.startswith('memory_trans_norm'):
new_k = k.replace('memory_trans_norm', 'module.transformer.enc_output_norm')
new_ckpt[new_k] = new_v # Add the key and value to the original checkpoint dict
#########################################################################
elif k.startswith('encoder'):
new_k = k.replace('encoder', 'module.transformer.encoder')
new_k = new_k.replace('norms.0', 'norm1')
new_k = new_k.replace('norms.1', 'norm2')
new_k = new_k.replace('norms.2', 'norm3')
new_k = new_k.replace('ffn.layers.0.0', 'linear1')
new_k = new_k.replace('ffn.layers.1', 'linear2')
if 'text_layers' in new_k:
new_k = new_k.replace('self_attn.attn', 'self_attn')
new_ckpt[new_k] = new_v # Add the key and value to the original checkpoint dict
#########################################################################
elif k.startswith('level_embed'):
new_k = k.replace('level_embed', 'module.transformer.level_embed')
new_ckpt[new_k] = new_v # Add the key and value to the original checkpoint dict
#########################################################################
elif k.startswith('neck.convs'):
new_k = k.replace('neck.convs', 'module.input_proj')
new_k = new_k.replace('neck.extra_convs.0', 'neck.convs.3')
new_k = new_k.replace('conv.weight', '0.weight')
new_k = new_k.replace('conv.bias', '0.bias')
new_k = new_k.replace('gn.weight', '1.weight')
new_k = new_k.replace('gn.bias', '1.bias')
new_ckpt[new_k] = new_v # Add the key and value to the original checkpoint dict
#########################################################################
elif 'neck.extra_convs.0' in k:
new_k = k.replace('neck.extra_convs.0', 'neck.convs.3')
new_k = new_k.replace('neck.convs', 'module.input_proj')
new_k = new_k.replace('conv.weight', '0.weight')
new_k = new_k.replace('conv.bias', '0.bias')
new_k = new_k.replace('gn.weight', '1.weight')
new_k = new_k.replace('gn.bias', '1.bias')
new_ckpt[new_k] = new_v # Add the key and value to the original checkpoint dict
#########################################################################
elif k.startswith('text_feat_map'):
new_k = k.replace('text_feat_map', 'module.feat_map')
new_ckpt[new_k] = new_v # Add the key and value to the original checkpoint dict
#########################################################################
elif k.startswith('language_model.language_backbone.body.model'):
new_k = k.replace('language_model.language_backbone.body.model', 'module.bert')
new_ckpt[new_k] = new_v # Add the key and value to the original checkpoint dict
#########################################################################
elif k.startswith('backbone'):
new_k = k.replace('backbone', 'module.backbone.0')
if 'patch_embed.projection' in new_k:
new_k = new_k.replace('patch_embed.projection', 'patch_embed.proj')
elif 'drop_after_pos' in new_k:
new_k = new_k.replace('drop_after_pos', 'pos_drop')
if 'stages' in new_k:
new_k = new_k.replace('stages', 'layers')
if 'ffn.layers.0.0' in new_k:
new_k = new_k.replace('ffn.layers.0.0', 'mlp.fc1')
elif 'ffn.layers.1' in new_k:
new_k = new_k.replace('ffn.layers.1', 'mlp.fc2')
elif 'attn.w_msa' in new_k:
new_k = new_k.replace('attn.w_msa', 'attn')
if 'downsample' in k:
if 'reduction.' in k:
new_v = correct_unfold_reduction_order(v)
elif 'norm.' in k:
new_v = correct_unfold_norm_order(v)
new_ckpt[new_k] = new_v # Add the key and value to the original checkpoint dict
#########################################################################
else:
print('skip:', k)
continue
# if 'module.transformer.decoder.bbox_embed' in new_k:
# new_k = new_k.replace('module.transformer.decoder.bbox_embed', 'module.bbox_embed')
# if new_k.startswith('module'):
# new_k = new_k.replace('module.', '')
return new_ckpt
def main():
parser = argparse.ArgumentParser(
description='Convert keys to GroundingDINO style.')
parser.add_argument(
'src',
nargs='?',
default='grounding_dino_swin-t_pretrain_obj365_goldg_v3det_20231218_095741-e316e297.pth',
help='src model path or url')
# The dst path must be a full path of the new checkpoint.
parser.add_argument(
'dst',
nargs='?',
default='check_mmdet_to_groundingdino.pth',
help='save path')
args = parser.parse_args()
checkpoint = CheckpointLoader.load_checkpoint(args.src, map_location='cpu')
# mmdet中是state_dict而不是model
if 'state_dict' in checkpoint:
state_dict = checkpoint['state_dict']
else:
state_dict = checkpoint
weight = convert(state_dict)
torch.save(weight, args.dst)
# sha = subprocess.check_output(['sha256sum', args.dst]).decode()
# sha = calculate_sha256(args.dst)
# final_file = args.dst.replace('.pth', '') + '-{}.pth'.format(sha[:8])
# subprocess.Popen(['mv', args.dst, final_file])
print(f'Done!!, save to {args.dst}')
if __name__ == '__main__':
main()
# skip: dn_query_generator.label_embedding.weight |