CountEx / app.py
yifehuang97's picture
Update app.py
2eb5123 verified
raw
history blame
23.3 kB
import os
import json
import gradio as gr
import torch
from PIL import Image, ImageDraw
from transformers import GroundingDinoProcessor
from hf_model import CountEX
from utils import post_process_grounded_object_detection, post_process_grounded_object_detection_with_queries
import google.generativeai as genai
# Global variables for model and processor
model = None
processor = None
device = None
# Configure Gemini
genai.configure(api_key='AIzaSyApqa65vVYTmw4FC4wP-6-_xpBLxXdctxE')
gemini_model = genai.GenerativeModel("gemini-2.0-flash")
PARSING_PROMPT = """Parse sentences of the form "Count A, not B" into two listsβ€”A (include) and B (exclude)β€”splitting on "and", "or", and commas, and reattaching shared head nouns (e.g., "red and black beans" β†’ "red beans", "black beans").
Rules:
- Remove from B items that are equivalent to items in A (synonyms/variants/abbreviations/regional terms)
- Keep B items that are more specific than A (for fine-grained exclusion)
- If B is more general than A but shares the head noun, remove B (contradictory)
Case 1 β€” Different head nouns β†’ Keep B
Example 1: Count green apples and red beans, not yellow screws and white rice β†’ A: ["green apples", "red beans"], B: ["yellow screws", "white rice"]
Example 2: Count black beans, not poker chips or nails β†’ A: ["black beans"], B: ["poker chips", "nails"]
Case 2 β€” Equivalent items β†’ Remove from B
Example 1: Count fries and TV, not chips and television β†’ A: ["fries", "TV"], B: []
Example 2: Count garbanzo beans and couch, not chickpeas and sofa β†’ A: ["garbanzo beans", "couch"], B: []
Case 3 β€” B more specific than A β†’ Keep B (for fine-grained exclusion)
Example 1: Count apples and beans, not green apples and black beans β†’ A: ["apples", "beans"], B: ["green apples", "black beans"]
Example 2: Count beans, not white beans or yellow beans β†’ A: ["beans"], B: ["white beans", "yellow beans"]
Example 3: Count people, not women β†’ A: ["people"], B: ["women"]
Case 4 β€” B more general than A β†’ Remove B (contradictory)
Example 1: Count green apples, not apples β†’ A: ["green apples"], B: []
Example 2: Count red beans and green apples, not beans and apples β†’ A: ["red beans", "green apples"], B: []
User instruction: {instruction}
Respond ONLY with a JSON object in this exact format, no other text:
{{"A": ["item1", "item2"], "B": ["item3"]}}
"""
def parse_counting_instruction(instruction: str) -> tuple[str, str]:
"""
Parse natural language counting instruction using Gemini 2.0 Flash.
Args:
instruction: Natural language instruction like "count apples, not green apples"
Returns:
tuple: (positive_caption, negative_caption)
"""
try:
prompt = PARSING_PROMPT.format(instruction=instruction)
response = gemini_model.generate_content(prompt)
response_text = response.text.strip()
# Clean up response - remove markdown code blocks if present
if response_text.startswith("```"):
response_text = response_text.split("```")[1]
if response_text.startswith("json"):
response_text = response_text[4:]
response_text = response_text.strip()
result = json.loads(response_text)
# Convert lists to caption strings
pos_items = result.get("A", [])
neg_items = result.get("B", [])
# Join items with " and " and add period
pos_caption = " and ".join(pos_items) + "." if pos_items else ""
neg_caption = " and ".join(neg_items) + "." if neg_items else "None."
return pos_caption, neg_caption
except Exception as e:
print(f"Error parsing instruction: {e}")
# Fallback: treat entire instruction as positive caption
return instruction.strip() + ".", "None."
def load_model():
"""Load model and processor once at startup"""
global model, processor, device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load model - change path for HF Spaces
model_id = "yifehuang97/CountEX-KC-v2" # Change to your HF model repo
model = CountEX.from_pretrained(model_id, token=os.environ.get("HF_TOKEN"))
model = model.to(torch.bfloat16)
model = model.to(device)
model.eval()
# Load processor
processor_id = "fushh7/llmdet_swin_tiny_hf"
processor = GroundingDinoProcessor.from_pretrained(processor_id)
return model, processor, device
import numpy as np
def discriminative_point_suppression(
points,
neg_points,
pos_queries, # (N, D) numpy array
neg_queries, # (M, D) numpy array
image_size,
pixel_threshold=5,
similarity_threshold=0.3,
):
"""
Discriminative Point Suppression (DPS):
Step 1: Find spatially closest negative point for each positive point
Step 2: If distance < pixel_threshold, check query similarity
Step 3: Suppress only if query similarity > similarity_threshold
This two-stage design ensures suppression only when predictions are
both spatially overlapping AND semantically conflicting.
Args:
points: List of [x, y] positive points (normalized, 0-1)
neg_points: List of [x, y] negative points (normalized, 0-1)
pos_queries: (N, D) query embeddings for positive predictions
neg_queries: (M, D) query embeddings for negative predictions
image_size: (width, height) in pixels
pixel_threshold: spatial distance threshold in pixels
similarity_threshold: cosine similarity threshold for semantic conflict
Returns:
filtered_points: points after suppression
filtered_indices: indices of kept points
suppression_info: dict with detailed suppression decisions
"""
if not neg_points or not points:
return points, list(range(len(points))), {}
width, height = image_size
N, M = len(points), len(neg_points)
# === Step 1: Spatial Matching ===
points_arr = np.array(points) * np.array([width, height]) # (N, 2)
neg_points_arr = np.array(neg_points) * np.array([width, height]) # (M, 2)
# Compute pairwise distances
spatial_dist = np.linalg.norm(
points_arr[:, None, :] - neg_points_arr[None, :, :], axis=-1
) # (N, M)
# Find nearest negative for each positive
nearest_neg_idx = spatial_dist.argmin(axis=1) # (N,)
nearest_neg_dist = spatial_dist.min(axis=1) # (N,)
# Check spatial condition
spatially_close = nearest_neg_dist < pixel_threshold # (N,)
# === Step 2: Query Similarity Check (only for spatially close pairs) ===
# Normalize queries
pos_q = pos_queries / (np.linalg.norm(pos_queries, axis=-1, keepdims=True) + 1e-8)
neg_q = neg_queries / (np.linalg.norm(neg_queries, axis=-1, keepdims=True) + 1e-8)
# Compute similarity only for matched pairs
matched_neg_q = neg_q[nearest_neg_idx] # (N, D)
query_sim = (pos_q * matched_neg_q).sum(axis=-1) # (N,) cosine similarity
# Check semantic condition
semantically_similar = query_sim > similarity_threshold # (N,)
# === Step 3: Joint Decision ===
# Suppress only if BOTH conditions are met
should_suppress = spatially_close & semantically_similar # (N,)
# === Filter ===
keep_mask = ~should_suppress
filtered_points = np.array(points)[keep_mask].tolist()
filtered_indices = np.where(keep_mask)[0].tolist()
# === Suppression Info ===
suppression_info = {
"nearest_neg_idx": nearest_neg_idx.tolist(),
"nearest_neg_dist": nearest_neg_dist.tolist(),
"query_similarity": query_sim.tolist(),
"spatially_close": spatially_close.tolist(),
"semantically_similar": semantically_similar.tolist(),
"suppressed_indices": np.where(should_suppress)[0].tolist(),
}
return filtered_points, filtered_indices, suppression_info
def count_objects(image, instruction, box_threshold, point_radius, point_color):
"""
Main inference function for counting objects
Args:
image: Input PIL Image
instruction: Natural language instruction (e.g., "count apples, not green apples")
box_threshold: Detection confidence threshold
point_radius: Radius of visualization points
point_color: Color of visualization points
Returns:
Annotated image, count, and parsed captions
"""
global model, processor, device
if model is None:
load_model()
# Parse instruction using Gemini
pos_caption, neg_caption = parse_counting_instruction(instruction)
parsed_info = f"Positive: {pos_caption}\nNegative: {neg_caption}"
# Ensure image is RGB
if image.mode != "RGB":
image = image.convert("RGB")
# Process positive caption
pos_inputs = processor(
images=image,
text=pos_caption,
return_tensors="pt",
padding=True
)
pos_inputs = pos_inputs.to(device)
pos_inputs['pixel_values'] = pos_inputs['pixel_values'].to(torch.bfloat16)
# Process negative caption
use_neg = bool(neg_caption and neg_caption.strip() and neg_caption != '.' and neg_caption != 'None.')
if not use_neg:
neg_caption = "None."
neg_inputs = processor(
images=image,
text=neg_caption,
return_tensors="pt",
padding=True
)
neg_inputs = {k: v.to(device) for k, v in neg_inputs.items()}
neg_inputs['pixel_values'] = neg_inputs['pixel_values'].to(torch.bfloat16)
# Add negative inputs to positive inputs dict
pos_inputs['neg_token_type_ids'] = neg_inputs['token_type_ids']
pos_inputs['neg_attention_mask'] = neg_inputs['attention_mask']
pos_inputs['neg_pixel_mask'] = neg_inputs['pixel_mask']
pos_inputs['neg_pixel_values'] = neg_inputs['pixel_values']
pos_inputs['neg_input_ids'] = neg_inputs['input_ids']
pos_inputs['use_neg'] = True
# Run inference
with torch.no_grad():
outputs = model(**pos_inputs)
# Post-process outputs
outputs["pred_points"] = outputs["pred_boxes"][:, :, :2]
outputs["pred_logits"] = outputs["logits"]
threshold = box_threshold if box_threshold > 0 else model.box_threshold
pos_queries = outputs["pos_queries"].squeeze(0).float()
neg_queries = outputs["neg_queries"].squeeze(0).float()
pos_queries = pos_queries[-1].squeeze(0)
neg_queries = neg_queries[-1].squeeze(0)
pos_queries = pos_queries.unsqueeze(0)
neg_queries = neg_queries.unsqueeze(0)
results = post_process_grounded_object_detection_with_queries(outputs, pos_queries, box_threshold=threshold)[0]
boxes = results["boxes"]
boxes = [box.tolist() for box in boxes]
points = [[box[0], box[1]] for box in boxes]
# Negative prediction
neg_points = []
neg_results = None
if "neg_pred_boxes" in outputs and "neg_logits" in outputs:
neg_outputs = outputs.copy()
neg_outputs["pred_boxes"] = outputs["neg_pred_boxes"]
neg_outputs["logits"] = outputs["neg_logits"]
neg_outputs["pred_points"] = outputs["neg_pred_boxes"][:, :, :2]
neg_outputs["pred_logits"] = outputs["neg_logits"]
neg_results = post_process_grounded_object_detection_with_queries(neg_outputs, neg_queries, box_threshold=threshold)[0]
neg_boxes = neg_results["boxes"]
neg_boxes = [box.tolist() for box in neg_boxes]
neg_points = [[box[0], box[1]] for box in neg_boxes]
pos_queries_np = results["queries"].cpu().numpy()
neg_queries_np = neg_results["queries"].cpu().numpy() if neg_results else np.array([])
img_size = image.size
if len(neg_points) > 0 and len(neg_queries_np) > 0:
filtered_points, kept_indices, suppression_info = discriminative_point_suppression(
points,
neg_points,
pos_queries_np,
neg_queries_np,
image_size=img_size,
pixel_threshold=5,
similarity_threshold=0.3,
)
filtered_boxes = [boxes[i] for i in kept_indices]
else:
filtered_points = points
filtered_boxes = boxes
points = filtered_points
boxes = filtered_boxes
# Visualize results
img_w, img_h = image.size
img_draw = image.copy()
draw = ImageDraw.Draw(img_draw)
for point in points:
x = point[0] * img_w
y = point[1] * img_h
draw.ellipse(
[x - point_radius, y - point_radius, x + point_radius, y + point_radius],
fill=point_color
)
count = len(points)
return img_draw, f"Count: {count}", parsed_info
def count_objects_manual(image, pos_caption, neg_caption, box_threshold, point_radius, point_color):
"""
Manual mode: directly use provided positive and negative captions.
"""
global model, processor, device
if model is None:
load_model()
# Ensure captions end with period
if pos_caption and not pos_caption.endswith('.'):
pos_caption = pos_caption + '.'
if neg_caption and not neg_caption.endswith('.'):
neg_caption = neg_caption + '.'
if not neg_caption or neg_caption.strip() == '':
neg_caption = "None."
parsed_info = f"Positive: {pos_caption}\nNegative: {neg_caption}"
# Ensure image is RGB
if image.mode != "RGB":
image = image.convert("RGB")
# Process positive caption
pos_inputs = processor(
images=image,
text=pos_caption,
return_tensors="pt",
padding=True
)
pos_inputs = pos_inputs.to(device)
pos_inputs['pixel_values'] = pos_inputs['pixel_values'].to(torch.bfloat16)
# Process negative caption
use_neg = bool(neg_caption and neg_caption.strip() and neg_caption != '.' and neg_caption != 'None.')
if not use_neg:
neg_caption = "None."
neg_inputs = processor(
images=image,
text=neg_caption,
return_tensors="pt",
padding=True
)
neg_inputs = {k: v.to(device) for k, v in neg_inputs.items()}
neg_inputs['pixel_values'] = neg_inputs['pixel_values'].to(torch.bfloat16)
# Add negative inputs to positive inputs dict
pos_inputs['neg_token_type_ids'] = neg_inputs['token_type_ids']
pos_inputs['neg_attention_mask'] = neg_inputs['attention_mask']
pos_inputs['neg_pixel_mask'] = neg_inputs['pixel_mask']
pos_inputs['neg_pixel_values'] = neg_inputs['pixel_values']
pos_inputs['neg_input_ids'] = neg_inputs['input_ids']
pos_inputs['use_neg'] = True
# Run inference
with torch.no_grad():
outputs = model(**pos_inputs)
# Post-process outputs
outputs["pred_points"] = outputs["pred_boxes"][:, :, :2]
outputs["pred_logits"] = outputs["logits"]
threshold = box_threshold if box_threshold > 0 else model.box_threshold
pos_queries = outputs["pos_queries"].squeeze(0).float()
neg_queries = outputs["neg_queries"].squeeze(0).float()
pos_queries = pos_queries[-1].squeeze(0)
neg_queries = neg_queries[-1].squeeze(0)
pos_queries = pos_queries.unsqueeze(0)
neg_queries = neg_queries.unsqueeze(0)
results = post_process_grounded_object_detection_with_queries(outputs, pos_queries, box_threshold=threshold)[0]
boxes = results["boxes"]
boxes = [box.tolist() for box in boxes]
points = [[box[0], box[1]] for box in boxes]
# Negative prediction
neg_points = []
neg_results = None
if "neg_pred_boxes" in outputs and "neg_logits" in outputs:
neg_outputs = outputs.copy()
neg_outputs["pred_boxes"] = outputs["neg_pred_boxes"]
neg_outputs["logits"] = outputs["neg_logits"]
neg_outputs["pred_points"] = outputs["neg_pred_boxes"][:, :, :2]
neg_outputs["pred_logits"] = outputs["neg_logits"]
neg_results = post_process_grounded_object_detection_with_queries(neg_outputs, neg_queries, box_threshold=threshold)[0]
neg_boxes = neg_results["boxes"]
neg_boxes = [box.tolist() for box in neg_boxes]
neg_points = [[box[0], box[1]] for box in neg_boxes]
pos_queries_np = results["queries"].cpu().numpy()
neg_queries_np = neg_results["queries"].cpu().numpy() if neg_results else np.array([])
img_size = image.size
if len(neg_points) > 0 and len(neg_queries_np) > 0:
filtered_points, kept_indices, suppression_info = discriminative_point_suppression(
points,
neg_points,
pos_queries_np,
neg_queries_np,
image_size=img_size,
pixel_threshold=5,
similarity_threshold=0.3,
)
filtered_boxes = [boxes[i] for i in kept_indices]
else:
filtered_points = points
filtered_boxes = boxes
points = filtered_points
boxes = filtered_boxes
# Visualize results
img_w, img_h = image.size
img_draw = image.copy()
draw = ImageDraw.Draw(img_draw)
for point in points:
x = point[0] * img_w
y = point[1] * img_h
draw.ellipse(
[x - point_radius, y - point_radius, x + point_radius, y + point_radius],
fill=point_color
)
count = len(points)
return img_draw, f"Count: {count}", parsed_info
# Create Gradio interface
def create_demo():
with gr.Blocks(title="CountEx: Discriminative Visual Counting") as demo:
gr.Markdown("""
# CountEx: Fine-Grained Counting via Exemplars and Exclusion
Count specific objects in images using text prompts with exclusion capability.
""")
# State to track current input mode
current_mode = gr.State(value="natural_language")
with gr.Row():
# Left column - Input
with gr.Column(scale=1):
input_image = gr.Image(type="pil", label="Input Image")
with gr.Tabs() as input_tabs:
# Tab 1: Natural Language Input
with gr.TabItem("Natural Language", id=0) as tab_nl:
instruction = gr.Textbox(
label="Counting Instruction",
placeholder="e.g., Count apples, not green apples",
value="Count apples, not green apples",
lines=2
)
gr.Markdown("""
**Examples:**
- "Count apples, not green apples"
- "Count red and black beans, exclude white beans"
- "Count people, not women"
""")
# Tab 2: Manual Input
with gr.TabItem("Manual Input", id=1) as tab_manual:
pos_caption = gr.Textbox(
label="Positive Prompt (objects to count)",
placeholder="e.g., apple",
value="apple."
)
neg_caption = gr.Textbox(
label="Negative Prompt (objects to exclude)",
placeholder="e.g., green apple",
value="None."
)
# Single submit button outside tabs
submit_btn = gr.Button("Count Objects", variant="primary", size="lg")
# Shared settings
with gr.Accordion("Advanced Settings", open=False):
box_threshold = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.42,
step=0.01,
label="Detection Threshold"
)
point_radius = gr.Slider(
minimum=1,
maximum=20,
value=5,
step=1,
label="Point Radius"
)
point_color = gr.Dropdown(
choices=["blue", "red", "green", "yellow", "cyan", "magenta", "white"],
value="blue",
label="Point Color"
)
# Right column - Output
with gr.Column(scale=1):
output_image = gr.Image(type="pil", label="Result")
count_output = gr.Textbox(label="Count Result")
parsed_output = gr.Textbox(label="Parsed Captions", lines=2)
# Examples for Natural Language mode
gr.Markdown("### Examples (Natural Language)")
gr.Examples(
examples=[
["examples/apples.png", "Count apples, not green apples"],
["examples/apples.png", "Count apples, exclude red apples"],
["examples/apples.png", "Count apples, exclude green apples"],
["examples/apple.jpg", "Count green apples"],
["examples/apple.jpg", "Count apples, exclude red apples"],
["examples/apple.jpg", "Count apples, exclude green apples"],
["examples/black_beans.jpg", "Count black beans and soy beans"],
["examples/candy.jpg", "Count brown coffee candy, exclude black coffee candy"],
["examples/strawberry.jpg", "Count blueberries and strawberry"],
["examples/strawberry2.jpg", "Count blueberries, exclude strawberry"],
["examples/women.jpg", "Count people, not women"],
["examples/women.jpg", "Count people, not man"],
["examples/boat-1.jpg", "Count boats, exclude blue boats"],
["examples/boat-1.jpg", "Count boats, exclude red boats"],
],
inputs=[input_image, instruction],
outputs=[output_image, count_output, parsed_output],
fn=count_objects,
cache_examples=False,
)
# Update mode when tab changes
def set_mode_nl():
return "natural_language"
def set_mode_manual():
return "manual"
tab_nl.select(fn=set_mode_nl, outputs=[current_mode])
tab_manual.select(fn=set_mode_manual, outputs=[current_mode])
# Unified handler that routes based on mode
def handle_submit(mode, image, instr, pos_cap, neg_cap, threshold, radius, color):
if mode == "natural_language":
return count_objects(image, instr, threshold, radius, color)
else:
return count_objects_manual(image, pos_cap, neg_cap, threshold, radius, color)
# Single button click handler
submit_btn.click(
fn=handle_submit,
inputs=[current_mode, input_image, instruction, pos_caption, neg_caption,
box_threshold, point_radius, point_color],
outputs=[output_image, count_output, parsed_output]
)
return demo
if __name__ == "__main__":
# Load model at startup
print("Loading model...")
load_model()
print("Model loaded!")
# Create and launch demo
demo = create_demo()
demo.launch()