Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,410 +1,410 @@
|
|
| 1 |
-
import os
|
| 2 |
-
import gradio as gr
|
| 3 |
-
import torch
|
| 4 |
-
from PIL import Image, ImageDraw
|
| 5 |
-
from transformers import GroundingDinoProcessor
|
| 6 |
-
from hf_model import CountEX
|
| 7 |
-
from utils import post_process_grounded_object_detection, post_process_grounded_object_detection_with_queries
|
| 8 |
-
|
| 9 |
-
# Global variables for model and processor
|
| 10 |
-
model = None
|
| 11 |
-
processor = None
|
| 12 |
-
device = None
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
def load_model():
|
| 16 |
-
"""Load model and processor once at startup"""
|
| 17 |
-
global model, processor, device
|
| 18 |
-
|
| 19 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 20 |
-
|
| 21 |
-
# Load model - change path for HF Spaces
|
| 22 |
-
model_id = "yifehuang97/
|
| 23 |
-
model = CountEX.from_pretrained(model_id, token=os.environ.get("HF_TOKEN"))
|
| 24 |
-
model = model.to(torch.bfloat16)
|
| 25 |
-
model = model.to(device)
|
| 26 |
-
model.eval()
|
| 27 |
-
|
| 28 |
-
# Load processor
|
| 29 |
-
processor_id = "fushh7/llmdet_swin_tiny_hf"
|
| 30 |
-
processor = GroundingDinoProcessor.from_pretrained(processor_id)
|
| 31 |
-
|
| 32 |
-
return model, processor, device
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
import numpy as np
|
| 36 |
-
|
| 37 |
-
def filter_points_by_negative(points, neg_points, image_size, pixel_threshold=5):
|
| 38 |
-
"""
|
| 39 |
-
Filter out positive points that are too close to any negative point.
|
| 40 |
-
|
| 41 |
-
Args:
|
| 42 |
-
points: List of [x, y] positive points (normalized coordinates, 0-1)
|
| 43 |
-
neg_points: List of [x, y] negative points (normalized coordinates, 0-1)
|
| 44 |
-
image_size: Tuple of (width, height) in pixels
|
| 45 |
-
pixel_threshold: Minimum distance threshold in pixels
|
| 46 |
-
|
| 47 |
-
Returns:
|
| 48 |
-
filtered_points: List of points that are far enough from all negative points
|
| 49 |
-
filtered_indices: Indices of the kept points in the original list
|
| 50 |
-
"""
|
| 51 |
-
if not neg_points or not points:
|
| 52 |
-
return points, list(range(len(points)))
|
| 53 |
-
|
| 54 |
-
width, height = image_size
|
| 55 |
-
|
| 56 |
-
points_arr = np.array(points) # (N, 2) normalized
|
| 57 |
-
neg_points_arr = np.array(neg_points) # (M, 2) normalized
|
| 58 |
-
|
| 59 |
-
# Convert to pixel coordinates
|
| 60 |
-
points_pixel = points_arr * np.array([width, height]) # (N, 2)
|
| 61 |
-
neg_points_pixel = neg_points_arr * np.array([width, height]) # (M, 2)
|
| 62 |
-
|
| 63 |
-
# Compute pairwise distances in pixels: (N, M)
|
| 64 |
-
diff = points_pixel[:, None, :] - neg_points_pixel[None, :, :]
|
| 65 |
-
distances = np.linalg.norm(diff, axis=-1) # (N, M)
|
| 66 |
-
|
| 67 |
-
# Find minimum distance to any negative point for each positive point
|
| 68 |
-
min_distances = distances.min(axis=1) # (N,)
|
| 69 |
-
|
| 70 |
-
# Keep points where min distance > threshold
|
| 71 |
-
keep_mask = min_distances > pixel_threshold
|
| 72 |
-
|
| 73 |
-
filtered_points = points_arr[keep_mask].tolist()
|
| 74 |
-
filtered_indices = np.where(keep_mask)[0].tolist()
|
| 75 |
-
|
| 76 |
-
return filtered_points, filtered_indices
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
import numpy as np
|
| 80 |
-
|
| 81 |
-
def discriminative_point_suppression(
|
| 82 |
-
points,
|
| 83 |
-
neg_points,
|
| 84 |
-
pos_queries, # (N, D) numpy array
|
| 85 |
-
neg_queries, # (M, D) numpy array
|
| 86 |
-
image_size,
|
| 87 |
-
pixel_threshold=5,
|
| 88 |
-
similarity_threshold=0.3,
|
| 89 |
-
):
|
| 90 |
-
"""
|
| 91 |
-
Discriminative Point Suppression (DPS):
|
| 92 |
-
|
| 93 |
-
Step 1: Find spatially closest negative point for each positive point
|
| 94 |
-
Step 2: If distance < pixel_threshold, check query similarity
|
| 95 |
-
Step 3: Suppress only if query similarity > similarity_threshold
|
| 96 |
-
|
| 97 |
-
This two-stage design ensures suppression only when predictions are
|
| 98 |
-
both spatially overlapping AND semantically conflicting.
|
| 99 |
-
|
| 100 |
-
Args:
|
| 101 |
-
points: List of [x, y] positive points (normalized, 0-1)
|
| 102 |
-
neg_points: List of [x, y] negative points (normalized, 0-1)
|
| 103 |
-
pos_queries: (N, D) query embeddings for positive predictions
|
| 104 |
-
neg_queries: (M, D) query embeddings for negative predictions
|
| 105 |
-
image_size: (width, height) in pixels
|
| 106 |
-
pixel_threshold: spatial distance threshold in pixels
|
| 107 |
-
similarity_threshold: cosine similarity threshold for semantic conflict
|
| 108 |
-
|
| 109 |
-
Returns:
|
| 110 |
-
filtered_points: points after suppression
|
| 111 |
-
filtered_indices: indices of kept points
|
| 112 |
-
suppression_info: dict with detailed suppression decisions
|
| 113 |
-
"""
|
| 114 |
-
if not neg_points or not points:
|
| 115 |
-
return points, list(range(len(points))), {}
|
| 116 |
-
|
| 117 |
-
width, height = image_size
|
| 118 |
-
N, M = len(points), len(neg_points)
|
| 119 |
-
|
| 120 |
-
# === Step 1: Spatial Matching ===
|
| 121 |
-
points_arr = np.array(points) * np.array([width, height]) # (N, 2)
|
| 122 |
-
neg_points_arr = np.array(neg_points) * np.array([width, height]) # (M, 2)
|
| 123 |
-
|
| 124 |
-
# Compute pairwise distances
|
| 125 |
-
spatial_dist = np.linalg.norm(
|
| 126 |
-
points_arr[:, None, :] - neg_points_arr[None, :, :], axis=-1
|
| 127 |
-
) # (N, M)
|
| 128 |
-
|
| 129 |
-
# Find nearest negative for each positive
|
| 130 |
-
nearest_neg_idx = spatial_dist.argmin(axis=1) # (N,)
|
| 131 |
-
nearest_neg_dist = spatial_dist.min(axis=1) # (N,)
|
| 132 |
-
|
| 133 |
-
# Check spatial condition
|
| 134 |
-
spatially_close = nearest_neg_dist < pixel_threshold # (N,)
|
| 135 |
-
|
| 136 |
-
# === Step 2: Query Similarity Check (only for spatially close pairs) ===
|
| 137 |
-
# Normalize queries
|
| 138 |
-
pos_q = pos_queries / (np.linalg.norm(pos_queries, axis=-1, keepdims=True) + 1e-8)
|
| 139 |
-
neg_q = neg_queries / (np.linalg.norm(neg_queries, axis=-1, keepdims=True) + 1e-8)
|
| 140 |
-
|
| 141 |
-
# Compute similarity only for matched pairs
|
| 142 |
-
matched_neg_q = neg_q[nearest_neg_idx] # (N, D)
|
| 143 |
-
query_sim = (pos_q * matched_neg_q).sum(axis=-1) # (N,) cosine similarity
|
| 144 |
-
|
| 145 |
-
# Check semantic condition
|
| 146 |
-
semantically_similar = query_sim > similarity_threshold # (N,)
|
| 147 |
-
|
| 148 |
-
# === Step 3: Joint Decision ===
|
| 149 |
-
# Suppress only if BOTH conditions are met
|
| 150 |
-
should_suppress = spatially_close & semantically_similar # (N,)
|
| 151 |
-
|
| 152 |
-
# === Filter ===
|
| 153 |
-
keep_mask = ~should_suppress
|
| 154 |
-
filtered_points = np.array(points)[keep_mask].tolist()
|
| 155 |
-
filtered_indices = np.where(keep_mask)[0].tolist()
|
| 156 |
-
|
| 157 |
-
# === Suppression Info ===
|
| 158 |
-
suppression_info = {
|
| 159 |
-
"nearest_neg_idx": nearest_neg_idx.tolist(),
|
| 160 |
-
"nearest_neg_dist": nearest_neg_dist.tolist(),
|
| 161 |
-
"query_similarity": query_sim.tolist(),
|
| 162 |
-
"spatially_close": spatially_close.tolist(),
|
| 163 |
-
"semantically_similar": semantically_similar.tolist(),
|
| 164 |
-
"suppressed_indices": np.where(should_suppress)[0].tolist(),
|
| 165 |
-
}
|
| 166 |
-
|
| 167 |
-
return filtered_points, filtered_indices, suppression_info
|
| 168 |
-
|
| 169 |
-
def count_objects(image, pos_caption, neg_caption, box_threshold, point_radius, point_color):
|
| 170 |
-
"""
|
| 171 |
-
Main inference function for counting objects
|
| 172 |
-
|
| 173 |
-
Args:
|
| 174 |
-
image: Input PIL Image
|
| 175 |
-
pos_caption: Positive prompt (objects to count)
|
| 176 |
-
neg_caption: Negative prompt (objects to exclude)
|
| 177 |
-
box_threshold: Detection confidence threshold
|
| 178 |
-
point_radius: Radius of visualization points
|
| 179 |
-
point_color: Color of visualization points
|
| 180 |
-
|
| 181 |
-
Returns:
|
| 182 |
-
Annotated image and count
|
| 183 |
-
"""
|
| 184 |
-
global model, processor, device
|
| 185 |
-
|
| 186 |
-
if model is None:
|
| 187 |
-
load_model()
|
| 188 |
-
|
| 189 |
-
# Ensure image is RGB
|
| 190 |
-
if image.mode != "RGB":
|
| 191 |
-
image = image.convert("RGB")
|
| 192 |
-
|
| 193 |
-
# Ensure captions end with period
|
| 194 |
-
if not pos_caption.endswith('.'):
|
| 195 |
-
pos_caption = pos_caption + '.'
|
| 196 |
-
if neg_caption and not neg_caption.endswith('.'):
|
| 197 |
-
neg_caption = neg_caption + '.'
|
| 198 |
-
|
| 199 |
-
# Process positive caption
|
| 200 |
-
pos_inputs = processor(
|
| 201 |
-
images=image,
|
| 202 |
-
text=pos_caption,
|
| 203 |
-
return_tensors="pt",
|
| 204 |
-
padding=True
|
| 205 |
-
)
|
| 206 |
-
pos_inputs = pos_inputs.to(device)
|
| 207 |
-
pos_inputs['pixel_values'] = pos_inputs['pixel_values'].to(torch.bfloat16)
|
| 208 |
-
|
| 209 |
-
# Process negative caption if provided
|
| 210 |
-
use_neg = bool(neg_caption and neg_caption.strip() and neg_caption != '.')
|
| 211 |
-
|
| 212 |
-
if use_neg:
|
| 213 |
-
neg_inputs = processor(
|
| 214 |
-
images=image,
|
| 215 |
-
text=neg_caption,
|
| 216 |
-
return_tensors="pt",
|
| 217 |
-
padding=True
|
| 218 |
-
)
|
| 219 |
-
neg_inputs = {k: v.to(device) for k, v in neg_inputs.items()}
|
| 220 |
-
neg_inputs['pixel_values'] = neg_inputs['pixel_values'].to(torch.bfloat16)
|
| 221 |
-
|
| 222 |
-
# Add negative inputs to positive inputs dict
|
| 223 |
-
pos_inputs['neg_token_type_ids'] = neg_inputs['token_type_ids']
|
| 224 |
-
pos_inputs['neg_attention_mask'] = neg_inputs['attention_mask']
|
| 225 |
-
pos_inputs['neg_pixel_mask'] = neg_inputs['pixel_mask']
|
| 226 |
-
pos_inputs['neg_pixel_values'] = neg_inputs['pixel_values']
|
| 227 |
-
pos_inputs['neg_input_ids'] = neg_inputs['input_ids']
|
| 228 |
-
pos_inputs['use_neg'] = True
|
| 229 |
-
else:
|
| 230 |
-
pos_inputs['use_neg'] = False
|
| 231 |
-
|
| 232 |
-
# Run inference
|
| 233 |
-
with torch.no_grad():
|
| 234 |
-
outputs = model(**pos_inputs)
|
| 235 |
-
|
| 236 |
-
# Post-process outputs
|
| 237 |
-
# positive prediction
|
| 238 |
-
outputs["pred_points"] = outputs["pred_boxes"][:, :, :2]
|
| 239 |
-
outputs["pred_logits"] = outputs["logits"]
|
| 240 |
-
|
| 241 |
-
threshold = box_threshold if box_threshold > 0 else model.box_threshold
|
| 242 |
-
pos_queries = outputs["pos_queries"].squeeze(0).float()
|
| 243 |
-
neg_queries = outputs["neg_queries"].squeeze(0).float()
|
| 244 |
-
pos_queries = pos_queries[-1].squeeze(0)
|
| 245 |
-
neg_queries = neg_queries[-1].squeeze(0)
|
| 246 |
-
pos_queries = pos_queries.unsqueeze(0)
|
| 247 |
-
neg_queries = neg_queries.unsqueeze(0)
|
| 248 |
-
results = post_process_grounded_object_detection_with_queries(outputs, pos_queries, box_threshold=threshold)[0]
|
| 249 |
-
|
| 250 |
-
boxes = results["boxes"]
|
| 251 |
-
boxes = [box.tolist() for box in boxes]
|
| 252 |
-
points = [[box[0], box[1]] for box in boxes]
|
| 253 |
-
|
| 254 |
-
# negative prediction
|
| 255 |
-
if "neg_pred_boxes" in outputs and "neg_logits" in outputs:
|
| 256 |
-
neg_outputs = outputs.copy()
|
| 257 |
-
neg_outputs["pred_boxes"] = outputs["neg_pred_boxes"]
|
| 258 |
-
neg_outputs["logits"] = outputs["neg_logits"]
|
| 259 |
-
neg_outputs["pred_points"] = outputs["neg_pred_boxes"][:, :, :2]
|
| 260 |
-
neg_outputs["pred_logits"] = outputs["neg_logits"]
|
| 261 |
-
|
| 262 |
-
neg_results = post_process_grounded_object_detection_with_queries(neg_outputs, neg_queries, box_threshold=threshold)[0]
|
| 263 |
-
neg_boxes = neg_results["boxes"]
|
| 264 |
-
neg_boxes = [box.tolist() for box in neg_boxes]
|
| 265 |
-
neg_points = [[box[0], box[1]] for box in neg_boxes]
|
| 266 |
-
|
| 267 |
-
pos_queries = results["queries"]
|
| 268 |
-
neg_queries = neg_results["queries"]
|
| 269 |
-
pos_queries = pos_queries.cpu().numpy()
|
| 270 |
-
neg_queries = neg_queries.cpu().numpy()
|
| 271 |
-
|
| 272 |
-
img_size = image.size
|
| 273 |
-
# filtered_points, kept_indices = filter_points_by_negative(
|
| 274 |
-
# points,
|
| 275 |
-
# neg_points,
|
| 276 |
-
# image_size=img_size,
|
| 277 |
-
# pixel_threshold=5
|
| 278 |
-
# )
|
| 279 |
-
filtered_points, kept_indices, suppression_info = discriminative_point_suppression(
|
| 280 |
-
points,
|
| 281 |
-
neg_points,
|
| 282 |
-
pos_queries,
|
| 283 |
-
neg_queries,
|
| 284 |
-
image_size=img_size,
|
| 285 |
-
pixel_threshold=5,
|
| 286 |
-
similarity_threshold=0.3,
|
| 287 |
-
)
|
| 288 |
-
|
| 289 |
-
filtered_boxes = [boxes[i] for i in kept_indices]
|
| 290 |
-
if "scores" in results:
|
| 291 |
-
filtered_scores = [results["scores"][i].item() for i in kept_indices]
|
| 292 |
-
|
| 293 |
-
points = filtered_points
|
| 294 |
-
boxes = filtered_boxes
|
| 295 |
-
|
| 296 |
-
# Visualize results
|
| 297 |
-
img_w, img_h = image.size
|
| 298 |
-
img_draw = image.copy()
|
| 299 |
-
draw = ImageDraw.Draw(img_draw)
|
| 300 |
-
|
| 301 |
-
for point in points:
|
| 302 |
-
x = point[0] * img_w
|
| 303 |
-
y = point[1] * img_h
|
| 304 |
-
draw.ellipse(
|
| 305 |
-
[x - point_radius, y - point_radius, x + point_radius, y + point_radius],
|
| 306 |
-
fill=point_color
|
| 307 |
-
)
|
| 308 |
-
|
| 309 |
-
# for point in neg_points:
|
| 310 |
-
# x = point[0] * img_w
|
| 311 |
-
# y = point[1] * img_h
|
| 312 |
-
# draw.ellipse(
|
| 313 |
-
# [x - point_radius, y - point_radius, x + point_radius, y + point_radius],
|
| 314 |
-
# fill="red"
|
| 315 |
-
# )
|
| 316 |
-
|
| 317 |
-
count = len(points)
|
| 318 |
-
|
| 319 |
-
return img_draw, f"Count: {count}"
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
# Create Gradio interface
|
| 323 |
-
def create_demo():
|
| 324 |
-
with gr.Blocks(title="CountEx: Discriminative Visual Counting") as demo:
|
| 325 |
-
gr.Markdown("""
|
| 326 |
-
# CountEx: Fine-Grained Counting via Exemplars and Exclusion
|
| 327 |
-
Count specific objects in images using positive and negative text prompts.
|
| 328 |
-
""")
|
| 329 |
-
|
| 330 |
-
with gr.Row():
|
| 331 |
-
with gr.Column(scale=1):
|
| 332 |
-
input_image = gr.Image(type="pil", label="Input Image")
|
| 333 |
-
|
| 334 |
-
pos_caption = gr.Textbox(
|
| 335 |
-
label="Positive Prompt",
|
| 336 |
-
placeholder="e.g., Green Apple",
|
| 337 |
-
value="Pos Caption Here."
|
| 338 |
-
)
|
| 339 |
-
|
| 340 |
-
neg_caption = gr.Textbox(
|
| 341 |
-
label="Negative Prompt (optional)",
|
| 342 |
-
placeholder="e.g., Red Apple",
|
| 343 |
-
value="None."
|
| 344 |
-
)
|
| 345 |
-
|
| 346 |
-
box_threshold = gr.Slider(
|
| 347 |
-
minimum=0.0,
|
| 348 |
-
maximum=1.0,
|
| 349 |
-
value=0.42,
|
| 350 |
-
step=0.01,
|
| 351 |
-
label="Detection Threshold (0.42 = use model default)"
|
| 352 |
-
)
|
| 353 |
-
|
| 354 |
-
point_radius = gr.Slider(
|
| 355 |
-
minimum=1,
|
| 356 |
-
maximum=20,
|
| 357 |
-
value=5,
|
| 358 |
-
step=1,
|
| 359 |
-
label="Point Radius"
|
| 360 |
-
)
|
| 361 |
-
|
| 362 |
-
point_color = gr.Dropdown(
|
| 363 |
-
choices=["blue", "red", "green", "yellow", "cyan", "magenta", "white"],
|
| 364 |
-
value="blue",
|
| 365 |
-
label="Point Color"
|
| 366 |
-
)
|
| 367 |
-
|
| 368 |
-
submit_btn = gr.Button("Count Objects", variant="primary")
|
| 369 |
-
|
| 370 |
-
with gr.Column(scale=1):
|
| 371 |
-
output_image = gr.Image(type="pil", label="Result")
|
| 372 |
-
count_output = gr.Textbox(label="Count Result")
|
| 373 |
-
|
| 374 |
-
# Example images
|
| 375 |
-
# ["examples/in_the_wild.jpg", "Green plastic cup.", "Blue plastic cup."],
|
| 376 |
-
gr.Examples(
|
| 377 |
-
examples=[
|
| 378 |
-
["examples/apples.png", "apple.", "Green apple."],
|
| 379 |
-
["examples/apple.jpg", "apple.", "red apple."],
|
| 380 |
-
["examples/black_beans.jpg", "Black bean.", "Soy bean."],
|
| 381 |
-
["examples/candy.jpg", "Brown coffee candy.", "Black coffee candy."],
|
| 382 |
-
["examples/strawberry.jpg", "strawberry and blueberry.", "strawberry."],
|
| 383 |
-
["examples/strawberry2.jpg", "strawberry and blueberry.", "strawberry."],
|
| 384 |
-
["examples/women.jpg", "person.", "woman."],
|
| 385 |
-
["examples/boat-1.jpg", "boat.", "blue boat."],
|
| 386 |
-
],
|
| 387 |
-
inputs=[input_image, pos_caption, neg_caption],
|
| 388 |
-
outputs=[output_image, count_output],
|
| 389 |
-
fn=count_objects,
|
| 390 |
-
cache_examples=False,
|
| 391 |
-
)
|
| 392 |
-
|
| 393 |
-
submit_btn.click(
|
| 394 |
-
fn=count_objects,
|
| 395 |
-
inputs=[input_image, pos_caption, neg_caption, box_threshold, point_radius, point_color],
|
| 396 |
-
outputs=[output_image, count_output]
|
| 397 |
-
)
|
| 398 |
-
|
| 399 |
-
return demo
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
if __name__ == "__main__":
|
| 403 |
-
# Load model at startup
|
| 404 |
-
print("Loading model...")
|
| 405 |
-
load_model()
|
| 406 |
-
print("Model loaded!")
|
| 407 |
-
|
| 408 |
-
# Create and launch demo
|
| 409 |
-
demo = create_demo()
|
| 410 |
demo.launch()
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import torch
|
| 4 |
+
from PIL import Image, ImageDraw
|
| 5 |
+
from transformers import GroundingDinoProcessor
|
| 6 |
+
from hf_model import CountEX
|
| 7 |
+
from utils import post_process_grounded_object_detection, post_process_grounded_object_detection_with_queries
|
| 8 |
+
|
| 9 |
+
# Global variables for model and processor
|
| 10 |
+
model = None
|
| 11 |
+
processor = None
|
| 12 |
+
device = None
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def load_model():
|
| 16 |
+
"""Load model and processor once at startup"""
|
| 17 |
+
global model, processor, device
|
| 18 |
+
|
| 19 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 20 |
+
|
| 21 |
+
# Load model - change path for HF Spaces
|
| 22 |
+
model_id = "yifehuang97/CountEX-KC-v2" # Change to your HF model repo
|
| 23 |
+
model = CountEX.from_pretrained(model_id, token=os.environ.get("HF_TOKEN"))
|
| 24 |
+
model = model.to(torch.bfloat16)
|
| 25 |
+
model = model.to(device)
|
| 26 |
+
model.eval()
|
| 27 |
+
|
| 28 |
+
# Load processor
|
| 29 |
+
processor_id = "fushh7/llmdet_swin_tiny_hf"
|
| 30 |
+
processor = GroundingDinoProcessor.from_pretrained(processor_id)
|
| 31 |
+
|
| 32 |
+
return model, processor, device
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
import numpy as np
|
| 36 |
+
|
| 37 |
+
def filter_points_by_negative(points, neg_points, image_size, pixel_threshold=5):
|
| 38 |
+
"""
|
| 39 |
+
Filter out positive points that are too close to any negative point.
|
| 40 |
+
|
| 41 |
+
Args:
|
| 42 |
+
points: List of [x, y] positive points (normalized coordinates, 0-1)
|
| 43 |
+
neg_points: List of [x, y] negative points (normalized coordinates, 0-1)
|
| 44 |
+
image_size: Tuple of (width, height) in pixels
|
| 45 |
+
pixel_threshold: Minimum distance threshold in pixels
|
| 46 |
+
|
| 47 |
+
Returns:
|
| 48 |
+
filtered_points: List of points that are far enough from all negative points
|
| 49 |
+
filtered_indices: Indices of the kept points in the original list
|
| 50 |
+
"""
|
| 51 |
+
if not neg_points or not points:
|
| 52 |
+
return points, list(range(len(points)))
|
| 53 |
+
|
| 54 |
+
width, height = image_size
|
| 55 |
+
|
| 56 |
+
points_arr = np.array(points) # (N, 2) normalized
|
| 57 |
+
neg_points_arr = np.array(neg_points) # (M, 2) normalized
|
| 58 |
+
|
| 59 |
+
# Convert to pixel coordinates
|
| 60 |
+
points_pixel = points_arr * np.array([width, height]) # (N, 2)
|
| 61 |
+
neg_points_pixel = neg_points_arr * np.array([width, height]) # (M, 2)
|
| 62 |
+
|
| 63 |
+
# Compute pairwise distances in pixels: (N, M)
|
| 64 |
+
diff = points_pixel[:, None, :] - neg_points_pixel[None, :, :]
|
| 65 |
+
distances = np.linalg.norm(diff, axis=-1) # (N, M)
|
| 66 |
+
|
| 67 |
+
# Find minimum distance to any negative point for each positive point
|
| 68 |
+
min_distances = distances.min(axis=1) # (N,)
|
| 69 |
+
|
| 70 |
+
# Keep points where min distance > threshold
|
| 71 |
+
keep_mask = min_distances > pixel_threshold
|
| 72 |
+
|
| 73 |
+
filtered_points = points_arr[keep_mask].tolist()
|
| 74 |
+
filtered_indices = np.where(keep_mask)[0].tolist()
|
| 75 |
+
|
| 76 |
+
return filtered_points, filtered_indices
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
import numpy as np
|
| 80 |
+
|
| 81 |
+
def discriminative_point_suppression(
|
| 82 |
+
points,
|
| 83 |
+
neg_points,
|
| 84 |
+
pos_queries, # (N, D) numpy array
|
| 85 |
+
neg_queries, # (M, D) numpy array
|
| 86 |
+
image_size,
|
| 87 |
+
pixel_threshold=5,
|
| 88 |
+
similarity_threshold=0.3,
|
| 89 |
+
):
|
| 90 |
+
"""
|
| 91 |
+
Discriminative Point Suppression (DPS):
|
| 92 |
+
|
| 93 |
+
Step 1: Find spatially closest negative point for each positive point
|
| 94 |
+
Step 2: If distance < pixel_threshold, check query similarity
|
| 95 |
+
Step 3: Suppress only if query similarity > similarity_threshold
|
| 96 |
+
|
| 97 |
+
This two-stage design ensures suppression only when predictions are
|
| 98 |
+
both spatially overlapping AND semantically conflicting.
|
| 99 |
+
|
| 100 |
+
Args:
|
| 101 |
+
points: List of [x, y] positive points (normalized, 0-1)
|
| 102 |
+
neg_points: List of [x, y] negative points (normalized, 0-1)
|
| 103 |
+
pos_queries: (N, D) query embeddings for positive predictions
|
| 104 |
+
neg_queries: (M, D) query embeddings for negative predictions
|
| 105 |
+
image_size: (width, height) in pixels
|
| 106 |
+
pixel_threshold: spatial distance threshold in pixels
|
| 107 |
+
similarity_threshold: cosine similarity threshold for semantic conflict
|
| 108 |
+
|
| 109 |
+
Returns:
|
| 110 |
+
filtered_points: points after suppression
|
| 111 |
+
filtered_indices: indices of kept points
|
| 112 |
+
suppression_info: dict with detailed suppression decisions
|
| 113 |
+
"""
|
| 114 |
+
if not neg_points or not points:
|
| 115 |
+
return points, list(range(len(points))), {}
|
| 116 |
+
|
| 117 |
+
width, height = image_size
|
| 118 |
+
N, M = len(points), len(neg_points)
|
| 119 |
+
|
| 120 |
+
# === Step 1: Spatial Matching ===
|
| 121 |
+
points_arr = np.array(points) * np.array([width, height]) # (N, 2)
|
| 122 |
+
neg_points_arr = np.array(neg_points) * np.array([width, height]) # (M, 2)
|
| 123 |
+
|
| 124 |
+
# Compute pairwise distances
|
| 125 |
+
spatial_dist = np.linalg.norm(
|
| 126 |
+
points_arr[:, None, :] - neg_points_arr[None, :, :], axis=-1
|
| 127 |
+
) # (N, M)
|
| 128 |
+
|
| 129 |
+
# Find nearest negative for each positive
|
| 130 |
+
nearest_neg_idx = spatial_dist.argmin(axis=1) # (N,)
|
| 131 |
+
nearest_neg_dist = spatial_dist.min(axis=1) # (N,)
|
| 132 |
+
|
| 133 |
+
# Check spatial condition
|
| 134 |
+
spatially_close = nearest_neg_dist < pixel_threshold # (N,)
|
| 135 |
+
|
| 136 |
+
# === Step 2: Query Similarity Check (only for spatially close pairs) ===
|
| 137 |
+
# Normalize queries
|
| 138 |
+
pos_q = pos_queries / (np.linalg.norm(pos_queries, axis=-1, keepdims=True) + 1e-8)
|
| 139 |
+
neg_q = neg_queries / (np.linalg.norm(neg_queries, axis=-1, keepdims=True) + 1e-8)
|
| 140 |
+
|
| 141 |
+
# Compute similarity only for matched pairs
|
| 142 |
+
matched_neg_q = neg_q[nearest_neg_idx] # (N, D)
|
| 143 |
+
query_sim = (pos_q * matched_neg_q).sum(axis=-1) # (N,) cosine similarity
|
| 144 |
+
|
| 145 |
+
# Check semantic condition
|
| 146 |
+
semantically_similar = query_sim > similarity_threshold # (N,)
|
| 147 |
+
|
| 148 |
+
# === Step 3: Joint Decision ===
|
| 149 |
+
# Suppress only if BOTH conditions are met
|
| 150 |
+
should_suppress = spatially_close & semantically_similar # (N,)
|
| 151 |
+
|
| 152 |
+
# === Filter ===
|
| 153 |
+
keep_mask = ~should_suppress
|
| 154 |
+
filtered_points = np.array(points)[keep_mask].tolist()
|
| 155 |
+
filtered_indices = np.where(keep_mask)[0].tolist()
|
| 156 |
+
|
| 157 |
+
# === Suppression Info ===
|
| 158 |
+
suppression_info = {
|
| 159 |
+
"nearest_neg_idx": nearest_neg_idx.tolist(),
|
| 160 |
+
"nearest_neg_dist": nearest_neg_dist.tolist(),
|
| 161 |
+
"query_similarity": query_sim.tolist(),
|
| 162 |
+
"spatially_close": spatially_close.tolist(),
|
| 163 |
+
"semantically_similar": semantically_similar.tolist(),
|
| 164 |
+
"suppressed_indices": np.where(should_suppress)[0].tolist(),
|
| 165 |
+
}
|
| 166 |
+
|
| 167 |
+
return filtered_points, filtered_indices, suppression_info
|
| 168 |
+
|
| 169 |
+
def count_objects(image, pos_caption, neg_caption, box_threshold, point_radius, point_color):
|
| 170 |
+
"""
|
| 171 |
+
Main inference function for counting objects
|
| 172 |
+
|
| 173 |
+
Args:
|
| 174 |
+
image: Input PIL Image
|
| 175 |
+
pos_caption: Positive prompt (objects to count)
|
| 176 |
+
neg_caption: Negative prompt (objects to exclude)
|
| 177 |
+
box_threshold: Detection confidence threshold
|
| 178 |
+
point_radius: Radius of visualization points
|
| 179 |
+
point_color: Color of visualization points
|
| 180 |
+
|
| 181 |
+
Returns:
|
| 182 |
+
Annotated image and count
|
| 183 |
+
"""
|
| 184 |
+
global model, processor, device
|
| 185 |
+
|
| 186 |
+
if model is None:
|
| 187 |
+
load_model()
|
| 188 |
+
|
| 189 |
+
# Ensure image is RGB
|
| 190 |
+
if image.mode != "RGB":
|
| 191 |
+
image = image.convert("RGB")
|
| 192 |
+
|
| 193 |
+
# Ensure captions end with period
|
| 194 |
+
if not pos_caption.endswith('.'):
|
| 195 |
+
pos_caption = pos_caption + '.'
|
| 196 |
+
if neg_caption and not neg_caption.endswith('.'):
|
| 197 |
+
neg_caption = neg_caption + '.'
|
| 198 |
+
|
| 199 |
+
# Process positive caption
|
| 200 |
+
pos_inputs = processor(
|
| 201 |
+
images=image,
|
| 202 |
+
text=pos_caption,
|
| 203 |
+
return_tensors="pt",
|
| 204 |
+
padding=True
|
| 205 |
+
)
|
| 206 |
+
pos_inputs = pos_inputs.to(device)
|
| 207 |
+
pos_inputs['pixel_values'] = pos_inputs['pixel_values'].to(torch.bfloat16)
|
| 208 |
+
|
| 209 |
+
# Process negative caption if provided
|
| 210 |
+
use_neg = bool(neg_caption and neg_caption.strip() and neg_caption != '.')
|
| 211 |
+
|
| 212 |
+
if use_neg:
|
| 213 |
+
neg_inputs = processor(
|
| 214 |
+
images=image,
|
| 215 |
+
text=neg_caption,
|
| 216 |
+
return_tensors="pt",
|
| 217 |
+
padding=True
|
| 218 |
+
)
|
| 219 |
+
neg_inputs = {k: v.to(device) for k, v in neg_inputs.items()}
|
| 220 |
+
neg_inputs['pixel_values'] = neg_inputs['pixel_values'].to(torch.bfloat16)
|
| 221 |
+
|
| 222 |
+
# Add negative inputs to positive inputs dict
|
| 223 |
+
pos_inputs['neg_token_type_ids'] = neg_inputs['token_type_ids']
|
| 224 |
+
pos_inputs['neg_attention_mask'] = neg_inputs['attention_mask']
|
| 225 |
+
pos_inputs['neg_pixel_mask'] = neg_inputs['pixel_mask']
|
| 226 |
+
pos_inputs['neg_pixel_values'] = neg_inputs['pixel_values']
|
| 227 |
+
pos_inputs['neg_input_ids'] = neg_inputs['input_ids']
|
| 228 |
+
pos_inputs['use_neg'] = True
|
| 229 |
+
else:
|
| 230 |
+
pos_inputs['use_neg'] = False
|
| 231 |
+
|
| 232 |
+
# Run inference
|
| 233 |
+
with torch.no_grad():
|
| 234 |
+
outputs = model(**pos_inputs)
|
| 235 |
+
|
| 236 |
+
# Post-process outputs
|
| 237 |
+
# positive prediction
|
| 238 |
+
outputs["pred_points"] = outputs["pred_boxes"][:, :, :2]
|
| 239 |
+
outputs["pred_logits"] = outputs["logits"]
|
| 240 |
+
|
| 241 |
+
threshold = box_threshold if box_threshold > 0 else model.box_threshold
|
| 242 |
+
pos_queries = outputs["pos_queries"].squeeze(0).float()
|
| 243 |
+
neg_queries = outputs["neg_queries"].squeeze(0).float()
|
| 244 |
+
pos_queries = pos_queries[-1].squeeze(0)
|
| 245 |
+
neg_queries = neg_queries[-1].squeeze(0)
|
| 246 |
+
pos_queries = pos_queries.unsqueeze(0)
|
| 247 |
+
neg_queries = neg_queries.unsqueeze(0)
|
| 248 |
+
results = post_process_grounded_object_detection_with_queries(outputs, pos_queries, box_threshold=threshold)[0]
|
| 249 |
+
|
| 250 |
+
boxes = results["boxes"]
|
| 251 |
+
boxes = [box.tolist() for box in boxes]
|
| 252 |
+
points = [[box[0], box[1]] for box in boxes]
|
| 253 |
+
|
| 254 |
+
# negative prediction
|
| 255 |
+
if "neg_pred_boxes" in outputs and "neg_logits" in outputs:
|
| 256 |
+
neg_outputs = outputs.copy()
|
| 257 |
+
neg_outputs["pred_boxes"] = outputs["neg_pred_boxes"]
|
| 258 |
+
neg_outputs["logits"] = outputs["neg_logits"]
|
| 259 |
+
neg_outputs["pred_points"] = outputs["neg_pred_boxes"][:, :, :2]
|
| 260 |
+
neg_outputs["pred_logits"] = outputs["neg_logits"]
|
| 261 |
+
|
| 262 |
+
neg_results = post_process_grounded_object_detection_with_queries(neg_outputs, neg_queries, box_threshold=threshold)[0]
|
| 263 |
+
neg_boxes = neg_results["boxes"]
|
| 264 |
+
neg_boxes = [box.tolist() for box in neg_boxes]
|
| 265 |
+
neg_points = [[box[0], box[1]] for box in neg_boxes]
|
| 266 |
+
|
| 267 |
+
pos_queries = results["queries"]
|
| 268 |
+
neg_queries = neg_results["queries"]
|
| 269 |
+
pos_queries = pos_queries.cpu().numpy()
|
| 270 |
+
neg_queries = neg_queries.cpu().numpy()
|
| 271 |
+
|
| 272 |
+
img_size = image.size
|
| 273 |
+
# filtered_points, kept_indices = filter_points_by_negative(
|
| 274 |
+
# points,
|
| 275 |
+
# neg_points,
|
| 276 |
+
# image_size=img_size,
|
| 277 |
+
# pixel_threshold=5
|
| 278 |
+
# )
|
| 279 |
+
filtered_points, kept_indices, suppression_info = discriminative_point_suppression(
|
| 280 |
+
points,
|
| 281 |
+
neg_points,
|
| 282 |
+
pos_queries,
|
| 283 |
+
neg_queries,
|
| 284 |
+
image_size=img_size,
|
| 285 |
+
pixel_threshold=5,
|
| 286 |
+
similarity_threshold=0.3,
|
| 287 |
+
)
|
| 288 |
+
|
| 289 |
+
filtered_boxes = [boxes[i] for i in kept_indices]
|
| 290 |
+
if "scores" in results:
|
| 291 |
+
filtered_scores = [results["scores"][i].item() for i in kept_indices]
|
| 292 |
+
|
| 293 |
+
points = filtered_points
|
| 294 |
+
boxes = filtered_boxes
|
| 295 |
+
|
| 296 |
+
# Visualize results
|
| 297 |
+
img_w, img_h = image.size
|
| 298 |
+
img_draw = image.copy()
|
| 299 |
+
draw = ImageDraw.Draw(img_draw)
|
| 300 |
+
|
| 301 |
+
for point in points:
|
| 302 |
+
x = point[0] * img_w
|
| 303 |
+
y = point[1] * img_h
|
| 304 |
+
draw.ellipse(
|
| 305 |
+
[x - point_radius, y - point_radius, x + point_radius, y + point_radius],
|
| 306 |
+
fill=point_color
|
| 307 |
+
)
|
| 308 |
+
|
| 309 |
+
# for point in neg_points:
|
| 310 |
+
# x = point[0] * img_w
|
| 311 |
+
# y = point[1] * img_h
|
| 312 |
+
# draw.ellipse(
|
| 313 |
+
# [x - point_radius, y - point_radius, x + point_radius, y + point_radius],
|
| 314 |
+
# fill="red"
|
| 315 |
+
# )
|
| 316 |
+
|
| 317 |
+
count = len(points)
|
| 318 |
+
|
| 319 |
+
return img_draw, f"Count: {count}"
|
| 320 |
+
|
| 321 |
+
|
| 322 |
+
# Create Gradio interface
|
| 323 |
+
def create_demo():
|
| 324 |
+
with gr.Blocks(title="CountEx: Discriminative Visual Counting") as demo:
|
| 325 |
+
gr.Markdown("""
|
| 326 |
+
# CountEx: Fine-Grained Counting via Exemplars and Exclusion
|
| 327 |
+
Count specific objects in images using positive and negative text prompts.
|
| 328 |
+
""")
|
| 329 |
+
|
| 330 |
+
with gr.Row():
|
| 331 |
+
with gr.Column(scale=1):
|
| 332 |
+
input_image = gr.Image(type="pil", label="Input Image")
|
| 333 |
+
|
| 334 |
+
pos_caption = gr.Textbox(
|
| 335 |
+
label="Positive Prompt",
|
| 336 |
+
placeholder="e.g., Green Apple",
|
| 337 |
+
value="Pos Caption Here."
|
| 338 |
+
)
|
| 339 |
+
|
| 340 |
+
neg_caption = gr.Textbox(
|
| 341 |
+
label="Negative Prompt (optional)",
|
| 342 |
+
placeholder="e.g., Red Apple",
|
| 343 |
+
value="None."
|
| 344 |
+
)
|
| 345 |
+
|
| 346 |
+
box_threshold = gr.Slider(
|
| 347 |
+
minimum=0.0,
|
| 348 |
+
maximum=1.0,
|
| 349 |
+
value=0.42,
|
| 350 |
+
step=0.01,
|
| 351 |
+
label="Detection Threshold (0.42 = use model default)"
|
| 352 |
+
)
|
| 353 |
+
|
| 354 |
+
point_radius = gr.Slider(
|
| 355 |
+
minimum=1,
|
| 356 |
+
maximum=20,
|
| 357 |
+
value=5,
|
| 358 |
+
step=1,
|
| 359 |
+
label="Point Radius"
|
| 360 |
+
)
|
| 361 |
+
|
| 362 |
+
point_color = gr.Dropdown(
|
| 363 |
+
choices=["blue", "red", "green", "yellow", "cyan", "magenta", "white"],
|
| 364 |
+
value="blue",
|
| 365 |
+
label="Point Color"
|
| 366 |
+
)
|
| 367 |
+
|
| 368 |
+
submit_btn = gr.Button("Count Objects", variant="primary")
|
| 369 |
+
|
| 370 |
+
with gr.Column(scale=1):
|
| 371 |
+
output_image = gr.Image(type="pil", label="Result")
|
| 372 |
+
count_output = gr.Textbox(label="Count Result")
|
| 373 |
+
|
| 374 |
+
# Example images
|
| 375 |
+
# ["examples/in_the_wild.jpg", "Green plastic cup.", "Blue plastic cup."],
|
| 376 |
+
gr.Examples(
|
| 377 |
+
examples=[
|
| 378 |
+
["examples/apples.png", "apple.", "Green apple."],
|
| 379 |
+
["examples/apple.jpg", "apple.", "red apple."],
|
| 380 |
+
["examples/black_beans.jpg", "Black bean.", "Soy bean."],
|
| 381 |
+
["examples/candy.jpg", "Brown coffee candy.", "Black coffee candy."],
|
| 382 |
+
["examples/strawberry.jpg", "strawberry and blueberry.", "strawberry."],
|
| 383 |
+
["examples/strawberry2.jpg", "strawberry and blueberry.", "strawberry."],
|
| 384 |
+
["examples/women.jpg", "person.", "woman."],
|
| 385 |
+
["examples/boat-1.jpg", "boat.", "blue boat."],
|
| 386 |
+
],
|
| 387 |
+
inputs=[input_image, pos_caption, neg_caption],
|
| 388 |
+
outputs=[output_image, count_output],
|
| 389 |
+
fn=count_objects,
|
| 390 |
+
cache_examples=False,
|
| 391 |
+
)
|
| 392 |
+
|
| 393 |
+
submit_btn.click(
|
| 394 |
+
fn=count_objects,
|
| 395 |
+
inputs=[input_image, pos_caption, neg_caption, box_threshold, point_radius, point_color],
|
| 396 |
+
outputs=[output_image, count_output]
|
| 397 |
+
)
|
| 398 |
+
|
| 399 |
+
return demo
|
| 400 |
+
|
| 401 |
+
|
| 402 |
+
if __name__ == "__main__":
|
| 403 |
+
# Load model at startup
|
| 404 |
+
print("Loading model...")
|
| 405 |
+
load_model()
|
| 406 |
+
print("Model loaded!")
|
| 407 |
+
|
| 408 |
+
# Create and launch demo
|
| 409 |
+
demo = create_demo()
|
| 410 |
demo.launch()
|