Spaces:
Sleeping
Sleeping
Commit
·
6c2d054
1
Parent(s):
20914e5
feat
Browse files- app.py +5 -3
- examples/strawberry.jpg +3 -0
- utils.py +5 -12
app.py
CHANGED
|
@@ -243,8 +243,8 @@ def count_objects(image, pos_caption, neg_caption, box_threshold, point_radius,
|
|
| 243 |
neg_queries = outputs["neg_queries"].squeeze(0).float()
|
| 244 |
pos_queries = pos_queries[-1].squeeze(0)
|
| 245 |
neg_queries = neg_queries[-1].squeeze(0)
|
| 246 |
-
pos_queries = pos_queries.cpu()
|
| 247 |
-
neg_queries = neg_queries.cpu()
|
| 248 |
results = post_process_grounded_object_detection_with_queries(outputs, pos_queries, box_threshold=threshold)[0]
|
| 249 |
|
| 250 |
boxes = results["boxes"]
|
|
@@ -266,6 +266,8 @@ def count_objects(image, pos_caption, neg_caption, box_threshold, point_radius,
|
|
| 266 |
|
| 267 |
pos_queries = results["queries"]
|
| 268 |
neg_queries = neg_results["queries"]
|
|
|
|
|
|
|
| 269 |
|
| 270 |
img_size = image.size
|
| 271 |
# filtered_points, kept_indices = filter_points_by_negative(
|
|
@@ -323,7 +325,6 @@ def create_demo():
|
|
| 323 |
gr.Markdown("""
|
| 324 |
# CountEx: Fine-Grained Counting via Exemplars and Exclusion
|
| 325 |
Count specific objects in images using positive and negative text prompts.
|
| 326 |
-
**Important Note: Both the Positive and Negative prompts must end with a period (.) for the model to correctly interpret the instruction.**
|
| 327 |
""")
|
| 328 |
|
| 329 |
with gr.Row():
|
|
@@ -377,6 +378,7 @@ def create_demo():
|
|
| 377 |
["examples/apples.png", "Green apple.", "Red apple."],
|
| 378 |
["examples/black_beans.jpg", "Black bean.", "Soy bean."],
|
| 379 |
["examples/candy.jpg", "Brown coffee candy.", "Black coffee candy."],
|
|
|
|
| 380 |
],
|
| 381 |
inputs=[input_image, pos_caption, neg_caption],
|
| 382 |
outputs=[output_image, count_output],
|
|
|
|
| 243 |
neg_queries = outputs["neg_queries"].squeeze(0).float()
|
| 244 |
pos_queries = pos_queries[-1].squeeze(0)
|
| 245 |
neg_queries = neg_queries[-1].squeeze(0)
|
| 246 |
+
pos_queries = pos_queries.cpu()
|
| 247 |
+
neg_queries = neg_queries.cpu()
|
| 248 |
results = post_process_grounded_object_detection_with_queries(outputs, pos_queries, box_threshold=threshold)[0]
|
| 249 |
|
| 250 |
boxes = results["boxes"]
|
|
|
|
| 266 |
|
| 267 |
pos_queries = results["queries"]
|
| 268 |
neg_queries = neg_results["queries"]
|
| 269 |
+
pos_queries = pos_queries.numpy()
|
| 270 |
+
neg_queries = neg_queries.numpy()
|
| 271 |
|
| 272 |
img_size = image.size
|
| 273 |
# filtered_points, kept_indices = filter_points_by_negative(
|
|
|
|
| 325 |
gr.Markdown("""
|
| 326 |
# CountEx: Fine-Grained Counting via Exemplars and Exclusion
|
| 327 |
Count specific objects in images using positive and negative text prompts.
|
|
|
|
| 328 |
""")
|
| 329 |
|
| 330 |
with gr.Row():
|
|
|
|
| 378 |
["examples/apples.png", "Green apple.", "Red apple."],
|
| 379 |
["examples/black_beans.jpg", "Black bean.", "Soy bean."],
|
| 380 |
["examples/candy.jpg", "Brown coffee candy.", "Black coffee candy."],
|
| 381 |
+
["examples/strawberry.jpg", "strawberry.", "None."],
|
| 382 |
],
|
| 383 |
inputs=[input_image, pos_caption, neg_caption],
|
| 384 |
outputs=[output_image, count_output],
|
examples/strawberry.jpg
ADDED
|
Git LFS Details
|
utils.py
CHANGED
|
@@ -55,10 +55,7 @@ def post_process_grounded_object_detection_with_queries(
|
|
| 55 |
Now also returns the query embeddings for each kept prediction.
|
| 56 |
"""
|
| 57 |
logits, boxes = outputs.logits, outputs.pred_boxes
|
| 58 |
-
|
| 59 |
-
print("boxes: ", boxes.shape)
|
| 60 |
-
print("queries: ", queries.shape)
|
| 61 |
-
assert len(logits[0]) == queries.shape[0], "logits and queries must have the same batch size, but got {} and {}".format(len(logits), queries.shape[0])
|
| 62 |
|
| 63 |
probs = torch.sigmoid(logits) # (batch_size, num_queries, 256)
|
| 64 |
scores = torch.max(probs, dim=-1)[0] # (batch_size, num_queries)
|
|
@@ -69,15 +66,11 @@ def post_process_grounded_object_detection_with_queries(
|
|
| 69 |
score = s[mask]
|
| 70 |
box = b[mask]
|
| 71 |
prob = p[mask]
|
| 72 |
-
|
| 73 |
-
result = {"scores": score, "boxes": box}
|
| 74 |
-
|
| 75 |
-
# 保存对应的 query embeddings
|
| 76 |
-
if queries is not None:
|
| 77 |
-
result["queries"] = queries[idx][mask] # (num_kept, D)
|
| 78 |
-
|
| 79 |
results.append(result)
|
| 80 |
-
assert
|
| 81 |
return results
|
| 82 |
|
| 83 |
|
|
|
|
| 55 |
Now also returns the query embeddings for each kept prediction.
|
| 56 |
"""
|
| 57 |
logits, boxes = outputs.logits, outputs.pred_boxes
|
| 58 |
+
assert logits.shape == queries.shape, "logits and queries must have the same batch size, but got {} and {}".format(logits.shape[0], queries.shape[0])
|
|
|
|
|
|
|
|
|
|
| 59 |
|
| 60 |
probs = torch.sigmoid(logits) # (batch_size, num_queries, 256)
|
| 61 |
scores = torch.max(probs, dim=-1)[0] # (batch_size, num_queries)
|
|
|
|
| 66 |
score = s[mask]
|
| 67 |
box = b[mask]
|
| 68 |
prob = p[mask]
|
| 69 |
+
queries = queries[mask]
|
| 70 |
+
result = {"scores": score, "boxes": box, "queries": queries}
|
| 71 |
+
print('scores: ', score.shape, 'boxes: ', box.shape, 'queries: ', queries.shape)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
results.append(result)
|
| 73 |
+
assert results['scores'].shape == results['boxes'].shape == results['queries'].shape, "scores, boxes and queries must have the same shape, but got {} and {}".format(results['scores'].shape, results['boxes'].shape, results['queries'].shape)
|
| 74 |
return results
|
| 75 |
|
| 76 |
|