Spaces:
Runtime error
Runtime error
- x_transformer.py +641 -0
x_transformer.py
ADDED
|
@@ -0,0 +1,641 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""shout-out to https://github.com/lucidrains/x-transformers/tree/main/x_transformers"""
|
| 2 |
+
import torch
|
| 3 |
+
from torch import nn, einsum
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
from functools import partial
|
| 6 |
+
from inspect import isfunction
|
| 7 |
+
from collections import namedtuple
|
| 8 |
+
from einops import rearrange, repeat, reduce
|
| 9 |
+
|
| 10 |
+
# constants
|
| 11 |
+
|
| 12 |
+
DEFAULT_DIM_HEAD = 64
|
| 13 |
+
|
| 14 |
+
Intermediates = namedtuple('Intermediates', [
|
| 15 |
+
'pre_softmax_attn',
|
| 16 |
+
'post_softmax_attn'
|
| 17 |
+
])
|
| 18 |
+
|
| 19 |
+
LayerIntermediates = namedtuple('Intermediates', [
|
| 20 |
+
'hiddens',
|
| 21 |
+
'attn_intermediates'
|
| 22 |
+
])
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
class AbsolutePositionalEmbedding(nn.Module):
|
| 26 |
+
def __init__(self, dim, max_seq_len):
|
| 27 |
+
super().__init__()
|
| 28 |
+
self.emb = nn.Embedding(max_seq_len, dim)
|
| 29 |
+
self.init_()
|
| 30 |
+
|
| 31 |
+
def init_(self):
|
| 32 |
+
nn.init.normal_(self.emb.weight, std=0.02)
|
| 33 |
+
|
| 34 |
+
def forward(self, x):
|
| 35 |
+
n = torch.arange(x.shape[1], device=x.device)
|
| 36 |
+
return self.emb(n)[None, :, :]
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
class FixedPositionalEmbedding(nn.Module):
|
| 40 |
+
def __init__(self, dim):
|
| 41 |
+
super().__init__()
|
| 42 |
+
inv_freq = 1. / (10000 ** (torch.arange(0, dim, 2).float() / dim))
|
| 43 |
+
self.register_buffer('inv_freq', inv_freq)
|
| 44 |
+
|
| 45 |
+
def forward(self, x, seq_dim=1, offset=0):
|
| 46 |
+
t = torch.arange(x.shape[seq_dim], device=x.device).type_as(self.inv_freq) + offset
|
| 47 |
+
sinusoid_inp = torch.einsum('i , j -> i j', t, self.inv_freq)
|
| 48 |
+
emb = torch.cat((sinusoid_inp.sin(), sinusoid_inp.cos()), dim=-1)
|
| 49 |
+
return emb[None, :, :]
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
# helpers
|
| 53 |
+
|
| 54 |
+
def exists(val):
|
| 55 |
+
return val is not None
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
def default(val, d):
|
| 59 |
+
if exists(val):
|
| 60 |
+
return val
|
| 61 |
+
return d() if isfunction(d) else d
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
def always(val):
|
| 65 |
+
def inner(*args, **kwargs):
|
| 66 |
+
return val
|
| 67 |
+
return inner
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
def not_equals(val):
|
| 71 |
+
def inner(x):
|
| 72 |
+
return x != val
|
| 73 |
+
return inner
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
def equals(val):
|
| 77 |
+
def inner(x):
|
| 78 |
+
return x == val
|
| 79 |
+
return inner
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
def max_neg_value(tensor):
|
| 83 |
+
return -torch.finfo(tensor.dtype).max
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
# keyword argument helpers
|
| 87 |
+
|
| 88 |
+
def pick_and_pop(keys, d):
|
| 89 |
+
values = list(map(lambda key: d.pop(key), keys))
|
| 90 |
+
return dict(zip(keys, values))
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
def group_dict_by_key(cond, d):
|
| 94 |
+
return_val = [dict(), dict()]
|
| 95 |
+
for key in d.keys():
|
| 96 |
+
match = bool(cond(key))
|
| 97 |
+
ind = int(not match)
|
| 98 |
+
return_val[ind][key] = d[key]
|
| 99 |
+
return (*return_val,)
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
def string_begins_with(prefix, str):
|
| 103 |
+
return str.startswith(prefix)
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
def group_by_key_prefix(prefix, d):
|
| 107 |
+
return group_dict_by_key(partial(string_begins_with, prefix), d)
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
def groupby_prefix_and_trim(prefix, d):
|
| 111 |
+
kwargs_with_prefix, kwargs = group_dict_by_key(partial(string_begins_with, prefix), d)
|
| 112 |
+
kwargs_without_prefix = dict(map(lambda x: (x[0][len(prefix):], x[1]), tuple(kwargs_with_prefix.items())))
|
| 113 |
+
return kwargs_without_prefix, kwargs
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
# classes
|
| 117 |
+
class Scale(nn.Module):
|
| 118 |
+
def __init__(self, value, fn):
|
| 119 |
+
super().__init__()
|
| 120 |
+
self.value = value
|
| 121 |
+
self.fn = fn
|
| 122 |
+
|
| 123 |
+
def forward(self, x, **kwargs):
|
| 124 |
+
x, *rest = self.fn(x, **kwargs)
|
| 125 |
+
return (x * self.value, *rest)
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
class Rezero(nn.Module):
|
| 129 |
+
def __init__(self, fn):
|
| 130 |
+
super().__init__()
|
| 131 |
+
self.fn = fn
|
| 132 |
+
self.g = nn.Parameter(torch.zeros(1))
|
| 133 |
+
|
| 134 |
+
def forward(self, x, **kwargs):
|
| 135 |
+
x, *rest = self.fn(x, **kwargs)
|
| 136 |
+
return (x * self.g, *rest)
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
class ScaleNorm(nn.Module):
|
| 140 |
+
def __init__(self, dim, eps=1e-5):
|
| 141 |
+
super().__init__()
|
| 142 |
+
self.scale = dim ** -0.5
|
| 143 |
+
self.eps = eps
|
| 144 |
+
self.g = nn.Parameter(torch.ones(1))
|
| 145 |
+
|
| 146 |
+
def forward(self, x):
|
| 147 |
+
norm = torch.norm(x, dim=-1, keepdim=True) * self.scale
|
| 148 |
+
return x / norm.clamp(min=self.eps) * self.g
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
class RMSNorm(nn.Module):
|
| 152 |
+
def __init__(self, dim, eps=1e-8):
|
| 153 |
+
super().__init__()
|
| 154 |
+
self.scale = dim ** -0.5
|
| 155 |
+
self.eps = eps
|
| 156 |
+
self.g = nn.Parameter(torch.ones(dim))
|
| 157 |
+
|
| 158 |
+
def forward(self, x):
|
| 159 |
+
norm = torch.norm(x, dim=-1, keepdim=True) * self.scale
|
| 160 |
+
return x / norm.clamp(min=self.eps) * self.g
|
| 161 |
+
|
| 162 |
+
|
| 163 |
+
class Residual(nn.Module):
|
| 164 |
+
def forward(self, x, residual):
|
| 165 |
+
return x + residual
|
| 166 |
+
|
| 167 |
+
|
| 168 |
+
class GRUGating(nn.Module):
|
| 169 |
+
def __init__(self, dim):
|
| 170 |
+
super().__init__()
|
| 171 |
+
self.gru = nn.GRUCell(dim, dim)
|
| 172 |
+
|
| 173 |
+
def forward(self, x, residual):
|
| 174 |
+
gated_output = self.gru(
|
| 175 |
+
rearrange(x, 'b n d -> (b n) d'),
|
| 176 |
+
rearrange(residual, 'b n d -> (b n) d')
|
| 177 |
+
)
|
| 178 |
+
|
| 179 |
+
return gated_output.reshape_as(x)
|
| 180 |
+
|
| 181 |
+
|
| 182 |
+
# feedforward
|
| 183 |
+
|
| 184 |
+
class GEGLU(nn.Module):
|
| 185 |
+
def __init__(self, dim_in, dim_out):
|
| 186 |
+
super().__init__()
|
| 187 |
+
self.proj = nn.Linear(dim_in, dim_out * 2)
|
| 188 |
+
|
| 189 |
+
def forward(self, x):
|
| 190 |
+
x, gate = self.proj(x).chunk(2, dim=-1)
|
| 191 |
+
return x * F.gelu(gate)
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
class FeedForward(nn.Module):
|
| 195 |
+
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
|
| 196 |
+
super().__init__()
|
| 197 |
+
inner_dim = int(dim * mult)
|
| 198 |
+
dim_out = default(dim_out, dim)
|
| 199 |
+
project_in = nn.Sequential(
|
| 200 |
+
nn.Linear(dim, inner_dim),
|
| 201 |
+
nn.GELU()
|
| 202 |
+
) if not glu else GEGLU(dim, inner_dim)
|
| 203 |
+
|
| 204 |
+
self.net = nn.Sequential(
|
| 205 |
+
project_in,
|
| 206 |
+
nn.Dropout(dropout),
|
| 207 |
+
nn.Linear(inner_dim, dim_out)
|
| 208 |
+
)
|
| 209 |
+
|
| 210 |
+
def forward(self, x):
|
| 211 |
+
return self.net(x)
|
| 212 |
+
|
| 213 |
+
|
| 214 |
+
# attention.
|
| 215 |
+
class Attention(nn.Module):
|
| 216 |
+
def __init__(
|
| 217 |
+
self,
|
| 218 |
+
dim,
|
| 219 |
+
dim_head=DEFAULT_DIM_HEAD,
|
| 220 |
+
heads=8,
|
| 221 |
+
causal=False,
|
| 222 |
+
mask=None,
|
| 223 |
+
talking_heads=False,
|
| 224 |
+
sparse_topk=None,
|
| 225 |
+
use_entmax15=False,
|
| 226 |
+
num_mem_kv=0,
|
| 227 |
+
dropout=0.,
|
| 228 |
+
on_attn=False
|
| 229 |
+
):
|
| 230 |
+
super().__init__()
|
| 231 |
+
if use_entmax15:
|
| 232 |
+
raise NotImplementedError("Check out entmax activation instead of softmax activation!")
|
| 233 |
+
self.scale = dim_head ** -0.5
|
| 234 |
+
self.heads = heads
|
| 235 |
+
self.causal = causal
|
| 236 |
+
self.mask = mask
|
| 237 |
+
|
| 238 |
+
inner_dim = dim_head * heads
|
| 239 |
+
|
| 240 |
+
self.to_q = nn.Linear(dim, inner_dim, bias=False)
|
| 241 |
+
self.to_k = nn.Linear(dim, inner_dim, bias=False)
|
| 242 |
+
self.to_v = nn.Linear(dim, inner_dim, bias=False)
|
| 243 |
+
self.dropout = nn.Dropout(dropout)
|
| 244 |
+
|
| 245 |
+
# talking heads
|
| 246 |
+
self.talking_heads = talking_heads
|
| 247 |
+
if talking_heads:
|
| 248 |
+
self.pre_softmax_proj = nn.Parameter(torch.randn(heads, heads))
|
| 249 |
+
self.post_softmax_proj = nn.Parameter(torch.randn(heads, heads))
|
| 250 |
+
|
| 251 |
+
# explicit topk sparse attention
|
| 252 |
+
self.sparse_topk = sparse_topk
|
| 253 |
+
|
| 254 |
+
# entmax
|
| 255 |
+
#self.attn_fn = entmax15 if use_entmax15 else F.softmax
|
| 256 |
+
self.attn_fn = F.softmax
|
| 257 |
+
|
| 258 |
+
# add memory key / values
|
| 259 |
+
self.num_mem_kv = num_mem_kv
|
| 260 |
+
if num_mem_kv > 0:
|
| 261 |
+
self.mem_k = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head))
|
| 262 |
+
self.mem_v = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head))
|
| 263 |
+
|
| 264 |
+
# attention on attention
|
| 265 |
+
self.attn_on_attn = on_attn
|
| 266 |
+
self.to_out = nn.Sequential(nn.Linear(inner_dim, dim * 2), nn.GLU()) if on_attn else nn.Linear(inner_dim, dim)
|
| 267 |
+
|
| 268 |
+
def forward(
|
| 269 |
+
self,
|
| 270 |
+
x,
|
| 271 |
+
context=None,
|
| 272 |
+
mask=None,
|
| 273 |
+
context_mask=None,
|
| 274 |
+
rel_pos=None,
|
| 275 |
+
sinusoidal_emb=None,
|
| 276 |
+
prev_attn=None,
|
| 277 |
+
mem=None
|
| 278 |
+
):
|
| 279 |
+
b, n, _, h, talking_heads, device = *x.shape, self.heads, self.talking_heads, x.device
|
| 280 |
+
kv_input = default(context, x)
|
| 281 |
+
|
| 282 |
+
q_input = x
|
| 283 |
+
k_input = kv_input
|
| 284 |
+
v_input = kv_input
|
| 285 |
+
|
| 286 |
+
if exists(mem):
|
| 287 |
+
k_input = torch.cat((mem, k_input), dim=-2)
|
| 288 |
+
v_input = torch.cat((mem, v_input), dim=-2)
|
| 289 |
+
|
| 290 |
+
if exists(sinusoidal_emb):
|
| 291 |
+
# in shortformer, the query would start at a position offset depending on the past cached memory
|
| 292 |
+
offset = k_input.shape[-2] - q_input.shape[-2]
|
| 293 |
+
q_input = q_input + sinusoidal_emb(q_input, offset=offset)
|
| 294 |
+
k_input = k_input + sinusoidal_emb(k_input)
|
| 295 |
+
|
| 296 |
+
q = self.to_q(q_input)
|
| 297 |
+
k = self.to_k(k_input)
|
| 298 |
+
v = self.to_v(v_input)
|
| 299 |
+
|
| 300 |
+
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h=h), (q, k, v))
|
| 301 |
+
|
| 302 |
+
input_mask = None
|
| 303 |
+
if any(map(exists, (mask, context_mask))):
|
| 304 |
+
q_mask = default(mask, lambda: torch.ones((b, n), device=device).bool())
|
| 305 |
+
k_mask = q_mask if not exists(context) else context_mask
|
| 306 |
+
k_mask = default(k_mask, lambda: torch.ones((b, k.shape[-2]), device=device).bool())
|
| 307 |
+
q_mask = rearrange(q_mask, 'b i -> b () i ()')
|
| 308 |
+
k_mask = rearrange(k_mask, 'b j -> b () () j')
|
| 309 |
+
input_mask = q_mask * k_mask
|
| 310 |
+
|
| 311 |
+
if self.num_mem_kv > 0:
|
| 312 |
+
mem_k, mem_v = map(lambda t: repeat(t, 'h n d -> b h n d', b=b), (self.mem_k, self.mem_v))
|
| 313 |
+
k = torch.cat((mem_k, k), dim=-2)
|
| 314 |
+
v = torch.cat((mem_v, v), dim=-2)
|
| 315 |
+
if exists(input_mask):
|
| 316 |
+
input_mask = F.pad(input_mask, (self.num_mem_kv, 0), value=True)
|
| 317 |
+
|
| 318 |
+
dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale
|
| 319 |
+
mask_value = max_neg_value(dots)
|
| 320 |
+
|
| 321 |
+
if exists(prev_attn):
|
| 322 |
+
dots = dots + prev_attn
|
| 323 |
+
|
| 324 |
+
pre_softmax_attn = dots
|
| 325 |
+
|
| 326 |
+
if talking_heads:
|
| 327 |
+
dots = einsum('b h i j, h k -> b k i j', dots, self.pre_softmax_proj).contiguous()
|
| 328 |
+
|
| 329 |
+
if exists(rel_pos):
|
| 330 |
+
dots = rel_pos(dots)
|
| 331 |
+
|
| 332 |
+
if exists(input_mask):
|
| 333 |
+
dots.masked_fill_(~input_mask, mask_value)
|
| 334 |
+
del input_mask
|
| 335 |
+
|
| 336 |
+
if self.causal:
|
| 337 |
+
i, j = dots.shape[-2:]
|
| 338 |
+
r = torch.arange(i, device=device)
|
| 339 |
+
mask = rearrange(r, 'i -> () () i ()') < rearrange(r, 'j -> () () () j')
|
| 340 |
+
mask = F.pad(mask, (j - i, 0), value=False)
|
| 341 |
+
dots.masked_fill_(mask, mask_value)
|
| 342 |
+
del mask
|
| 343 |
+
|
| 344 |
+
if exists(self.sparse_topk) and self.sparse_topk < dots.shape[-1]:
|
| 345 |
+
top, _ = dots.topk(self.sparse_topk, dim=-1)
|
| 346 |
+
vk = top[..., -1].unsqueeze(-1).expand_as(dots)
|
| 347 |
+
mask = dots < vk
|
| 348 |
+
dots.masked_fill_(mask, mask_value)
|
| 349 |
+
del mask
|
| 350 |
+
|
| 351 |
+
attn = self.attn_fn(dots, dim=-1)
|
| 352 |
+
post_softmax_attn = attn
|
| 353 |
+
|
| 354 |
+
attn = self.dropout(attn)
|
| 355 |
+
|
| 356 |
+
if talking_heads:
|
| 357 |
+
attn = einsum('b h i j, h k -> b k i j', attn, self.post_softmax_proj).contiguous()
|
| 358 |
+
|
| 359 |
+
out = einsum('b h i j, b h j d -> b h i d', attn, v)
|
| 360 |
+
out = rearrange(out, 'b h n d -> b n (h d)')
|
| 361 |
+
|
| 362 |
+
intermediates = Intermediates(
|
| 363 |
+
pre_softmax_attn=pre_softmax_attn,
|
| 364 |
+
post_softmax_attn=post_softmax_attn
|
| 365 |
+
)
|
| 366 |
+
|
| 367 |
+
return self.to_out(out), intermediates
|
| 368 |
+
|
| 369 |
+
|
| 370 |
+
class AttentionLayers(nn.Module):
|
| 371 |
+
def __init__(
|
| 372 |
+
self,
|
| 373 |
+
dim,
|
| 374 |
+
depth,
|
| 375 |
+
heads=8,
|
| 376 |
+
causal=False,
|
| 377 |
+
cross_attend=False,
|
| 378 |
+
only_cross=False,
|
| 379 |
+
use_scalenorm=False,
|
| 380 |
+
use_rmsnorm=False,
|
| 381 |
+
use_rezero=False,
|
| 382 |
+
rel_pos_num_buckets=32,
|
| 383 |
+
rel_pos_max_distance=128,
|
| 384 |
+
position_infused_attn=False,
|
| 385 |
+
custom_layers=None,
|
| 386 |
+
sandwich_coef=None,
|
| 387 |
+
par_ratio=None,
|
| 388 |
+
residual_attn=False,
|
| 389 |
+
cross_residual_attn=False,
|
| 390 |
+
macaron=False,
|
| 391 |
+
pre_norm=True,
|
| 392 |
+
gate_residual=False,
|
| 393 |
+
**kwargs
|
| 394 |
+
):
|
| 395 |
+
super().__init__()
|
| 396 |
+
ff_kwargs, kwargs = groupby_prefix_and_trim('ff_', kwargs)
|
| 397 |
+
attn_kwargs, _ = groupby_prefix_and_trim('attn_', kwargs)
|
| 398 |
+
|
| 399 |
+
dim_head = attn_kwargs.get('dim_head', DEFAULT_DIM_HEAD)
|
| 400 |
+
|
| 401 |
+
self.dim = dim
|
| 402 |
+
self.depth = depth
|
| 403 |
+
self.layers = nn.ModuleList([])
|
| 404 |
+
|
| 405 |
+
self.has_pos_emb = position_infused_attn
|
| 406 |
+
self.pia_pos_emb = FixedPositionalEmbedding(dim) if position_infused_attn else None
|
| 407 |
+
self.rotary_pos_emb = always(None)
|
| 408 |
+
|
| 409 |
+
assert rel_pos_num_buckets <= rel_pos_max_distance, 'number of relative position buckets must be less than the relative position max distance'
|
| 410 |
+
self.rel_pos = None
|
| 411 |
+
|
| 412 |
+
self.pre_norm = pre_norm
|
| 413 |
+
|
| 414 |
+
self.residual_attn = residual_attn
|
| 415 |
+
self.cross_residual_attn = cross_residual_attn
|
| 416 |
+
|
| 417 |
+
norm_class = ScaleNorm if use_scalenorm else nn.LayerNorm
|
| 418 |
+
norm_class = RMSNorm if use_rmsnorm else norm_class
|
| 419 |
+
norm_fn = partial(norm_class, dim)
|
| 420 |
+
|
| 421 |
+
norm_fn = nn.Identity if use_rezero else norm_fn
|
| 422 |
+
branch_fn = Rezero if use_rezero else None
|
| 423 |
+
|
| 424 |
+
if cross_attend and not only_cross:
|
| 425 |
+
default_block = ('a', 'c', 'f')
|
| 426 |
+
elif cross_attend and only_cross:
|
| 427 |
+
default_block = ('c', 'f')
|
| 428 |
+
else:
|
| 429 |
+
default_block = ('a', 'f')
|
| 430 |
+
|
| 431 |
+
if macaron:
|
| 432 |
+
default_block = ('f',) + default_block
|
| 433 |
+
|
| 434 |
+
if exists(custom_layers):
|
| 435 |
+
layer_types = custom_layers
|
| 436 |
+
elif exists(par_ratio):
|
| 437 |
+
par_depth = depth * len(default_block)
|
| 438 |
+
assert 1 < par_ratio <= par_depth, 'par ratio out of range'
|
| 439 |
+
default_block = tuple(filter(not_equals('f'), default_block))
|
| 440 |
+
par_attn = par_depth // par_ratio
|
| 441 |
+
depth_cut = par_depth * 2 // 3 # 2 / 3 attention layer cutoff suggested by PAR paper
|
| 442 |
+
par_width = (depth_cut + depth_cut // par_attn) // par_attn
|
| 443 |
+
assert len(default_block) <= par_width, 'default block is too large for par_ratio'
|
| 444 |
+
par_block = default_block + ('f',) * (par_width - len(default_block))
|
| 445 |
+
par_head = par_block * par_attn
|
| 446 |
+
layer_types = par_head + ('f',) * (par_depth - len(par_head))
|
| 447 |
+
elif exists(sandwich_coef):
|
| 448 |
+
assert sandwich_coef > 0 and sandwich_coef <= depth, 'sandwich coefficient should be less than the depth'
|
| 449 |
+
layer_types = ('a',) * sandwich_coef + default_block * (depth - sandwich_coef) + ('f',) * sandwich_coef
|
| 450 |
+
else:
|
| 451 |
+
layer_types = default_block * depth
|
| 452 |
+
|
| 453 |
+
self.layer_types = layer_types
|
| 454 |
+
self.num_attn_layers = len(list(filter(equals('a'), layer_types)))
|
| 455 |
+
|
| 456 |
+
for layer_type in self.layer_types:
|
| 457 |
+
if layer_type == 'a':
|
| 458 |
+
layer = Attention(dim, heads=heads, causal=causal, **attn_kwargs)
|
| 459 |
+
elif layer_type == 'c':
|
| 460 |
+
layer = Attention(dim, heads=heads, **attn_kwargs)
|
| 461 |
+
elif layer_type == 'f':
|
| 462 |
+
layer = FeedForward(dim, **ff_kwargs)
|
| 463 |
+
layer = layer if not macaron else Scale(0.5, layer)
|
| 464 |
+
else:
|
| 465 |
+
raise Exception(f'invalid layer type {layer_type}')
|
| 466 |
+
|
| 467 |
+
if isinstance(layer, Attention) and exists(branch_fn):
|
| 468 |
+
layer = branch_fn(layer)
|
| 469 |
+
|
| 470 |
+
if gate_residual:
|
| 471 |
+
residual_fn = GRUGating(dim)
|
| 472 |
+
else:
|
| 473 |
+
residual_fn = Residual()
|
| 474 |
+
|
| 475 |
+
self.layers.append(nn.ModuleList([
|
| 476 |
+
norm_fn(),
|
| 477 |
+
layer,
|
| 478 |
+
residual_fn
|
| 479 |
+
]))
|
| 480 |
+
|
| 481 |
+
def forward(
|
| 482 |
+
self,
|
| 483 |
+
x,
|
| 484 |
+
context=None,
|
| 485 |
+
mask=None,
|
| 486 |
+
context_mask=None,
|
| 487 |
+
mems=None,
|
| 488 |
+
return_hiddens=False
|
| 489 |
+
):
|
| 490 |
+
hiddens = []
|
| 491 |
+
intermediates = []
|
| 492 |
+
prev_attn = None
|
| 493 |
+
prev_cross_attn = None
|
| 494 |
+
|
| 495 |
+
mems = mems.copy() if exists(mems) else [None] * self.num_attn_layers
|
| 496 |
+
|
| 497 |
+
for ind, (layer_type, (norm, block, residual_fn)) in enumerate(zip(self.layer_types, self.layers)):
|
| 498 |
+
is_last = ind == (len(self.layers) - 1)
|
| 499 |
+
|
| 500 |
+
if layer_type == 'a':
|
| 501 |
+
hiddens.append(x)
|
| 502 |
+
layer_mem = mems.pop(0)
|
| 503 |
+
|
| 504 |
+
residual = x
|
| 505 |
+
|
| 506 |
+
if self.pre_norm:
|
| 507 |
+
x = norm(x)
|
| 508 |
+
|
| 509 |
+
if layer_type == 'a':
|
| 510 |
+
out, inter = block(x, mask=mask, sinusoidal_emb=self.pia_pos_emb, rel_pos=self.rel_pos,
|
| 511 |
+
prev_attn=prev_attn, mem=layer_mem)
|
| 512 |
+
elif layer_type == 'c':
|
| 513 |
+
out, inter = block(x, context=context, mask=mask, context_mask=context_mask, prev_attn=prev_cross_attn)
|
| 514 |
+
elif layer_type == 'f':
|
| 515 |
+
out = block(x)
|
| 516 |
+
|
| 517 |
+
x = residual_fn(out, residual)
|
| 518 |
+
|
| 519 |
+
if layer_type in ('a', 'c'):
|
| 520 |
+
intermediates.append(inter)
|
| 521 |
+
|
| 522 |
+
if layer_type == 'a' and self.residual_attn:
|
| 523 |
+
prev_attn = inter.pre_softmax_attn
|
| 524 |
+
elif layer_type == 'c' and self.cross_residual_attn:
|
| 525 |
+
prev_cross_attn = inter.pre_softmax_attn
|
| 526 |
+
|
| 527 |
+
if not self.pre_norm and not is_last:
|
| 528 |
+
x = norm(x)
|
| 529 |
+
|
| 530 |
+
if return_hiddens:
|
| 531 |
+
intermediates = LayerIntermediates(
|
| 532 |
+
hiddens=hiddens,
|
| 533 |
+
attn_intermediates=intermediates
|
| 534 |
+
)
|
| 535 |
+
|
| 536 |
+
return x, intermediates
|
| 537 |
+
|
| 538 |
+
return x
|
| 539 |
+
|
| 540 |
+
|
| 541 |
+
class Encoder(AttentionLayers):
|
| 542 |
+
def __init__(self, **kwargs):
|
| 543 |
+
assert 'causal' not in kwargs, 'cannot set causality on encoder'
|
| 544 |
+
super().__init__(causal=False, **kwargs)
|
| 545 |
+
|
| 546 |
+
|
| 547 |
+
|
| 548 |
+
class TransformerWrapper(nn.Module):
|
| 549 |
+
def __init__(
|
| 550 |
+
self,
|
| 551 |
+
*,
|
| 552 |
+
num_tokens,
|
| 553 |
+
max_seq_len,
|
| 554 |
+
attn_layers,
|
| 555 |
+
emb_dim=None,
|
| 556 |
+
max_mem_len=0.,
|
| 557 |
+
emb_dropout=0.,
|
| 558 |
+
num_memory_tokens=None,
|
| 559 |
+
tie_embedding=False,
|
| 560 |
+
use_pos_emb=True
|
| 561 |
+
):
|
| 562 |
+
super().__init__()
|
| 563 |
+
assert isinstance(attn_layers, AttentionLayers), 'attention layers must be one of Encoder or Decoder'
|
| 564 |
+
|
| 565 |
+
dim = attn_layers.dim
|
| 566 |
+
emb_dim = default(emb_dim, dim)
|
| 567 |
+
|
| 568 |
+
self.max_seq_len = max_seq_len
|
| 569 |
+
self.max_mem_len = max_mem_len
|
| 570 |
+
self.num_tokens = num_tokens
|
| 571 |
+
|
| 572 |
+
self.token_emb = nn.Embedding(num_tokens, emb_dim)
|
| 573 |
+
self.pos_emb = AbsolutePositionalEmbedding(emb_dim, max_seq_len) if (
|
| 574 |
+
use_pos_emb and not attn_layers.has_pos_emb) else always(0)
|
| 575 |
+
self.emb_dropout = nn.Dropout(emb_dropout)
|
| 576 |
+
|
| 577 |
+
self.project_emb = nn.Linear(emb_dim, dim) if emb_dim != dim else nn.Identity()
|
| 578 |
+
self.attn_layers = attn_layers
|
| 579 |
+
self.norm = nn.LayerNorm(dim)
|
| 580 |
+
|
| 581 |
+
self.init_()
|
| 582 |
+
|
| 583 |
+
self.to_logits = nn.Linear(dim, num_tokens) if not tie_embedding else lambda t: t @ self.token_emb.weight.t()
|
| 584 |
+
|
| 585 |
+
# memory tokens (like [cls]) from Memory Transformers paper
|
| 586 |
+
num_memory_tokens = default(num_memory_tokens, 0)
|
| 587 |
+
self.num_memory_tokens = num_memory_tokens
|
| 588 |
+
if num_memory_tokens > 0:
|
| 589 |
+
self.memory_tokens = nn.Parameter(torch.randn(num_memory_tokens, dim))
|
| 590 |
+
|
| 591 |
+
# let funnel encoder know number of memory tokens, if specified
|
| 592 |
+
if hasattr(attn_layers, 'num_memory_tokens'):
|
| 593 |
+
attn_layers.num_memory_tokens = num_memory_tokens
|
| 594 |
+
|
| 595 |
+
def init_(self):
|
| 596 |
+
nn.init.normal_(self.token_emb.weight, std=0.02)
|
| 597 |
+
|
| 598 |
+
def forward(
|
| 599 |
+
self,
|
| 600 |
+
x,
|
| 601 |
+
return_embeddings=False,
|
| 602 |
+
mask=None,
|
| 603 |
+
return_mems=False,
|
| 604 |
+
return_attn=False,
|
| 605 |
+
mems=None,
|
| 606 |
+
**kwargs
|
| 607 |
+
):
|
| 608 |
+
b, n, device, num_mem = *x.shape, x.device, self.num_memory_tokens
|
| 609 |
+
x = self.token_emb(x)
|
| 610 |
+
x += self.pos_emb(x)
|
| 611 |
+
x = self.emb_dropout(x)
|
| 612 |
+
|
| 613 |
+
x = self.project_emb(x)
|
| 614 |
+
|
| 615 |
+
if num_mem > 0:
|
| 616 |
+
mem = repeat(self.memory_tokens, 'n d -> b n d', b=b)
|
| 617 |
+
x = torch.cat((mem, x), dim=1)
|
| 618 |
+
|
| 619 |
+
# auto-handle masking after appending memory tokens
|
| 620 |
+
if exists(mask):
|
| 621 |
+
mask = F.pad(mask, (num_mem, 0), value=True)
|
| 622 |
+
|
| 623 |
+
x, intermediates = self.attn_layers(x, mask=mask, mems=mems, return_hiddens=True, **kwargs)
|
| 624 |
+
x = self.norm(x)
|
| 625 |
+
|
| 626 |
+
mem, x = x[:, :num_mem], x[:, num_mem:]
|
| 627 |
+
|
| 628 |
+
out = self.to_logits(x) if not return_embeddings else x
|
| 629 |
+
|
| 630 |
+
if return_mems:
|
| 631 |
+
hiddens = intermediates.hiddens
|
| 632 |
+
new_mems = list(map(lambda pair: torch.cat(pair, dim=-2), zip(mems, hiddens))) if exists(mems) else hiddens
|
| 633 |
+
new_mems = list(map(lambda t: t[..., -self.max_mem_len:, :].detach(), new_mems))
|
| 634 |
+
return out, new_mems
|
| 635 |
+
|
| 636 |
+
if return_attn:
|
| 637 |
+
attn_maps = list(map(lambda t: t.post_softmax_attn, intermediates.attn_intermediates))
|
| 638 |
+
return out, attn_maps
|
| 639 |
+
|
| 640 |
+
return out
|
| 641 |
+
|