Spaces:
Runtime error
Runtime error
| # MIT License | |
| # Copyright (c) 2022 Intelligent Systems Lab Org | |
| # Permission is hereby granted, free of charge, to any person obtaining a copy | |
| # of this software and associated documentation files (the "Software"), to deal | |
| # in the Software without restriction, including without limitation the rights | |
| # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
| # copies of the Software, and to permit persons to whom the Software is | |
| # furnished to do so, subject to the following conditions: | |
| # The above copyright notice and this permission notice shall be included in all | |
| # copies or substantial portions of the Software. | |
| # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
| # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
| # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
| # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
| # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
| # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |
| # SOFTWARE. | |
| # File author: Zhenyu Li | |
| import gradio as gr | |
| from PIL import Image | |
| import tempfile | |
| import torch | |
| import numpy as np | |
| from zoedepth.utils.arg_utils import parse_unknown | |
| import argparse | |
| from zoedepth.models.builder import build_model | |
| from zoedepth.utils.config import get_config_user | |
| import matplotlib | |
| import cv2 | |
| from infer_user import regular_tile_param, random_tile_param | |
| from zoedepth.models.base_models.midas import Resize | |
| from torchvision.transforms import Compose | |
| from PIL import Image | |
| from torchvision import transforms | |
| import torch.nn.functional as F | |
| from zoedepth.models.base_models.midas import Resize | |
| from torchvision.transforms import Compose | |
| import gradio as gr | |
| import numpy as np | |
| import trimesh | |
| from zoedepth.utils.geometry import depth_to_points, create_triangles | |
| from functools import partial | |
| import tempfile | |
| def depth_edges_mask(depth, occ_filter_thr): | |
| """Returns a mask of edges in the depth map. | |
| Args: | |
| depth: 2D numpy array of shape (H, W) with dtype float32. | |
| Returns: | |
| mask: 2D numpy array of shape (H, W) with dtype bool. | |
| """ | |
| # Compute the x and y gradients of the depth map. | |
| depth_dx, depth_dy = np.gradient(depth) | |
| # Compute the gradient magnitude. | |
| depth_grad = np.sqrt(depth_dx ** 2 + depth_dy ** 2) | |
| # Compute the edge mask. | |
| # mask = depth_grad > 0.05 # default in zoedepth | |
| mask = depth_grad > occ_filter_thr # preserve more edges (?) | |
| return mask | |
| def load_state_dict(model, state_dict): | |
| """Load state_dict into model, handling DataParallel and DistributedDataParallel. Also checks for "model" key in state_dict. | |
| DataParallel prefixes state_dict keys with 'module.' when saving. | |
| If the model is not a DataParallel model but the state_dict is, then prefixes are removed. | |
| If the model is a DataParallel model but the state_dict is not, then prefixes are added. | |
| """ | |
| state_dict = state_dict.get('model', state_dict) | |
| # if model is a DataParallel model, then state_dict keys are prefixed with 'module.' | |
| do_prefix = isinstance( | |
| model, (torch.nn.DataParallel, torch.nn.parallel.DistributedDataParallel)) | |
| state = {} | |
| for k, v in state_dict.items(): | |
| if k.startswith('module.') and not do_prefix: | |
| k = k[7:] | |
| if not k.startswith('module.') and do_prefix: | |
| k = 'module.' + k | |
| state[k] = v | |
| model.load_state_dict(state, strict=True) | |
| print("Loaded successfully") | |
| return model | |
| def load_wts(model, checkpoint_path): | |
| ckpt = torch.load(checkpoint_path, map_location='cpu') | |
| return load_state_dict(model, ckpt) | |
| def load_ckpt(model, checkpoint): | |
| model = load_wts(model, checkpoint) | |
| print("Loaded weights from {0}".format(checkpoint)) | |
| return model | |
| def colorize(value, cmap='magma_r', vmin=None, vmax=None): | |
| # normalize | |
| vmin = value.min() if vmin is None else vmin | |
| # vmax = value.max() if vmax is None else vmax | |
| vmax = np.percentile(value, 95) if vmax is None else vmax | |
| if vmin != vmax: | |
| value = (value - vmin) / (vmax - vmin) # vmin..vmax | |
| else: | |
| value = value * 0. | |
| cmapper = matplotlib.cm.get_cmap(cmap) | |
| value = cmapper(value, bytes=True) # ((1)xhxwx4) | |
| value = value[:, :, :3] # bgr -> rgb | |
| # rgb_value = value[..., ::-1] | |
| rgb_value = value | |
| return rgb_value | |
| def predict_depth(model, image, mode, pn, reso, ps, device=None): | |
| pil_image = image | |
| if device is not None: | |
| image = transforms.ToTensor()(pil_image).unsqueeze(0).to(device) | |
| else: | |
| image = transforms.ToTensor()(pil_image).unsqueeze(0).cuda() | |
| image_height, image_width = image.shape[-2], image.shape[-1] | |
| if reso != '': | |
| image_resolution = (int(reso.split('x')[0]), int(reso.split('x')[1])) | |
| else: | |
| image_resolution = (2160, 3840) | |
| image_hr = F.interpolate(image, image_resolution, mode='bicubic', align_corners=True) | |
| preprocess = Compose([Resize(512, 384, keep_aspect_ratio=False, ensure_multiple_of=32, resize_method="minimal")]) | |
| image_lr = preprocess(image) | |
| if ps != '': | |
| patch_size = (int(ps.split('x')[0]), int(ps.split('x')[1])) | |
| else: | |
| patch_size = (int(image_resolution[0] // 4), int(image_resolution[1] // 4)) | |
| avg_depth_map = regular_tile_param( | |
| model, | |
| image_hr, | |
| offset_x=0, | |
| offset_y=0, | |
| img_lr=image_lr, | |
| crop_size=patch_size, | |
| img_resolution=image_resolution, | |
| transform=preprocess, | |
| blr_mask=True) | |
| if mode== 'P16': | |
| pass | |
| elif mode== 'P49': | |
| regular_tile_param( | |
| model, | |
| image_hr, | |
| offset_x=patch_size[1]//2, | |
| offset_y=0, | |
| img_lr=image_lr, | |
| iter_pred=avg_depth_map.average_map, | |
| boundary=0, | |
| update=True, | |
| avg_depth_map=avg_depth_map, | |
| crop_size=patch_size, | |
| img_resolution=image_resolution, | |
| transform=preprocess, | |
| blr_mask=True) | |
| regular_tile_param( | |
| model, | |
| image_hr, | |
| offset_x=0, | |
| offset_y=patch_size[0]//2, | |
| img_lr=image_lr, | |
| iter_pred=avg_depth_map.average_map, | |
| boundary=0, | |
| update=True, | |
| avg_depth_map=avg_depth_map, | |
| crop_size=patch_size, | |
| img_resolution=image_resolution, | |
| transform=preprocess, | |
| blr_mask=True) | |
| regular_tile_param( | |
| model, | |
| image_hr, | |
| offset_x=patch_size[1]//2, | |
| offset_y=patch_size[0]//2, | |
| img_lr=image_lr, | |
| iter_pred=avg_depth_map.average_map, | |
| boundary=0, | |
| update=True, | |
| avg_depth_map=avg_depth_map, | |
| crop_size=patch_size, | |
| img_resolution=image_resolution, | |
| transform=preprocess, | |
| blr_mask=True) | |
| elif mode == 'R': | |
| regular_tile_param( | |
| model, | |
| image_hr, | |
| offset_x=patch_size[1]//2, | |
| offset_y=0, | |
| img_lr=image_lr, | |
| iter_pred=avg_depth_map.average_map, | |
| boundary=0, | |
| update=True, | |
| avg_depth_map=avg_depth_map, | |
| crop_size=patch_size, | |
| img_resolution=image_resolution, | |
| transform=preprocess, | |
| blr_mask=True) | |
| regular_tile_param( | |
| model, | |
| image_hr, | |
| offset_x=0, | |
| offset_y=patch_size[0]//2, | |
| img_lr=image_lr, | |
| iter_pred=avg_depth_map.average_map, | |
| boundary=0, | |
| update=True, | |
| avg_depth_map=avg_depth_map, | |
| crop_size=patch_size, | |
| img_resolution=image_resolution, | |
| transform=preprocess, | |
| blr_mask=True) | |
| regular_tile_param( | |
| model, | |
| image_hr, | |
| offset_x=patch_size[1]//2, | |
| offset_y=patch_size[0]//2, | |
| img_lr=image_lr, | |
| iter_pred=avg_depth_map.average_map, | |
| boundary=0, | |
| update=True, | |
| avg_depth_map=avg_depth_map, | |
| crop_size=patch_size, | |
| img_resolution=image_resolution, | |
| transform=preprocess, | |
| blr_mask=True) | |
| for i in range(int(pn)): | |
| random_tile_param( | |
| model, | |
| image_hr, | |
| img_lr=image_lr, | |
| iter_pred=avg_depth_map.average_map, | |
| boundary=0, | |
| update=True, | |
| avg_depth_map=avg_depth_map, | |
| crop_size=patch_size, | |
| img_resolution=image_resolution, | |
| transform=preprocess, | |
| blr_mask=True) | |
| depth = avg_depth_map.average_map.detach().cpu() | |
| depth = F.interpolate(depth.unsqueeze(dim=0).unsqueeze(dim=0), (image_height, image_width), mode='bicubic', align_corners=True).squeeze().numpy() | |
| return depth | |
| def create_demo(model): | |
| gr.Markdown("## Depth Prediction Demo") | |
| with gr.Accordion("Advanced options", open=False): | |
| mode = gr.Radio(["P49", "R"], label="Tiling mode", info="We recommand using P49 for fast evaluation and R with 1024 patches for best visualization results, respectively", elem_id='mode', value='R'), | |
| patch_number = gr.Slider(1, 1024, label="Please decide the number of random patches (Only useful in mode=R)", step=1, value=256) | |
| resolution = gr.Textbox(label="Proccessing resolution (Default 4K. Use 'x' to split height and width.)", elem_id='mode', value='2160x3840') | |
| patch_size = gr.Textbox(label="Patch size (Default 1/4 of image resolution. Use 'x' to split height and width.)", elem_id='mode', value='540x960') | |
| with gr.Row(): | |
| input_image = gr.Image(label="Input Image", type='pil', elem_id='img-display-input') | |
| depth_image = gr.Image(label="Depth Map", elem_id='img-display-output') | |
| raw_file = gr.File(label="16-bit raw depth, multiplier:256") | |
| submit = gr.Button("Submit") | |
| def on_submit(image, mode, pn, reso, ps): | |
| depth = predict_depth(model, image, mode, pn, reso, ps) | |
| colored_depth = colorize(depth, cmap='gray_r') | |
| tmp = tempfile.NamedTemporaryFile(suffix='.png', delete=False) | |
| raw_depth = Image.fromarray((depth*256).astype('uint16')) | |
| raw_depth.save(tmp.name) | |
| return [colored_depth, tmp.name] | |
| submit.click(on_submit, inputs=[input_image, mode[0], patch_number, resolution, patch_size], outputs=[depth_image, raw_file]) | |
| examples = gr.Examples(examples=["examples/example_1.jpeg", "examples/example_2.jpeg", "examples/example_3.jpeg"], inputs=[input_image]) | |
| def get_mesh(model, image, mode, pn, reso, ps, keep_edges, occ_filter_thr, fov): | |
| depth = predict_depth(model, image, mode, pn, reso, ps) | |
| image.thumbnail((1024,1024)) # limit the size of the input image | |
| depth = F.interpolate(torch.from_numpy(depth).unsqueeze(dim=0).unsqueeze(dim=0), (image.height, image.width), mode='bicubic', align_corners=True).squeeze().numpy() | |
| pts3d = depth_to_points(depth[None], fov=float(fov)) | |
| pts3d = pts3d.reshape(-1, 3) | |
| # Create a trimesh mesh from the points | |
| # Each pixel is connected to its 4 neighbors | |
| # colors are the RGB values of the image | |
| verts = pts3d.reshape(-1, 3) | |
| image = np.array(image) | |
| if keep_edges: | |
| triangles = create_triangles(image.shape[0], image.shape[1]) | |
| else: | |
| triangles = create_triangles(image.shape[0], image.shape[1], mask=~depth_edges_mask(depth, occ_filter_thr=float(occ_filter_thr))) | |
| colors = image.reshape(-1, 3) | |
| mesh = trimesh.Trimesh(vertices=verts, faces=triangles, vertex_colors=colors) | |
| # Save as glb | |
| glb_file = tempfile.NamedTemporaryFile(suffix='.glb', delete=False) | |
| glb_path = glb_file.name | |
| mesh.export(glb_path) | |
| return glb_path | |
| def create_demo_3d(model): | |
| gr.Markdown("### Image to 3D Mesh") | |
| gr.Markdown("Convert a single 2D image to a 3D mesh") | |
| with gr.Accordion("Advanced options", open=False): | |
| mode = gr.Radio(["P49", "R"], label="Tiling mode", info="We recommand using P49 for fast evaluation and R with 1024 patches for best visualization results, respectively", elem_id='mode', value='R'), | |
| patch_number = gr.Slider(1, 1024, label="Please decide the number of random patches (Only useful in mode=R)", step=1, value=256) | |
| resolution = gr.Textbox(label="Proccessing resolution (Default 4K. Use 'x' to split height and width)", value='2160x3840') | |
| patch_size = gr.Textbox(label="Patch size (Default 1/4 of image resolution. Use 'x' to split height and width)", value='540x960') | |
| checkbox = gr.Checkbox(label="Keep occlusion edges", value=False) | |
| # occ_filter_thr = gr.Textbox(label="Occlusion filter threshold", info="Larger value will reserve more edges (Only useful when NOT keeping occlusion edges)", value='0.5') | |
| # fov = gr.Textbox(label="FOV for inv-projection", value='55') | |
| occ_filter_thr = gr.Slider(0.01, 5, label="Occlusion edge filter threshold", info="Larger value will reserve more occlusion edges (Only useful when NOT keeping occlusion edges)", step=0.01, value=0.2) | |
| fov = gr.Slider(5, 180, label="FOV for inv-projection", step=1, value=55) | |
| with gr.Row(): | |
| input_image = gr.Image(label="Input Image", type='pil') | |
| result = gr.Model3D(label="3d mesh reconstruction", clear_color=[1.0, 1.0, 1.0, 1.0]) | |
| submit = gr.Button("Submit") | |
| submit.click(partial(get_mesh, model), inputs=[input_image, mode[0], patch_number, resolution, patch_size, checkbox, occ_filter_thr, fov], outputs=[result]) | |
| examples = gr.Examples(examples=["examples/example_1.jpeg", "examples/example_4.jpeg", "examples/example_3.jpeg"], inputs=[input_image]) | |