Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: stable-baselines3
|
| 3 |
+
tags:
|
| 4 |
+
- PandaReachDense-v3
|
| 5 |
+
- deep-reinforcement-learning
|
| 6 |
+
- reinforcement-learning
|
| 7 |
+
- stable-baselines3
|
| 8 |
+
model-index:
|
| 9 |
+
- name: PPO
|
| 10 |
+
results:
|
| 11 |
+
- task:
|
| 12 |
+
type: reinforcement-learning
|
| 13 |
+
name: reinforcement-learning
|
| 14 |
+
dataset:
|
| 15 |
+
name: PandaReachDense-v3
|
| 16 |
+
type: PandaReachDense-v3
|
| 17 |
+
metrics:
|
| 18 |
+
- type: mean_reward
|
| 19 |
+
value: -0.22 +/- 0.12
|
| 20 |
+
name: mean_reward
|
| 21 |
+
verified: false
|
| 22 |
+
---
|
| 23 |
+
|
| 24 |
+
# **PPO** Agent playing **PandaReachDense-v3**
|
| 25 |
+
This is a trained model of a **PPO** agent playing **PandaReachDense-v3**
|
| 26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
| 27 |
+
|
| 28 |
+
## Usage (with Stable-baselines3)
|
| 29 |
+
TODO: Add your code
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
```python
|
| 33 |
+
|
| 34 |
+
from stable_baselines3 import PPO
|
| 35 |
+
from huggingface_sb3 import load_from_hub, package_to_hub
|
| 36 |
+
from stable_baselines3.common.vec_env import DummyVecEnv, VecNormalize
|
| 37 |
+
|
| 38 |
+
env_id = "PandaReachDense-v3"
|
| 39 |
+
env = gym.make(env_id)
|
| 40 |
+
env = make_vec_env(env_id, n_envs=4)
|
| 41 |
+
env = VecNormalize(env, training=True, norm_obs=True, norm_reward=True, gamma=0.5, epsilon=1e-10, norm_obs_keys=None)
|
| 42 |
+
|
| 43 |
+
model = PPO("MultiInputPolicy", env, verbose=1)
|
| 44 |
+
model.learn(1_000_000)
|
| 45 |
+
|
| 46 |
+
eval_env = DummyVecEnv([lambda: gym.make("PandaReachDense-v3")])
|
| 47 |
+
eval_env = VecNormalize.load("vec_normalize.pkl", eval_env)
|
| 48 |
+
eval_env.render_mode = "rgb_array"
|
| 49 |
+
eval_env.training = False
|
| 50 |
+
# reward normalization is not needed at test time
|
| 51 |
+
eval_env.norm_reward = False
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
model = PPO.load("Slay-PandaReachDense-v3")
|
| 55 |
+
mean_reward, std_reward = evaluate_policy(model, eval_env)
|
| 56 |
+
print(f"Mean reward = {mean_reward:.2f} +/- {std_reward:.2f}")
|
| 57 |
+
...
|
| 58 |
+
```
|