data_generation: design_proposals: count: 100 requirement_types: - 新功能开发 - 性能优化 - 架构重构 - API设计 - 错误处理 qa_pairs: count: 500 diversity_threshold: 0.7 max_code_lines: 40 min_code_lines: 5 dataset: format: jsonl output_dir: ./data/training_data test_split: 0.1 train_split: 0.8 val_split: 0.1 evaluation: metrics: - rouge - bleu - exact_match sample_size: 50 gpu: devices: - 0 - 1 memory_per_gpu: 48 llm_api: batch_size: 4 max_workers: 2 model: Qwen/Qwen3-8B provider: local model: base_model: Qwen/Qwen3-8B enable_thinking: true max_length: 2048 temperature: 0.7 thinking_budget: 4096 top_p: 0.9 project: name: code_repo_training_data_generator version: 1.0.0 repository: exclude_dirs: - .git - __pycache__ - node_modules - .venv - venv - build - dist languages: - python - markdown local_path: ./repos/Laddr url: https://github.com/AgnetLabs/Laddr training: batch_size: 2 bf16: true deepspeed_config: ./deepspeed_config_optimized.json eval_steps: 100 gradient_accumulation_steps: 8 learning_rate: 1e-3 logging_steps: 10 lora: alpha: 128 bias: none dropout: 0.05 r: 64 target_modules: - q_proj - k_proj - v_proj - o_proj - gate_proj - up_proj - down_proj max_grad_norm: 1.0 num_epochs: 3 output_dir: ./output/finetuned_model save_steps: 100 warmup_ratio: 0.05 weight_decay: 0.01