--- language: ace language_name: Acehnese language_family: austronesian_malay tags: - wikilangs - nlp - tokenizer - embeddings - n-gram - markov - wikipedia - feature-extraction - sentence-similarity - tokenization - n-grams - markov-chain - text-mining - fasttext - babelvec - vocabulous - vocabulary - monolingual - family-austronesian_malay license: mit library_name: wikilangs pipeline_tag: text-generation datasets: - omarkamali/wikipedia-monthly dataset_info: name: wikipedia-monthly description: Monthly snapshots of Wikipedia articles across 300+ languages metrics: - name: best_compression_ratio type: compression value: 4.925 - name: best_isotropy type: isotropy value: 0.4644 - name: vocabulary_size type: vocab value: 0 generated: 2026-01-03 --- # Acehnese - Wikilangs Models ## Comprehensive Research Report & Full Ablation Study This repository contains NLP models trained and evaluated by Wikilangs, specifically on **Acehnese** Wikipedia data. We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings. ## 📋 Repository Contents ### Models & Assets - Tokenizers (8k, 16k, 32k, 64k) - N-gram models (2, 3, 4, 5-gram) - Markov chains (context of 1, 2, 3, 4 and 5) - Subword N-gram and Markov chains - Embeddings in various sizes and dimensions (aligned and unaligned) - Language Vocabulary - Language Statistics ![Performance Dashboard](visualizations/performance_dashboard.png) ### Analysis and Evaluation - [1. Tokenizer Evaluation](#1-tokenizer-evaluation) - [2. N-gram Model Evaluation](#2-n-gram-model-evaluation) - [3. Markov Chain Evaluation](#3-markov-chain-evaluation) - [4. Vocabulary Analysis](#4-vocabulary-analysis) - [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation) - [6. Morphological Analysis (Experimental)](#6--morphological-analysis-experimental) - [7. Summary & Recommendations](#7-summary--recommendations) - [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide) - [Visualizations Index](#visualizations-index) --- ## 1. Tokenizer Evaluation ![Tokenizer Compression](visualizations/tokenizer_compression.png) ![Tokenizer Fertility](visualizations/tokenizer_fertility.png) ![Tokenizer OOV](visualizations/tokenizer_oov.png) ![Total Tokens](visualizations/tokenizer_total_tokens.png) ### Results | Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens | |------------|-------------|---------------|----------|--------------| | **8k** | 4.118x | 4.13 | 0.2676% | 125,584 | | **16k** | 4.487x | 4.50 | 0.2916% | 115,243 | | **32k** | 4.726x | 4.74 | 0.3071% | 109,414 | | **64k** | 4.925x 🏆 | 4.93 | 0.3200% | 104,998 | ### Tokenization Examples Below are sample sentences tokenized with each vocabulary size: **Sample 1:** `Jonathan Alberto "John" Leguizamo – ) nakeuh sidroe aktor asay Amirika Syarikat.` | Vocab | Tokens | Count | |-------|--------|-------| | 8k | `▁jonathan ▁albert o ▁" john " ▁leg ui zam o ... (+9 more)` | 19 | | 16k | `▁jonathan ▁albert o ▁" john " ▁leg ui zam o ... (+9 more)` | 19 | | 32k | `▁jonathan ▁alberto ▁" john " ▁leg uizamo ▁– ▁) ▁nakeuh ... (+6 more)` | 16 | | 64k | `▁jonathan ▁alberto ▁" john " ▁leguizamo ▁– ▁) ▁nakeuh ▁sidroe ... (+5 more)` | 15 | **Sample 2:** `Spencer Breslin nakeuh sidroe aktor asay Amirika Utara.` | Vocab | Tokens | Count | |-------|--------|-------| | 8k | `▁sp en cer ▁br es lin ▁nakeuh ▁sidroe ▁aktor ▁asay ... (+3 more)` | 13 | | 16k | `▁sp en cer ▁br es lin ▁nakeuh ▁sidroe ▁aktor ▁asay ... (+3 more)` | 13 | | 32k | `▁spencer ▁br es lin ▁nakeuh ▁sidroe ▁aktor ▁asay ▁amirika ▁utara ... (+1 more)` | 11 | | 64k | `▁spencer ▁breslin ▁nakeuh ▁sidroe ▁aktor ▁asay ▁amirika ▁utara .` | 9 | **Sample 3:** `Pasi Mali nakeuh saboh gampông nyang na lam keucamatan Woyla Barat, Kabupaten Ac...` | Vocab | Tokens | Count | |-------|--------|-------| | 8k | `▁pasi ▁mali ▁nakeuh ▁saboh ▁gampông ▁nyang ▁na ▁lam ▁keucamatan ▁woyla ... (+11 more)` | 21 | | 16k | `▁pasi ▁mali ▁nakeuh ▁saboh ▁gampông ▁nyang ▁na ▁lam ▁keucamatan ▁woyla ... (+11 more)` | 21 | | 32k | `▁pasi ▁mali ▁nakeuh ▁saboh ▁gampông ▁nyang ▁na ▁lam ▁keucamatan ▁woyla ... (+11 more)` | 21 | | 64k | `▁pasi ▁mali ▁nakeuh ▁saboh ▁gampông ▁nyang ▁na ▁lam ▁keucamatan ▁woyla ... (+11 more)` | 21 | ### Key Findings - **Best Compression:** 64k achieves 4.925x compression - **Lowest UNK Rate:** 8k with 0.2676% unknown tokens - **Trade-off:** Larger vocabularies improve compression but increase model size - **Recommendation:** 32k vocabulary provides optimal balance for production use --- ## 2. N-gram Model Evaluation ![N-gram Perplexity](visualizations/ngram_perplexity.png) ![N-gram Unique](visualizations/ngram_unique.png) ![N-gram Coverage](visualizations/ngram_coverage.png) ### Results | N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage | |--------|---------|------------|---------|----------------|------------------|-------------------| | **2-gram** | Word | 640 | 9.32 | 7,037 | 62.5% | 83.3% | | **2-gram** | Subword | 224 🏆 | 7.81 | 2,200 | 71.8% | 99.5% | | **3-gram** | Word | 582 | 9.19 | 8,345 | 65.3% | 85.4% | | **3-gram** | Subword | 1,199 | 10.23 | 14,644 | 37.8% | 84.8% | | **4-gram** | Word | 678 | 9.41 | 12,913 | 64.4% | 83.6% | | **4-gram** | Subword | 3,579 | 11.81 | 59,564 | 26.1% | 67.4% | | **5-gram** | Word | 585 | 9.19 | 10,187 | 66.3% | 85.3% | | **5-gram** | Subword | 6,530 | 12.67 | 114,683 | 21.4% | 60.4% | ### Top 5 N-grams by Size **2-grams (Word):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `bak laman` | 7,389 | | 2 | `gunong nyoe` | 7,388 | | 3 | `nyoe bak` | 5,543 | | 4 | `nakeuh saboh` | 5,048 | | 5 | `di acèh` | 4,747 | **3-grams (Word):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `gunong nyoe bak` | 5,541 | | 2 | `nyoe bak laman` | 3,694 | | 3 | `lumbôi gampông nyoe` | 3,567 | | 4 | `acèh lumbôi gampông` | 3,564 | | 5 | `nyoe lam data` | 3,499 | **4-grams (Word):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `gunong nyoe bak laman` | 3,694 | | 2 | `acèh lumbôi gampông nyoe` | 3,564 | | 3 | `lam data peumeurèntah nakeuh` | 3,499 | | 4 | `nyoe lam data peumeurèntah` | 3,499 | | 5 | `gampông nyoe lam data` | 3,499 | **5-grams (Word):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `nyoe lam data peumeurèntah nakeuh` | 3,499 | | 2 | `gampông nyoe lam data peumeurèntah` | 3,499 | | 3 | `lumbôi gampông nyoe lam data` | 3,498 | | 4 | `acèh lumbôi gampông nyoe lam` | 3,495 | | 5 | `lam data peumeurèntah nakeuh nè` | 3,489 | **2-grams (Subword):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `e u` | 118,044 | | 2 | `_ n` | 79,550 | | 3 | `a n` | 69,741 | | 4 | `h _` | 68,205 | | 5 | `n g` | 67,768 | **3-grams (Subword):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `n g _` | 44,547 | | 2 | `_ n a` | 31,665 | | 3 | `_ b a` | 30,517 | | 4 | `k e u` | 30,367 | | 5 | `_ n y` | 26,591 | **4-grams (Subword):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `e u h _` | 23,358 | | 2 | `b a k _` | 23,289 | | 3 | `_ d i _` | 21,170 | | 4 | `k e u h` | 21,124 | | 5 | `a k e u` | 20,698 | **5-grams (Subword):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `k e u h _` | 21,003 | | 2 | `n a k e u` | 20,623 | | 3 | `a k e u h` | 20,621 | | 4 | `_ n a k e` | 20,596 | | 5 | `_ b a k _` | 18,136 | ### Key Findings - **Best Perplexity:** 2-gram (subword) with 224 - **Entropy Trend:** Decreases with larger n-grams (more predictable) - **Coverage:** Top-1000 patterns cover ~60% of corpus - **Recommendation:** 4-gram or 5-gram for best predictive performance --- ## 3. Markov Chain Evaluation ![Markov Entropy](visualizations/markov_entropy.png) ![Markov Contexts](visualizations/markov_contexts.png) ![Markov Branching](visualizations/markov_branching.png) ### Results | Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability | |---------|---------|-------------|------------|------------------|-----------------|----------------| | **1** | Word | 0.7505 | 1.682 | 4.34 | 36,359 | 25.0% | | **1** | Subword | 0.8631 | 1.819 | 5.38 | 1,270 | 13.7% | | **2** | Word | 0.2142 | 1.160 | 1.44 | 156,380 | 78.6% | | **2** | Subword | 0.7734 | 1.709 | 4.50 | 6,829 | 22.7% | | **3** | Word | 0.0653 | 1.046 | 1.11 | 222,450 | 93.5% | | **3** | Subword | 0.7578 | 1.691 | 3.55 | 30,660 | 24.2% | | **4** | Word | 0.0241 🏆 | 1.017 | 1.04 | 244,189 | 97.6% | | **4** | Subword | 0.5683 | 1.483 | 2.36 | 108,651 | 43.2% | ### Generated Text Samples (Word-based) Below are text samples generated from each word-based Markov chain model: **Context Size 1:** 1. `di ateuh keude neulop ii dari mèssana strabô ngön sichuan jinoë sukèë calameae aseuli 苗族 haraih` 2. `nakeuh saboh gampông nyoe bak wikidata data peumeurèntah nakeuh saboh spèsiès nibak volume 82 nibak ...` 3. `bak laman sunrisesunset com di jeupun lé shogakkukan nè seuneubeuet bak laman sunrisesunset com di s...` **Context Size 2:** 1. `bak laman nasa data matauroe teubiet teunom di da irah bak laman geonames data gunong nyoe bak` 2. `gunong nyoe bak laman nasa data matauroe teubiet teunom di da irah ajyad 500 ngon 700 meté` 3. `nyoe bak wikidata data cuaca daerah gunong nyoe bak wikidata data cuaca daerah gunong nyoe bak laman` **Context Size 3:** 1. `gunong nyoe bak wikidata data cuaca daerah gunong nyoe bak laman nasa data matauroe teubiet teunom d...` 2. `nyoe bak laman geonames data gunong nyoe bak laman geonames data gunong nyoe bak wikidata data cuaca...` 3. `lumbôi gampông nyoe lam data peumeurèntah nakeuh nè di pidie pidie` **Context Size 4:** 1. `gunong nyoe bak laman nasa data matauroe teubiet teunom di da irah bak laman sunrisesunset com di ac...` 2. `acèh lumbôi gampông nyoe lam data peumeurèntah nakeuh nè di acèh rayek acèh rayek` 3. `gampông nyoe lam data peumeurèntah nakeuh nè di acèh seulatan raja acèh seulatan` ### Generated Text Samples (Subword-based) Below are text samples generated from each subword-based Markov chain model: **Context Size 1:** 1. `_peulopôt_onohoo` 2. `acoeuh_dd_teumph` 3. `nta'ôn_1,_ba),_b` **Context Size 2:** 1. `eurènteuh_nè_deuh` 2. `_nakeuneuropinak_` 3. `an_acilife_39_nya` **Context Size 3:** 1. `ng_di_daerah_cuaca` 2. `_najôh,_sha_peunaw` 3. `_bagoë_di_kabupatè` **Context Size 4:** 1. `euh_babah_la'èn_nya` 2. `bak_jijak_ulee_stud` 3. `_di_muhammouaneuh'e` ### Key Findings - **Best Predictability:** Context-4 (word) with 97.6% predictability - **Branching Factor:** Decreases with context size (more deterministic) - **Memory Trade-off:** Larger contexts require more storage (108,651 contexts) - **Recommendation:** Context-3 or Context-4 for text generation --- ## 4. Vocabulary Analysis ![Zipf's Law](visualizations/zipf_law.png) ![Top Words](visualizations/top20_words.png) ![Coverage Curve](visualizations/vocab_coverage.png) ### Statistics | Metric | Value | |--------|-------| | Vocabulary Size | 15,619 | | Total Tokens | 516,593 | | Mean Frequency | 33.07 | | Median Frequency | 3 | | Frequency Std Dev | 414.79 | ### Most Common Words | Rank | Word | Frequency | |------|------|-----------| | 1 | di | 21,222 | | 2 | nakeuh | 20,611 | | 3 | bak | 18,176 | | 4 | acèh | 17,532 | | 5 | nyoe | 13,191 | | 6 | data | 11,090 | | 7 | gunong | 10,023 | | 8 | nyang | 9,056 | | 9 | gampông | 8,794 | | 10 | lam | 7,951 | ### Least Common Words (from vocabulary) | Rank | Word | Frequency | |------|------|-----------| | 1 | influence | 2 | | 2 | across | 2 | | 3 | represent | 2 | | 4 | raising | 2 | | 5 | ceremony | 2 | | 6 | flown | 2 | | 7 | reconstructions | 2 | | 8 | bendera | 2 | | 9 | bekas | 2 | | 10 | jawatimu | 2 | ### Zipf's Law Analysis | Metric | Value | |--------|-------| | Zipf Coefficient | 1.1698 | | R² (Goodness of Fit) | 0.995531 | | Adherence Quality | **excellent** | ### Coverage Analysis | Top N Words | Coverage | |-------------|----------| | Top 100 | 63.1% | | Top 1,000 | 84.1% | | Top 5,000 | 94.2% | | Top 10,000 | 97.8% | ### Key Findings - **Zipf Compliance:** R²=0.9955 indicates excellent adherence to Zipf's law - **High Frequency Dominance:** Top 100 words cover 63.1% of corpus - **Long Tail:** 5,619 words needed for remaining 2.2% coverage --- ## 5. Word Embeddings Evaluation ![Embedding Isotropy](visualizations/embedding_isotropy.png) ![Similarity Matrix](visualizations/embedding_similarity.png) ![t-SNE Words](visualizations/tsne_words.png) ![t-SNE Sentences](visualizations/tsne_sentences.png) ### 5.1 Cross-Lingual Alignment ![Alignment Quality](visualizations/embedding_alignment_quality.png) ![Multilingual t-SNE](visualizations/embedding_tsne_multilingual.png) ### 5.2 Model Comparison | Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 | |-------|-----------|----------|------------------|---------------|----------------| | **mono_32d** | 32 | 0.4644 | 0.4250 | N/A | N/A | | **mono_64d** | 64 | 0.1432 | 0.4182 | N/A | N/A | | **mono_128d** | 128 | 0.0251 | 0.4207 | N/A | N/A | | **aligned_32d** | 32 | 0.4644 🏆 | 0.4392 | 0.0240 | 0.1600 | | **aligned_64d** | 64 | 0.1432 | 0.4223 | 0.0340 | 0.2120 | | **aligned_128d** | 128 | 0.0251 | 0.4223 | 0.0540 | 0.2900 | ### Key Findings - **Best Isotropy:** aligned_32d with 0.4644 (more uniform distribution) - **Semantic Density:** Average pairwise similarity of 0.4246. Lower values indicate better semantic separation. - **Alignment Quality:** Aligned models achieve up to 5.4% R@1 in cross-lingual retrieval. - **Recommendation:** 128d aligned for best cross-lingual performance --- ## 6. Morphological Analysis (Experimental) This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data. ### 6.1 Productivity & Complexity | Metric | Value | Interpretation | Recommendation | |--------|-------|----------------|----------------| | Productivity Index | **5.000** | High morphological productivity | Reliable analysis | | Idiomaticity Gap | **0.411** | High formulaic/idiomatic content | - | ### 6.2 Affix Inventory (Productive Units) These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts. #### Productive Prefixes | Prefix | Examples | |--------|----------| | `-ge` | geudapeuta, geuseutöt, geutanyoe | | `-me` | meuubah, meuasai, meupawôt | | `-geu` | geudapeuta, geuseutöt, geutanyoe | | `-meu` | meuubah, meuasai, meupawôt | | `-pe` | perdagangan, peunténg, peuradaban | #### Productive Suffixes | Suffix | Examples | |--------|----------| | `-ng` | lambéng, peunténg, gadông | | `-an` | perdagangan, azerbaijan, pikeran | | `-ah` | pamarèntah, meuubah, bhah | ### 6.3 Bound Stems (Lexical Roots) Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid. | Stem | Cohesion | Substitutability | Examples | |------|----------|------------------|----------| | `eung` | 1.43x | 64 contexts | reung, jeung, meung | | `uneu` | 1.75x | 28 contexts | uneun, runeu, meuneu | | `euna` | 1.43x | 60 contexts | keuna, beuna, peuna | | `euen` | 1.53x | 38 contexts | leuen, eueng, meuen | | `ubeu` | 1.48x | 22 contexts | ubeut, neubeu, keubeu | | `umeu` | 1.43x | 23 contexts | jumeu, geumeu, jeumeu | | `meur` | 1.61x | 15 contexts | meurô, meuri, meurak | | `beue` | 1.55x | 16 contexts | beuet, rabeue, abeuek | | `teun` | 1.34x | 25 contexts | uteun, ateung, teuntè | | `neub` | 1.61x | 14 contexts | neuba, neubeu, neubôh | | `eune` | 1.65x | 12 contexts | meuneu, seuneu, jeuneh | | `anga` | 1.33x | 23 contexts | langa, manga, panga | ### 6.4 Affix Compatibility (Co-occurrence) This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology. | Prefix | Suffix | Frequency | Examples | |--------|--------|-----------|----------| | `-ge` | `-ng` | 64 words | geumeujuang, geulumpang | | `-pe` | `-an` | 54 words | permulaan, peumeréntahan | | `-me` | `-ng` | 27 words | meuteureubang, meugang | | `-pe` | `-ng` | 27 words | peuseunang, peujuang | | `-me` | `-ah` | 21 words | meriah, meutuwah | | `-ge` | `-ah` | 20 words | geuminah, geujajah | | `-pe` | `-ah` | 15 words | pemerintah, peumeuréntah | | `-me` | `-an` | 14 words | mediterranian, meurakan | | `-ge` | `-an` | 6 words | geuritan, geulawan | ### 6.5 Recursive Morpheme Segmentation Using **Recursive Hierarchical Substitutability**, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., `prefix-prefix-root-suffix`). | Word | Suggested Split | Confidence | Stem | |------|-----------------|------------|------| | geulumbang | **`geu-lumba-ng`** | 6.0 | `lumba` | | geutanyong | **`geu-tanyo-ng`** | 6.0 | `tanyo` | | geumeupakat | **`geu-meu-pakat`** | 6.0 | `pakat` | | geulanggang | **`geu-langga-ng`** | 6.0 | `langga` | | gelombang | **`ge-lomba-ng`** | 6.0 | `lomba` | | meupangkat | **`meu-pangkat`** | 4.5 | `pangkat` | | meuhubôngan | **`meu-hubô-ng-an`** | 4.5 | `hubô` | | meujangeun | **`meu-jangeun`** | 4.5 | `jangeun` | | meuneunguy | **`meu-neunguy`** | 4.5 | `neunguy` | | meusayeuëp | **`meu-sayeuëp`** | 4.5 | `sayeuëp` | | meupapeuen | **`meu-papeuen`** | 4.5 | `papeuen` | | geupeuleumah | **`geu-pe-uleum-ah`** | 4.5 | `uleum` | | meubintéh | **`meu-bintéh`** | 4.5 | `bintéh` | | meupoliték | **`meu-politék`** | 4.5 | `politék` | | meuteukeubi | **`meu-teukeubi`** | 4.5 | `teukeubi` | ### 6.6 Linguistic Interpretation > **Automated Insight:** The language Acehnese shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding. > **Note on Idiomaticity:** The high Idiomaticity Gap suggests a large number of frequent multi-word expressions or formulaic sequences that are statistically distinct from their component parts. --- ## 7. Summary & Recommendations ![Performance Dashboard](visualizations/performance_dashboard.png) ### Production Recommendations | Component | Recommended | Rationale | |-----------|-------------|-----------| | Tokenizer | **64k BPE** | Best compression (4.93x) | | N-gram | **2-gram** | Lowest perplexity (224) | | Markov | **Context-4** | Highest predictability (97.6%) | | Embeddings | **100d** | Balanced semantic capture and isotropy | --- ## Appendix: Metrics Glossary & Interpretation Guide This section provides definitions, intuitions, and guidance for interpreting the metrics used throughout this report. ### Tokenizer Metrics **Compression Ratio** > *Definition:* The ratio of characters to tokens (chars/token). Measures how efficiently the tokenizer represents text. > > *Intuition:* Higher compression means fewer tokens needed to represent the same text, reducing sequence lengths for downstream models. A 3x compression means ~3 characters per token on average. > > *What to seek:* Higher is generally better for efficiency, but extremely high compression may indicate overly aggressive merging that loses morphological information. **Average Token Length (Fertility)** > *Definition:* Mean number of characters per token produced by the tokenizer. > > *Intuition:* Reflects the granularity of tokenization. Longer tokens capture more context but may struggle with rare words; shorter tokens are more flexible but increase sequence length. > > *What to seek:* Balance between 2-5 characters for most languages. Arabic/morphologically-rich languages may benefit from slightly longer tokens. **Unknown Token Rate (OOV Rate)** > *Definition:* Percentage of tokens that map to the unknown/UNK token, indicating words the tokenizer cannot represent. > > *Intuition:* Lower OOV means better vocabulary coverage. High OOV indicates the tokenizer encounters many unseen character sequences. > > *What to seek:* Below 1% is excellent; below 5% is acceptable. BPE tokenizers typically achieve very low OOV due to subword fallback. ### N-gram Model Metrics **Perplexity** > *Definition:* Measures how "surprised" the model is by test data. Mathematically: 2^(cross-entropy). Lower values indicate better prediction. > > *Intuition:* If perplexity is 100, the model is as uncertain as if choosing uniformly among 100 options at each step. A perplexity of 10 means effectively choosing among 10 equally likely options. > > *What to seek:* Lower is better. Perplexity decreases with larger n-grams (more context). Values vary widely by language and corpus size. **Entropy** > *Definition:* Average information content (in bits) needed to encode the next token given the context. Related to perplexity: perplexity = 2^entropy. > > *Intuition:* High entropy means high uncertainty/randomness; low entropy means predictable patterns. Natural language typically has entropy between 1-4 bits per character. > > *What to seek:* Lower entropy indicates more predictable text patterns. Entropy should decrease as n-gram size increases. **Coverage (Top-K)** > *Definition:* Percentage of corpus occurrences explained by the top K most frequent n-grams. > > *Intuition:* High coverage with few patterns indicates repetitive/formulaic text; low coverage suggests diverse vocabulary usage. > > *What to seek:* Depends on use case. For language modeling, moderate coverage (40-60% with top-1000) is typical for natural text. ### Markov Chain Metrics **Average Entropy** > *Definition:* Mean entropy across all contexts, measuring average uncertainty in next-word prediction. > > *Intuition:* Lower entropy means the model is more confident about what comes next. Context-1 has high entropy (many possible next words); Context-4 has low entropy (few likely continuations). > > *What to seek:* Decreasing entropy with larger context sizes. Very low entropy (<0.1) indicates highly deterministic transitions. **Branching Factor** > *Definition:* Average number of unique next tokens observed for each context. > > *Intuition:* High branching = many possible continuations (flexible but uncertain); low branching = few options (predictable but potentially repetitive). > > *What to seek:* Branching factor should decrease with context size. Values near 1.0 indicate nearly deterministic chains. **Predictability** > *Definition:* Derived metric: (1 - normalized_entropy) × 100%. Indicates how deterministic the model's predictions are. > > *Intuition:* 100% predictability means the next word is always certain; 0% means completely random. Real text falls between these extremes. > > *What to seek:* Higher predictability for text generation quality, but too high (>98%) may produce repetitive output. ### Vocabulary & Zipf's Law Metrics **Zipf's Coefficient** > *Definition:* The slope of the log-log plot of word frequency vs. rank. Zipf's law predicts this should be approximately -1. > > *Intuition:* A coefficient near -1 indicates the corpus follows natural language patterns where a few words are very common and most words are rare. > > *What to seek:* Values between -0.8 and -1.2 indicate healthy natural language distribution. Deviations may suggest domain-specific or artificial text. **R² (Coefficient of Determination)** > *Definition:* Measures how well the linear fit explains the frequency-rank relationship. Ranges from 0 to 1. > > *Intuition:* R² near 1.0 means the data closely follows Zipf's law; lower values indicate deviation from expected word frequency patterns. > > *What to seek:* R² > 0.95 is excellent; > 0.99 indicates near-perfect Zipf adherence typical of large natural corpora. **Vocabulary Coverage** > *Definition:* Cumulative percentage of corpus tokens accounted for by the top N words. > > *Intuition:* Shows how concentrated word usage is. If top-100 words cover 50% of text, the corpus relies heavily on common words. > > *What to seek:* Top-100 covering 30-50% is typical. Higher coverage indicates more repetitive text; lower suggests richer vocabulary. ### Word Embedding Metrics **Isotropy** > *Definition:* Measures how uniformly distributed vectors are in the embedding space. Computed as the ratio of minimum to maximum singular values. > > *Intuition:* High isotropy (near 1.0) means vectors spread evenly in all directions; low isotropy means vectors cluster in certain directions, reducing expressiveness. > > *What to seek:* Higher isotropy generally indicates better-quality embeddings. Values > 0.1 are reasonable; > 0.3 is good. Lower-dimensional embeddings tend to have higher isotropy. **Average Norm** > *Definition:* Mean magnitude (L2 norm) of word vectors in the embedding space. > > *Intuition:* Indicates the typical "length" of vectors. Consistent norms suggest stable training; high variance may indicate some words are undertrained. > > *What to seek:* Relatively consistent norms across models. The absolute value matters less than consistency (low std deviation). **Cosine Similarity** > *Definition:* Measures angular similarity between vectors, ranging from -1 (opposite) to 1 (identical direction). > > *Intuition:* Words with similar meanings should have high cosine similarity. This is the standard metric for semantic relatedness in embeddings. > > *What to seek:* Semantically related words should score > 0.5; unrelated words should be near 0. Synonyms often score > 0.7. **t-SNE Visualization** > *Definition:* t-Distributed Stochastic Neighbor Embedding - a dimensionality reduction technique that preserves local structure for visualization. > > *Intuition:* Clusters in t-SNE plots indicate groups of semantically related words. Spread indicates vocabulary diversity; tight clusters suggest semantic coherence. > > *What to seek:* Meaningful clusters (e.g., numbers together, verbs together). Avoid over-interpreting distances - t-SNE preserves local, not global, structure. ### General Interpretation Guidelines 1. **Compare within model families:** Metrics are most meaningful when comparing models of the same type (e.g., 8k vs 64k tokenizer). 2. **Consider trade-offs:** Better performance on one metric often comes at the cost of another (e.g., compression vs. OOV rate). 3. **Context matters:** Optimal values depend on downstream tasks. Text generation may prioritize different metrics than classification. 4. **Corpus influence:** All metrics are influenced by corpus characteristics. Wikipedia text differs from social media or literature. 5. **Language-specific patterns:** Morphologically rich languages (like Arabic) may show different optimal ranges than analytic languages. ### Visualizations Index | Visualization | Description | |---------------|-------------| | Tokenizer Compression | Compression ratios by vocabulary size | | Tokenizer Fertility | Average token length by vocabulary | | Tokenizer OOV | Unknown token rates | | Tokenizer Total Tokens | Total tokens by vocabulary | | N-gram Perplexity | Perplexity by n-gram size | | N-gram Entropy | Entropy by n-gram size | | N-gram Coverage | Top pattern coverage | | N-gram Unique | Unique n-gram counts | | Markov Entropy | Entropy by context size | | Markov Branching | Branching factor by context | | Markov Contexts | Unique context counts | | Zipf's Law | Frequency-rank distribution with fit | | Vocab Frequency | Word frequency distribution | | Top 20 Words | Most frequent words | | Vocab Coverage | Cumulative coverage curve | | Embedding Isotropy | Vector space uniformity | | Embedding Norms | Vector magnitude distribution | | Embedding Similarity | Word similarity heatmap | | Nearest Neighbors | Similar words for key terms | | t-SNE Words | 2D word embedding visualization | | t-SNE Sentences | 2D sentence embedding visualization | | Position Encoding | Encoding method comparison | | Model Sizes | Storage requirements | | Performance Dashboard | Comprehensive performance overview | --- ## About This Project ### Data Source Models trained on [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly) - a monthly snapshot of Wikipedia articles across 300+ languages. ### Project A project by **[Wikilangs](https://wikilangs.org)** - Open-source NLP models for every Wikipedia language. ### Maintainer [Omar Kamali](https://omarkamali.com) - [Omneity Labs](https://omneitylabs.com) ### Citation If you use these models in your research, please cite: ```bibtex @misc{wikilangs2025, author = {Kamali, Omar}, title = {Wikilangs: Open NLP Models for Wikipedia Languages}, year = {2025}, doi = {10.5281/zenodo.18073153}, publisher = {Zenodo}, url = {https://huggingface.co/wikilangs} institution = {Omneity Labs} } ``` ### License MIT License - Free for academic and commercial use. ### Links - 🌐 Website: [wikilangs.org](https://wikilangs.org) - 🤗 Models: [huggingface.co/wikilangs](https://huggingface.co/wikilangs) - 📊 Data: [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly) - 👤 Author: [Omar Kamali](https://huggingface.co/omarkamali) - 🤝 Sponsor: [Featherless AI](https://featherless.ai) --- *Generated by Wikilangs Models Pipeline* *Report Date: 2026-01-03 16:16:20*