--- language: alt language_name: Southern Altai language_family: turkic_siberian tags: - wikilangs - nlp - tokenizer - embeddings - n-gram - markov - wikipedia - feature-extraction - sentence-similarity - tokenization - n-grams - markov-chain - text-mining - fasttext - babelvec - vocabulous - vocabulary - monolingual - family-turkic_siberian license: mit library_name: wikilangs pipeline_tag: text-generation datasets: - omarkamali/wikipedia-monthly dataset_info: name: wikipedia-monthly description: Monthly snapshots of Wikipedia articles across 300+ languages metrics: - name: best_compression_ratio type: compression value: 3.686 - name: best_isotropy type: isotropy value: 0.8419 - name: vocabulary_size type: vocab value: 0 generated: 2026-01-03 --- # Southern Altai - Wikilangs Models ## Comprehensive Research Report & Full Ablation Study This repository contains NLP models trained and evaluated by Wikilangs, specifically on **Southern Altai** Wikipedia data. We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings. ## 📋 Repository Contents ### Models & Assets - Tokenizers (8k, 16k, 32k, 64k) - N-gram models (2, 3, 4, 5-gram) - Markov chains (context of 1, 2, 3, 4 and 5) - Subword N-gram and Markov chains - Embeddings in various sizes and dimensions (aligned and unaligned) - Language Vocabulary - Language Statistics ![Performance Dashboard](visualizations/performance_dashboard.png) ### Analysis and Evaluation - [1. Tokenizer Evaluation](#1-tokenizer-evaluation) - [2. N-gram Model Evaluation](#2-n-gram-model-evaluation) - [3. Markov Chain Evaluation](#3-markov-chain-evaluation) - [4. Vocabulary Analysis](#4-vocabulary-analysis) - [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation) - [6. Morphological Analysis (Experimental)](#6--morphological-analysis-experimental) - [7. Summary & Recommendations](#7-summary--recommendations) - [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide) - [Visualizations Index](#visualizations-index) --- ## 1. Tokenizer Evaluation ![Tokenizer Compression](visualizations/tokenizer_compression.png) ![Tokenizer Fertility](visualizations/tokenizer_fertility.png) ![Tokenizer OOV](visualizations/tokenizer_oov.png) ![Total Tokens](visualizations/tokenizer_total_tokens.png) ### Results | Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens | |------------|-------------|---------------|----------|--------------| | **8k** | 3.486x | 3.49 | 0.3992% | 972,913 | | **16k** | 3.686x 🏆 | 3.69 | 0.4221% | 920,240 | ### Tokenization Examples Below are sample sentences tokenized with each vocabulary size: **Sample 1:** `Оҥныут кошуун () — ӧвӧр моҥолдыҥ кошуун. Этимологиязы Оҥныут — (калка моҥолдоп о...` | Vocab | Tokens | Count | |-------|--------|-------| | 8k | `▁оҥныут ▁кошуун ▁() ▁— ▁ӧвӧр ▁моҥолдыҥ ▁кошуун . ▁этимологиязы ▁оҥныут ... (+27 more)` | 37 | | 16k | `▁оҥныут ▁кошуун ▁() ▁— ▁ӧвӧр ▁моҥолдыҥ ▁кошуун . ▁этимологиязы ▁оҥныут ... (+25 more)` | 35 | **Sample 2:** `Эски Чечкаб (, ) — јурт Россияда Татарстан Республиканыҥ Кайбыч аймагында кирет....` | Vocab | Tokens | Count | |-------|--------|-------| | 8k | `▁эски ▁че ч ка б ▁(, ▁) ▁— ▁јурт ▁россияда ... (+12 more)` | 22 | | 16k | `▁эски ▁чечкаб ▁(, ▁) ▁— ▁јурт ▁россияда ▁татарстан ▁республиканыҥ ▁кайбыч ... (+7 more)` | 17 | **Sample 3:** `Танк - темирле јабылган тебингиштерлӱ јуучыл машина.` | Vocab | Tokens | Count | |-------|--------|-------| | 8k | `▁танк ▁- ▁темир ле ▁ја б ылган ▁тебин ги ш ... (+6 more)` | 16 | | 16k | `▁танк ▁- ▁темирле ▁јабылган ▁тебингиштерлӱ ▁јуучыл ▁машина .` | 8 | ### Key Findings - **Best Compression:** 16k achieves 3.686x compression - **Lowest UNK Rate:** 8k with 0.3992% unknown tokens - **Trade-off:** Larger vocabularies improve compression but increase model size - **Recommendation:** 32k vocabulary provides optimal balance for production use --- ## 2. N-gram Model Evaluation ![N-gram Perplexity](visualizations/ngram_perplexity.png) ![N-gram Unique](visualizations/ngram_unique.png) ![N-gram Coverage](visualizations/ngram_coverage.png) ### Results | N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage | |--------|---------|------------|---------|----------------|------------------|-------------------| | **2-gram** | Word | 4,423 | 12.11 | 11,976 | 16.5% | 55.6% | | **2-gram** | Subword | 413 🏆 | 8.69 | 2,708 | 55.2% | 98.2% | | **3-gram** | Word | 5,471 | 12.42 | 16,254 | 15.6% | 52.1% | | **3-gram** | Subword | 3,292 | 11.68 | 22,428 | 19.5% | 62.9% | | **4-gram** | Word | 8,010 | 12.97 | 27,702 | 15.3% | 46.3% | | **4-gram** | Subword | 14,003 | 13.77 | 96,467 | 10.5% | 35.7% | | **5-gram** | Word | 7,318 | 12.84 | 24,542 | 16.3% | 46.7% | | **5-gram** | Subword | 33,559 | 15.03 | 198,894 | 7.1% | 25.2% | ### Top 5 N-grams by Size **2-grams (Word):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `республики алтай` | 1,479 | | 2 | `ј чык` | 1,391 | | 3 | `горно алтайск` | 1,246 | | 4 | `алтай республиканыҥ` | 1,220 | | 5 | `ј бож` | 1,072 | **3-grams (Word):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `јылдыҥ ӱлӱрген айыныҥ` | 755 | | 2 | `ӱлӱрген айыныҥ 15` | 730 | | 3 | `алтайск ау ра` | 511 | | 4 | `горно алтайск ау` | 511 | | 5 | `јон јаткан јерлери` | 503 | **4-grams (Word):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `јылдыҥ ӱлӱрген айыныҥ 15` | 730 | | 2 | `горно алтайск ау ра` | 511 | | 3 | `болгон јылдыҥ ӱлӱрген айыныҥ` | 367 | | 4 | `айыныҥ 15 кӱнине јетире` | 365 | | 5 | `аайынча јылдыҥ ӱлӱрген айыныҥ` | 365 | **5-grams (Word):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `юлиан кӱнтизӱ аайынча јылдыҥ ӱлӱрген` | 365 | | 2 | `кӱнтизӱ аайынча јылдыҥ ӱлӱрген айыныҥ` | 365 | | 3 | `кӱнине јетире болгон јылдыҥ ӱлӱрген` | 365 | | 4 | `юлиан кӱнтизӱни 13 кӱнге озолоп` | 365 | | 5 | `кӱнтизӱ юлиан кӱнтизӱни 13 кӱнге` | 365 | **2-grams (Subword):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `_ к` | 74,208 | | 2 | `, _` | 64,571 | | 3 | `_ ј` | 55,512 | | 4 | `а _` | 55,147 | | 5 | `ҥ _` | 53,924 | **3-grams (Subword):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `ы ҥ _` | 34,158 | | 2 | `д а _` | 16,990 | | 3 | `_ — _` | 16,847 | | 4 | `н ы ҥ` | 15,805 | | 5 | `_ к а` | 15,039 | **4-grams (Subword):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `н ы ҥ _` | 15,207 | | 2 | `д ы ҥ _` | 13,173 | | 3 | `_ к ӱ н` | 11,135 | | 4 | `а л т а` | 9,624 | | 5 | `_ ј ы л` | 9,304 | **5-grams (Subword):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `а л т а й` | 8,736 | | 2 | `_ ј ы л д` | 7,756 | | 3 | `с к и й _` | 7,663 | | 4 | `_ а л т а` | 6,748 | | 5 | `й д ы ҥ _` | 5,904 | ### Key Findings - **Best Perplexity:** 2-gram (subword) with 413 - **Entropy Trend:** Decreases with larger n-grams (more predictable) - **Coverage:** Top-1000 patterns cover ~25% of corpus - **Recommendation:** 4-gram or 5-gram for best predictive performance --- ## 3. Markov Chain Evaluation ![Markov Entropy](visualizations/markov_entropy.png) ![Markov Contexts](visualizations/markov_contexts.png) ![Markov Branching](visualizations/markov_branching.png) ### Results | Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability | |---------|---------|-------------|------------|------------------|-----------------|----------------| | **1** | Word | 0.7265 | 1.655 | 4.23 | 64,260 | 27.4% | | **1** | Subword | 1.6376 | 3.112 | 16.04 | 301 | 0.0% | | **2** | Word | 0.1676 | 1.123 | 1.34 | 271,928 | 83.2% | | **2** | Subword | 1.3152 | 2.488 | 8.04 | 4,828 | 0.0% | | **3** | Word | 0.0551 | 1.039 | 1.10 | 364,496 | 94.5% | | **3** | Subword | 0.8837 | 1.845 | 4.16 | 38,825 | 11.6% | | **4** | Word | 0.0265 🏆 | 1.019 | 1.05 | 400,428 | 97.3% | | **4** | Subword | 0.6047 | 1.521 | 2.55 | 161,528 | 39.5% | ### Generated Text Samples (Word-based) Below are text samples generated from each word-based Markov chain model: **Context Size 1:** 1. `ла ӧскӧ кижиниҥ адын масс системы но строеніемъ мерзокъ всё спишет вермахт понёс 90 км јаш` 2. `ле јолдоры јуртта 9 кӱнинде москвада в в ломоносова јылда гаагада переплётчик бичиктер берестяная гр...` 3. `алтай республика хакасия монголия горно алтайск гагу ныҥ јарымјылдык курстарына аткарылган оныҥ адыл...` **Context Size 2:** 1. `республики алтай от 3 марта года n 9 6 о языках народов проживающих на территории республики алтай` 2. `ј чык совет ле россий орнитолог јурукчы анималист бу кӱнде божогондор ајарулар 27 айдыҥ 27 кӱни юлиа...` 3. `горно алтайск алтайдыҥ бичиктер чыгарар изд возы 1 эл опт диск cd rom на алт яз б` **Context Size 3:** 1. `јылдыҥ ӱлӱрген айыныҥ 15 кӱнинеҥ ала тулаан айдыҥ 29 кӱнинде артист россияныҥ театрал ишчилериниҥ би...` 2. `ӱлӱрген айыныҥ 15 кӱнинеҥ ала кандык айдыҥ 15 кӱни юлиан кӱнтизӱ аайынча јылдыҥ ӱлӱрген айыныҥ 15 кӱ...` 3. `алтайск ау ра литературно издательский дом алтын туу сууда балык кезем астаган да болзо корулу јерле...` **Context Size 4:** 1. `јылдыҥ ӱлӱрген айыныҥ 15 кӱнине јетире болгон јылдыҥ ӱлӱрген айыныҥ 15 кӱнине јетире болгон јылдыҥ ӱ...` 2. `горно алтайск ау ра литературно издательский дом алтын туу јайдыҥ бойында аркалары койу ла бийик ӧлӧ...` 3. `болгон јылдыҥ ӱлӱрген айыныҥ 15 кӱнинеҥ ала кӱӱк айдыҥ 6 кӱни григориан кӱнтизӱде јылдыҥ 360 кӱни ви...` ### Generated Text Samples (Subword-based) Below are text samples generated from each subword-based Markov chain model: **Context Size 1:** 1. `_гатӱли»)_јектич` 2. `аканамикет_јыхих` 3. `ртакклан_онла_бь` **Context Size 2:** 1. `_кыл,_баснов_кылг` 2. `,_29_21,97_малтал` 3. `_јуртиреспублик_а` **Context Size 3:** 1. `ыҥ_кодондо_инфранс` 2. `да_православ_башка` 3. `_—_titus_liefs_asb` **Context Size 4:** 1. `ныҥ_кандыра_агып_ба` 2. `дыҥ_физиканыҥ_ӱӱрел` 3. `_кӱнтизӱле_кӱни_гри` ### Key Findings - **Best Predictability:** Context-4 (word) with 97.3% predictability - **Branching Factor:** Decreases with context size (more deterministic) - **Memory Trade-off:** Larger contexts require more storage (161,528 contexts) - **Recommendation:** Context-3 or Context-4 for text generation --- ## 4. Vocabulary Analysis ![Zipf's Law](visualizations/zipf_law.png) ![Top Words](visualizations/top20_words.png) ![Coverage Curve](visualizations/vocab_coverage.png) ### Statistics | Metric | Value | |--------|-------| | Vocabulary Size | 26,328 | | Total Tokens | 565,164 | | Mean Frequency | 21.47 | | Median Frequency | 3 | | Frequency Std Dev | 124.45 | ### Most Common Words | Rank | Word | Frequency | |------|------|-----------| | 1 | ла | 6,601 | | 2 | ле | 4,964 | | 3 | алтай | 4,646 | | 4 | деп | 3,903 | | 5 | с | 3,881 | | 6 | јылда | 3,745 | | 7 | айдыҥ | 3,441 | | 8 | болгон | 3,230 | | 9 | км | 3,151 | | 10 | јурт | 3,140 | ### Least Common Words (from vocabulary) | Rank | Word | Frequency | |------|------|-----------| | 1 | таскадуларды | 2 | | 2 | туузаланат | 2 | | 3 | узаныш | 2 | | 4 | эрессейде | 2 | | 5 | метеметике | 2 | | 6 | јеткилдери | 2 | | 7 | кӧмпӱтерлик | 2 | | 8 | чоотош | 2 | | 9 | кошлык | 2 | | 10 | програмалары | 2 | ### Zipf's Law Analysis | Metric | Value | |--------|-------| | Zipf Coefficient | 1.1627 | | R² (Goodness of Fit) | 0.985919 | | Adherence Quality | **excellent** | ### Coverage Analysis | Top N Words | Coverage | |-------------|----------| | Top 100 | 27.1% | | Top 1,000 | 65.7% | | Top 5,000 | 85.9% | | Top 10,000 | 92.4% | ### Key Findings - **Zipf Compliance:** R²=0.9859 indicates excellent adherence to Zipf's law - **High Frequency Dominance:** Top 100 words cover 27.1% of corpus - **Long Tail:** 16,328 words needed for remaining 7.6% coverage --- ## 5. Word Embeddings Evaluation ![Embedding Isotropy](visualizations/embedding_isotropy.png) ![Similarity Matrix](visualizations/embedding_similarity.png) ![t-SNE Words](visualizations/tsne_words.png) ![t-SNE Sentences](visualizations/tsne_sentences.png) ### 5.1 Cross-Lingual Alignment ![Alignment Quality](visualizations/embedding_alignment_quality.png) ![Multilingual t-SNE](visualizations/embedding_tsne_multilingual.png) ### 5.2 Model Comparison | Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 | |-------|-----------|----------|------------------|---------------|----------------| | **mono_32d** | 32 | 0.8419 | 0.3607 | N/A | N/A | | **mono_64d** | 64 | 0.7375 | 0.3054 | N/A | N/A | | **mono_128d** | 128 | 0.3603 | 0.2810 | N/A | N/A | | **aligned_32d** | 32 | 0.8419 🏆 | 0.3554 | 0.0260 | 0.1460 | | **aligned_64d** | 64 | 0.7375 | 0.2999 | 0.0660 | 0.2980 | | **aligned_128d** | 128 | 0.3603 | 0.2823 | 0.1580 | 0.4340 | ### Key Findings - **Best Isotropy:** aligned_32d with 0.8419 (more uniform distribution) - **Semantic Density:** Average pairwise similarity of 0.3141. Lower values indicate better semantic separation. - **Alignment Quality:** Aligned models achieve up to 15.8% R@1 in cross-lingual retrieval. - **Recommendation:** 128d aligned for best cross-lingual performance --- ## 6. Morphological Analysis (Experimental) This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data. ### 6.1 Productivity & Complexity | Metric | Value | Interpretation | Recommendation | |--------|-------|----------------|----------------| | Productivity Index | **5.000** | High morphological productivity | Reliable analysis | | Idiomaticity Gap | **0.854** | High formulaic/idiomatic content | - | ### 6.2 Affix Inventory (Productive Units) These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts. #### Productive Prefixes | Prefix | Examples | |--------|----------| | `-ка` | калькутта, калба, кацукава | | `-ко` | контр, козерёкова, кожондоп | #### Productive Suffixes | Suffix | Examples | |--------|----------| | `-ыҥ` | филармонияныҥ, транспорттыҥ, британияныҥ | | `-ий` | белорусский, макарьевский, исетский | | `-кий` | белорусский, макарьевский, исетский | | `-ский` | белорусский, макарьевский, исетский | | `-ныҥ` | филармонияныҥ, британияныҥ, наралканыҥ | | `-иҥ` | јеезезиниҥ, изӱзиниҥ, ӱренчиктердиҥ | | `-да` | ордында, совхозында, садуда | | `-ый` | государственный, музейный, тёплый | ### 6.3 Bound Stems (Lexical Roots) Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid. | Stem | Cohesion | Substitutability | Examples | |------|----------|------------------|----------| | `ский` | 2.17x | 43 contexts | омский, окский, юрский | | `ында` | 1.53x | 51 contexts | мында, айында, сындар | | `ыныҥ` | 1.68x | 30 contexts | мыныҥ, зыныҥ, угыныҥ | | `лтай` | 1.85x | 21 contexts | алтай, шылтай, алтайды | | `лгон` | 2.21x | 12 contexts | толгон, болгон, болгонм | | `лган` | 1.70x | 23 contexts | алган, калган, салган | | `осси` | 2.03x | 13 contexts | россия, россию, россии | | `аныҥ` | 1.67x | 23 contexts | оканыҥ, сшаныҥ, эраныҥ | | `олго` | 1.66x | 22 contexts | колго, волго, голго | | `алта` | 1.49x | 26 contexts | алтай, алтан, алтам | | `јылд` | 1.77x | 15 contexts | јылда, јылды, јылдын | | `ылда` | 1.63x | 19 contexts | тылда, дылда, јылда | ### 6.4 Affix Compatibility (Co-occurrence) This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology. | Prefix | Suffix | Frequency | Examples | |--------|--------|-----------|----------| | `-ка` | `-ыҥ` | 21 words | казакстанныҥ, кайырлыктыҥ | | `-ко` | `-ыҥ` | 20 words | конституцияныҥ, конкурстардыҥ | | `-ка` | `-ий` | 14 words | кадетский, карский | | `-ко` | `-ый` | 13 words | консалтинговый, командный | | `-ка` | `-ныҥ` | 11 words | казакстанныҥ, канаданыҥ | | `-ко` | `-ныҥ` | 11 words | конституцияныҥ, колхозыныҥ | | `-ко` | `-ий` | 10 words | комментарий, ковалевский | | `-ка` | `-кий` | 10 words | кадетский, карский | | `-ка` | `-ский` | 10 words | кадетский, карский | | `-ко` | `-да` | 9 words | косметологияда, коруда | ### 6.5 Recursive Morpheme Segmentation Using **Recursive Hierarchical Substitutability**, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., `prefix-prefix-root-suffix`). | Word | Suggested Split | Confidence | Stem | |------|-----------------|------------|------| | планеталарында | **`планеталарын-да`** | 4.5 | `планеталарын` | | актуруныҥ | **`актуру-ныҥ`** | 4.5 | `актуру` | | покровский | **`покров-ский`** | 4.5 | `покров` | | искусствоныҥ | **`искусство-ныҥ`** | 4.5 | `искусство` | | думазыныҥ | **`думазы-ныҥ`** | 4.5 | `думазы` | | медицинада | **`медицина-да`** | 4.5 | `медицина` | | балдарыныҥ | **`балдары-ныҥ`** | 4.5 | `балдары` | | португалияда | **`португалия-да`** | 4.5 | `португалия` | | программада | **`программа-да`** | 4.5 | `программа` | | аймагыныҥ | **`аймагы-ныҥ`** | 4.5 | `аймагы` | | академияда | **`академия-да`** | 4.5 | `академия` | | авиацияныҥ | **`авиация-ныҥ`** | 4.5 | `авиация` | | шотландский | **`шотланд-ский`** | 4.5 | `шотланд` | | киргизияныҥ | **`киргизия-ныҥ`** | 4.5 | `киргизия` | | регрессияныҥ | **`регрессия-ныҥ`** | 4.5 | `регрессия` | ### 6.6 Linguistic Interpretation > **Automated Insight:** The language Southern Altai shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding. > **Note on Idiomaticity:** The high Idiomaticity Gap suggests a large number of frequent multi-word expressions or formulaic sequences that are statistically distinct from their component parts. --- ## 7. Summary & Recommendations ![Performance Dashboard](visualizations/performance_dashboard.png) ### Production Recommendations | Component | Recommended | Rationale | |-----------|-------------|-----------| | Tokenizer | **16k BPE** | Best compression (3.69x) | | N-gram | **2-gram** | Lowest perplexity (413) | | Markov | **Context-4** | Highest predictability (97.3%) | | Embeddings | **100d** | Balanced semantic capture and isotropy | --- ## Appendix: Metrics Glossary & Interpretation Guide This section provides definitions, intuitions, and guidance for interpreting the metrics used throughout this report. ### Tokenizer Metrics **Compression Ratio** > *Definition:* The ratio of characters to tokens (chars/token). Measures how efficiently the tokenizer represents text. > > *Intuition:* Higher compression means fewer tokens needed to represent the same text, reducing sequence lengths for downstream models. A 3x compression means ~3 characters per token on average. > > *What to seek:* Higher is generally better for efficiency, but extremely high compression may indicate overly aggressive merging that loses morphological information. **Average Token Length (Fertility)** > *Definition:* Mean number of characters per token produced by the tokenizer. > > *Intuition:* Reflects the granularity of tokenization. Longer tokens capture more context but may struggle with rare words; shorter tokens are more flexible but increase sequence length. > > *What to seek:* Balance between 2-5 characters for most languages. Arabic/morphologically-rich languages may benefit from slightly longer tokens. **Unknown Token Rate (OOV Rate)** > *Definition:* Percentage of tokens that map to the unknown/UNK token, indicating words the tokenizer cannot represent. > > *Intuition:* Lower OOV means better vocabulary coverage. High OOV indicates the tokenizer encounters many unseen character sequences. > > *What to seek:* Below 1% is excellent; below 5% is acceptable. BPE tokenizers typically achieve very low OOV due to subword fallback. ### N-gram Model Metrics **Perplexity** > *Definition:* Measures how "surprised" the model is by test data. Mathematically: 2^(cross-entropy). Lower values indicate better prediction. > > *Intuition:* If perplexity is 100, the model is as uncertain as if choosing uniformly among 100 options at each step. A perplexity of 10 means effectively choosing among 10 equally likely options. > > *What to seek:* Lower is better. Perplexity decreases with larger n-grams (more context). Values vary widely by language and corpus size. **Entropy** > *Definition:* Average information content (in bits) needed to encode the next token given the context. Related to perplexity: perplexity = 2^entropy. > > *Intuition:* High entropy means high uncertainty/randomness; low entropy means predictable patterns. Natural language typically has entropy between 1-4 bits per character. > > *What to seek:* Lower entropy indicates more predictable text patterns. Entropy should decrease as n-gram size increases. **Coverage (Top-K)** > *Definition:* Percentage of corpus occurrences explained by the top K most frequent n-grams. > > *Intuition:* High coverage with few patterns indicates repetitive/formulaic text; low coverage suggests diverse vocabulary usage. > > *What to seek:* Depends on use case. For language modeling, moderate coverage (40-60% with top-1000) is typical for natural text. ### Markov Chain Metrics **Average Entropy** > *Definition:* Mean entropy across all contexts, measuring average uncertainty in next-word prediction. > > *Intuition:* Lower entropy means the model is more confident about what comes next. Context-1 has high entropy (many possible next words); Context-4 has low entropy (few likely continuations). > > *What to seek:* Decreasing entropy with larger context sizes. Very low entropy (<0.1) indicates highly deterministic transitions. **Branching Factor** > *Definition:* Average number of unique next tokens observed for each context. > > *Intuition:* High branching = many possible continuations (flexible but uncertain); low branching = few options (predictable but potentially repetitive). > > *What to seek:* Branching factor should decrease with context size. Values near 1.0 indicate nearly deterministic chains. **Predictability** > *Definition:* Derived metric: (1 - normalized_entropy) × 100%. Indicates how deterministic the model's predictions are. > > *Intuition:* 100% predictability means the next word is always certain; 0% means completely random. Real text falls between these extremes. > > *What to seek:* Higher predictability for text generation quality, but too high (>98%) may produce repetitive output. ### Vocabulary & Zipf's Law Metrics **Zipf's Coefficient** > *Definition:* The slope of the log-log plot of word frequency vs. rank. Zipf's law predicts this should be approximately -1. > > *Intuition:* A coefficient near -1 indicates the corpus follows natural language patterns where a few words are very common and most words are rare. > > *What to seek:* Values between -0.8 and -1.2 indicate healthy natural language distribution. Deviations may suggest domain-specific or artificial text. **R² (Coefficient of Determination)** > *Definition:* Measures how well the linear fit explains the frequency-rank relationship. Ranges from 0 to 1. > > *Intuition:* R² near 1.0 means the data closely follows Zipf's law; lower values indicate deviation from expected word frequency patterns. > > *What to seek:* R² > 0.95 is excellent; > 0.99 indicates near-perfect Zipf adherence typical of large natural corpora. **Vocabulary Coverage** > *Definition:* Cumulative percentage of corpus tokens accounted for by the top N words. > > *Intuition:* Shows how concentrated word usage is. If top-100 words cover 50% of text, the corpus relies heavily on common words. > > *What to seek:* Top-100 covering 30-50% is typical. Higher coverage indicates more repetitive text; lower suggests richer vocabulary. ### Word Embedding Metrics **Isotropy** > *Definition:* Measures how uniformly distributed vectors are in the embedding space. Computed as the ratio of minimum to maximum singular values. > > *Intuition:* High isotropy (near 1.0) means vectors spread evenly in all directions; low isotropy means vectors cluster in certain directions, reducing expressiveness. > > *What to seek:* Higher isotropy generally indicates better-quality embeddings. Values > 0.1 are reasonable; > 0.3 is good. Lower-dimensional embeddings tend to have higher isotropy. **Average Norm** > *Definition:* Mean magnitude (L2 norm) of word vectors in the embedding space. > > *Intuition:* Indicates the typical "length" of vectors. Consistent norms suggest stable training; high variance may indicate some words are undertrained. > > *What to seek:* Relatively consistent norms across models. The absolute value matters less than consistency (low std deviation). **Cosine Similarity** > *Definition:* Measures angular similarity between vectors, ranging from -1 (opposite) to 1 (identical direction). > > *Intuition:* Words with similar meanings should have high cosine similarity. This is the standard metric for semantic relatedness in embeddings. > > *What to seek:* Semantically related words should score > 0.5; unrelated words should be near 0. Synonyms often score > 0.7. **t-SNE Visualization** > *Definition:* t-Distributed Stochastic Neighbor Embedding - a dimensionality reduction technique that preserves local structure for visualization. > > *Intuition:* Clusters in t-SNE plots indicate groups of semantically related words. Spread indicates vocabulary diversity; tight clusters suggest semantic coherence. > > *What to seek:* Meaningful clusters (e.g., numbers together, verbs together). Avoid over-interpreting distances - t-SNE preserves local, not global, structure. ### General Interpretation Guidelines 1. **Compare within model families:** Metrics are most meaningful when comparing models of the same type (e.g., 8k vs 64k tokenizer). 2. **Consider trade-offs:** Better performance on one metric often comes at the cost of another (e.g., compression vs. OOV rate). 3. **Context matters:** Optimal values depend on downstream tasks. Text generation may prioritize different metrics than classification. 4. **Corpus influence:** All metrics are influenced by corpus characteristics. Wikipedia text differs from social media or literature. 5. **Language-specific patterns:** Morphologically rich languages (like Arabic) may show different optimal ranges than analytic languages. ### Visualizations Index | Visualization | Description | |---------------|-------------| | Tokenizer Compression | Compression ratios by vocabulary size | | Tokenizer Fertility | Average token length by vocabulary | | Tokenizer OOV | Unknown token rates | | Tokenizer Total Tokens | Total tokens by vocabulary | | N-gram Perplexity | Perplexity by n-gram size | | N-gram Entropy | Entropy by n-gram size | | N-gram Coverage | Top pattern coverage | | N-gram Unique | Unique n-gram counts | | Markov Entropy | Entropy by context size | | Markov Branching | Branching factor by context | | Markov Contexts | Unique context counts | | Zipf's Law | Frequency-rank distribution with fit | | Vocab Frequency | Word frequency distribution | | Top 20 Words | Most frequent words | | Vocab Coverage | Cumulative coverage curve | | Embedding Isotropy | Vector space uniformity | | Embedding Norms | Vector magnitude distribution | | Embedding Similarity | Word similarity heatmap | | Nearest Neighbors | Similar words for key terms | | t-SNE Words | 2D word embedding visualization | | t-SNE Sentences | 2D sentence embedding visualization | | Position Encoding | Encoding method comparison | | Model Sizes | Storage requirements | | Performance Dashboard | Comprehensive performance overview | --- ## About This Project ### Data Source Models trained on [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly) - a monthly snapshot of Wikipedia articles across 300+ languages. ### Project A project by **[Wikilangs](https://wikilangs.org)** - Open-source NLP models for every Wikipedia language. ### Maintainer [Omar Kamali](https://omarkamali.com) - [Omneity Labs](https://omneitylabs.com) ### Citation If you use these models in your research, please cite: ```bibtex @misc{wikilangs2025, author = {Kamali, Omar}, title = {Wikilangs: Open NLP Models for Wikipedia Languages}, year = {2025}, doi = {10.5281/zenodo.18073153}, publisher = {Zenodo}, url = {https://huggingface.co/wikilangs} institution = {Omneity Labs} } ``` ### License MIT License - Free for academic and commercial use. ### Links - 🌐 Website: [wikilangs.org](https://wikilangs.org) - 🤗 Models: [huggingface.co/wikilangs](https://huggingface.co/wikilangs) - 📊 Data: [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly) - 👤 Author: [Omar Kamali](https://huggingface.co/omarkamali) - 🤝 Sponsor: [Featherless AI](https://featherless.ai) --- *Generated by Wikilangs Models Pipeline* *Report Date: 2026-01-03 16:17:03*