omarkamali commited on
Commit
c53f797
·
verified ·
1 Parent(s): 7c5b3a2

Upload all models and assets for ang (latest)

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +1 -0
  2. README.md +214 -177
  3. models/embeddings/aligned/ang_128d.bin +3 -0
  4. models/embeddings/aligned/ang_128d.meta.json +1 -0
  5. models/embeddings/aligned/ang_128d.projection.npy +3 -0
  6. models/embeddings/aligned/ang_128d_metadata.json +8 -0
  7. models/embeddings/aligned/ang_32d.bin +3 -0
  8. models/embeddings/aligned/ang_32d.meta.json +1 -0
  9. models/embeddings/aligned/ang_32d.projection.npy +3 -0
  10. models/embeddings/aligned/ang_32d_metadata.json +8 -0
  11. models/embeddings/aligned/ang_64d.bin +3 -0
  12. models/embeddings/aligned/ang_64d.meta.json +1 -0
  13. models/embeddings/aligned/ang_64d.projection.npy +3 -0
  14. models/embeddings/aligned/ang_64d_metadata.json +8 -0
  15. models/embeddings/monolingual/ang_128d.bin +2 -2
  16. models/embeddings/monolingual/ang_128d_metadata.json +1 -1
  17. models/embeddings/monolingual/ang_32d.bin +2 -2
  18. models/embeddings/monolingual/ang_32d_metadata.json +1 -1
  19. models/embeddings/monolingual/ang_64d.bin +2 -2
  20. models/embeddings/monolingual/ang_64d_metadata.json +1 -1
  21. models/subword_markov/ang_markov_ctx1_subword.parquet +2 -2
  22. models/subword_markov/ang_markov_ctx1_subword_metadata.json +2 -2
  23. models/subword_markov/ang_markov_ctx2_subword.parquet +2 -2
  24. models/subword_markov/ang_markov_ctx2_subword_metadata.json +2 -2
  25. models/subword_markov/ang_markov_ctx3_subword.parquet +2 -2
  26. models/subword_markov/ang_markov_ctx3_subword_metadata.json +2 -2
  27. models/subword_markov/ang_markov_ctx4_subword.parquet +2 -2
  28. models/subword_markov/ang_markov_ctx4_subword_metadata.json +2 -2
  29. models/subword_ngram/ang_2gram_subword.parquet +2 -2
  30. models/subword_ngram/ang_2gram_subword_metadata.json +2 -2
  31. models/subword_ngram/ang_3gram_subword.parquet +2 -2
  32. models/subword_ngram/ang_3gram_subword_metadata.json +2 -2
  33. models/subword_ngram/ang_4gram_subword.parquet +2 -2
  34. models/subword_ngram/ang_4gram_subword_metadata.json +2 -2
  35. models/subword_ngram/ang_5gram_subword.parquet +3 -0
  36. models/subword_ngram/ang_5gram_subword_metadata.json +7 -0
  37. models/tokenizer/ang_tokenizer_16k.model +2 -2
  38. models/tokenizer/ang_tokenizer_16k.vocab +0 -0
  39. models/tokenizer/ang_tokenizer_32k.model +2 -2
  40. models/tokenizer/ang_tokenizer_32k.vocab +0 -0
  41. models/tokenizer/ang_tokenizer_64k.model +2 -2
  42. models/tokenizer/ang_tokenizer_64k.vocab +0 -0
  43. models/tokenizer/ang_tokenizer_8k.model +2 -2
  44. models/tokenizer/ang_tokenizer_8k.vocab +0 -0
  45. models/vocabulary/ang_vocabulary.parquet +2 -2
  46. models/vocabulary/ang_vocabulary_metadata.json +9 -9
  47. models/word_markov/ang_markov_ctx1_word.parquet +2 -2
  48. models/word_markov/ang_markov_ctx1_word_metadata.json +2 -2
  49. models/word_markov/ang_markov_ctx2_word.parquet +2 -2
  50. models/word_markov/ang_markov_ctx2_word_metadata.json +2 -2
.gitattributes CHANGED
@@ -39,3 +39,4 @@ visualizations/position_encoding_comparison.png filter=lfs diff=lfs merge=lfs -t
39
  visualizations/tsne_sentences.png filter=lfs diff=lfs merge=lfs -text
40
  visualizations/tsne_words.png filter=lfs diff=lfs merge=lfs -text
41
  visualizations/zipf_law.png filter=lfs diff=lfs merge=lfs -text
 
 
39
  visualizations/tsne_sentences.png filter=lfs diff=lfs merge=lfs -text
40
  visualizations/tsne_words.png filter=lfs diff=lfs merge=lfs -text
41
  visualizations/zipf_law.png filter=lfs diff=lfs merge=lfs -text
42
+ visualizations/embedding_tsne_multilingual.png filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -1,6 +1,6 @@
1
  ---
2
  language: ang
3
- language_name: ANG
4
  language_family: germanic_historical
5
  tags:
6
  - wikilangs
@@ -10,11 +10,21 @@ tags:
10
  - n-gram
11
  - markov
12
  - wikipedia
 
 
 
 
 
 
 
 
 
 
13
  - monolingual
14
  - family-germanic_historical
15
  license: mit
16
  library_name: wikilangs
17
- pipeline_tag: feature-extraction
18
  datasets:
19
  - omarkamali/wikipedia-monthly
20
  dataset_info:
@@ -23,20 +33,20 @@ dataset_info:
23
  metrics:
24
  - name: best_compression_ratio
25
  type: compression
26
- value: 4.021
27
  - name: best_isotropy
28
  type: isotropy
29
- value: 0.7825
30
  - name: vocabulary_size
31
  type: vocab
32
  value: 0
33
  generated: 2026-01-03
34
  ---
35
 
36
- # ANG - Wikilangs Models
37
  ## Comprehensive Research Report & Full Ablation Study
38
 
39
- This repository contains NLP models trained and evaluated by Wikilangs, specifically on **ANG** Wikipedia data.
40
  We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.
41
 
42
  ## 📋 Repository Contents
@@ -60,7 +70,7 @@ We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and
60
  - [3. Markov Chain Evaluation](#3-markov-chain-evaluation)
61
  - [4. Vocabulary Analysis](#4-vocabulary-analysis)
62
  - [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation)
63
- - [6. Morphological Analysis (Experimental)](#6-morphological-analysis)
64
  - [7. Summary & Recommendations](#7-summary--recommendations)
65
  - [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide)
66
  - [Visualizations Index](#visualizations-index)
@@ -80,47 +90,47 @@ We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and
80
 
81
  | Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
82
  |------------|-------------|---------------|----------|--------------|
83
- | **8k** | 3.112x | 3.12 | 0.0790% | 253,185 |
84
- | **16k** | 3.447x | 3.45 | 0.0875% | 228,585 |
85
- | **32k** | 3.771x | 3.78 | 0.0957% | 208,909 |
86
- | **64k** | 4.021x 🏆 | 4.03 | 0.1021% | 195,954 |
87
 
88
  ### Tokenization Examples
89
 
90
  Below are sample sentences tokenized with each vocabulary size:
91
 
92
- **Sample 1:** `Ƿada (tacn: 16px|♆) is þæt eahtoþa planēta þǣre sunnlican endebyrdnesse. tungol`
93
 
94
  | Vocab | Tokens | Count |
95
  |-------|--------|-------|
96
- | 8k | `▁ƿa da ▁( tac n :1 6 px ... (+13 more)` | 23 |
97
- | 16k | `▁ƿa da ▁( tacn :1 6 px | ... (+12 more)` | 22 |
98
- | 32k | `▁ƿada ▁( tacn :1 6 px | ... (+10 more)` | 20 |
99
- | 64k | `▁ƿada( tacn :1 6 px | ... (+10 more)` | 20 |
100
 
101
- **Sample 2:** `Caþerine, Wēala Þēodienen, (ġeboren Caþerine Elisabeþ Middeltūn; 9 Æfterra Gēola...`
102
 
103
  | Vocab | Tokens | Count |
104
  |-------|--------|-------|
105
- | 8k | `▁caþ er ine ,wēala ▁þēod ien en , ( ... (+28 more)` | 38 |
106
- | 16k | `▁caþerine ,wēala ▁þēod ien en , ( ġe boren ... (+24 more)` | 34 |
107
- | 32k | `▁caþerine ,wēala ▁þēodienen , ( ġeboren caþerineelisabeþmiddeltūn ... (+18 more)` | 28 |
108
- | 64k | `▁caþerine ,wēala ▁þēodienen ,( ġeboren ▁caþerineelisabeþmiddeltūn ... (+18 more)` | 28 |
109
 
110
- **Sample 3:** `Seo burg Hƿītburg ( oþþe Belgrade) oþþe Singidceaster is sēo hēafodburg and sēo ...`
111
 
112
  | Vocab | Tokens | Count |
113
  |-------|--------|-------|
114
- | 8k | `▁seoburghƿīt burg( ▁oþþebelg ra de ) ... (+20 more)` | 30 |
115
- | 16k | `▁seoburghƿīt burg( ▁oþþebelg rade ) ▁oþþe ... (+19 more)` | 29 |
116
- | 32k | `▁seoburghƿīt burg( ▁oþþebelgrade ) ▁oþþe ▁sing ... (+17 more)` | 27 |
117
- | 64k | `▁seoburghƿītburg ▁(oþþebelgrade ) ▁oþþesing id ... (+16 more)` | 26 |
118
 
119
 
120
  ### Key Findings
121
 
122
- - **Best Compression:** 64k achieves 4.021x compression
123
- - **Lowest UNK Rate:** 8k with 0.0790% unknown tokens
124
  - **Trade-off:** Larger vocabularies improve compression but increase model size
125
  - **Recommendation:** 32k vocabulary provides optimal balance for production use
126
 
@@ -137,12 +147,14 @@ Below are sample sentences tokenized with each vocabulary size:
137
 
138
  | N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
139
  |--------|---------|------------|---------|----------------|------------------|-------------------|
140
- | **2-gram** | Word | 3,511 | 11.78 | 7,045 | 21.4% | 53.3% |
141
- | **2-gram** | Subword | 365 🏆 | 8.51 | 3,016 | 61.0% | 98.1% |
142
- | **3-gram** | Word | 3,285 | 11.68 | 6,002 | 21.8% | 50.6% |
143
- | **3-gram** | Subword | 3,330 | 11.70 | 23,727 | 22.3% | 62.8% |
144
- | **4-gram** | Word | 6,683 | 12.71 | 11,447 | 16.8% | 36.4% |
145
- | **4-gram** | Subword | 18,648 | 14.19 | 105,485 | 10.6% | 32.7% |
 
 
146
 
147
  ### Top 5 N-grams by Size
148
 
@@ -150,21 +162,21 @@ Below are sample sentences tokenized with each vocabulary size:
150
 
151
  | Rank | N-gram | Count |
152
  |------|--------|-------|
153
- | 1 | `in þǣm` | 768 |
154
- | 2 | `on þǣm` | 759 |
155
- | 3 | `in þæm` | 693 |
156
- | 4 | `of the` | 648 |
157
- | 5 | `se is` | 547 |
158
 
159
  **3-grams (Word):**
160
 
161
  | Rank | N-gram | Count |
162
  |------|--------|-------|
163
  | 1 | `td valign top` | 529 |
164
- | 2 | `is þorp in` | 313 |
165
- | 3 | `þæs geānedan cynerīces` | 312 |
166
- | 4 | `eoferwicscīre þæs geānedan` | 248 |
167
- | 5 | `on eoferwicscīre þæs` | 248 |
168
 
169
  **4-grams (Word):**
170
 
@@ -172,46 +184,66 @@ Below are sample sentences tokenized with each vocabulary size:
172
  |------|--------|-------|
173
  | 1 | `on eoferwicscīre þæs geānedan` | 248 |
174
  | 2 | `eoferwicscīre þæs geānedan cynerīces` | 248 |
175
- | 3 | `is eoferƿicscire dǣl on` | 244 |
176
- | 4 | `eoferƿicscire dǣl on englum` | 244 |
177
- | 5 | `se is eoferƿicscire dǣl` | 242 |
 
 
 
 
 
 
 
 
 
 
178
 
179
  **2-grams (Subword):**
180
 
181
  | Rank | N-gram | Count |
182
  |------|--------|-------|
183
- | 1 | `e _` | 68,661 |
184
- | 2 | `a n` | 60,782 |
185
- | 3 | `n _` | 55,172 |
186
- | 4 | `s _` | 47,775 |
187
- | 5 | `n d` | 40,577 |
188
 
189
  **3-grams (Subword):**
190
 
191
  | Rank | N-gram | Count |
192
  |------|--------|-------|
193
- | 1 | `a n d` | 24,204 |
194
- | 2 | `n d _` | 20,527 |
195
- | 3 | `a n _` | 17,020 |
196
- | 4 | `_ a n` | 16,519 |
197
- | 5 | `o n _` | 15,999 |
198
 
199
  **4-grams (Subword):**
200
 
201
  | Rank | N-gram | Count |
202
  |------|--------|-------|
203
- | 1 | `a n d _` | 16,546 |
204
- | 2 | `_ a n d` | 14,727 |
205
- | 3 | `_ o n _` | 10,205 |
206
- | 4 | `_ i s _` | 10,081 |
207
- | 5 | `_ i n _` | 9,962 |
 
 
 
 
 
 
 
 
 
 
208
 
209
 
210
  ### Key Findings
211
 
212
  - **Best Perplexity:** 2-gram (subword) with 365
213
  - **Entropy Trend:** Decreases with larger n-grams (more predictable)
214
- - **Coverage:** Top-1000 patterns cover ~33% of corpus
215
  - **Recommendation:** 4-gram or 5-gram for best predictive performance
216
 
217
  ---
@@ -227,14 +259,14 @@ Below are sample sentences tokenized with each vocabulary size:
227
 
228
  | Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
229
  |---------|---------|-------------|------------|------------------|-----------------|----------------|
230
- | **1** | Word | 0.6222 | 1.539 | 3.58 | 86,720 | 37.8% |
231
- | **1** | Subword | 0.8536 | 1.807 | 6.47 | 1,240 | 14.6% |
232
- | **2** | Word | 0.1549 | 1.113 | 1.30 | 307,843 | 84.5% |
233
- | **2** | Subword | 0.9630 | 1.949 | 5.87 | 8,021 | 3.7% |
234
- | **3** | Word | 0.0382 | 1.027 | 1.05 | 397,541 | 96.2% |
235
- | **3** | Subword | 0.8613 | 1.817 | 4.01 | 47,051 | 13.9% |
236
- | **4** | Word | 0.0126 🏆 | 1.009 | 1.02 | 415,179 | 98.7% |
237
- | **4** | Subword | 0.6212 | 1.538 | 2.55 | 188,289 | 37.9% |
238
 
239
  ### Generated Text Samples (Word-based)
240
 
@@ -242,27 +274,27 @@ Below are text samples generated from each word-based Markov chain model:
242
 
243
  **Context Size 1:**
244
 
245
- 1. `and ūtƿeardra ēarena dat gearƿum gearƿum acc hāligne scole basic properties geometry type of snāwdūn...`
246
- 2. `on læt westseaxisc norþanhymbrisc miercisc arun cisseceaster craƿley hæstingas ge forlēosaþ hiera ag...`
247
- 3. `is lēoþ þe roðberht roðberhting beweddod æþelhæþ of indian islamic scholar kenichi fukui geapanisc s...`
248
 
249
  **Context Size 2:**
250
 
251
- 1. `in þǣm æt paris and roðem liciaþ on hiere rīce ƿæron corsica sardinia and sicilia īege cartaine`
252
- 2. `on þǣm trēoƿenan hrōfe þǣre byrgenne þæt mægdnes ƿelgeāspared līc nēodlīce geāspared mid mēose and b...`
253
- 3. `in þæm geāre marianland and þam sæfaroþum þeodsclandes niðerlandes belgican and franclandes in þæ...`
254
 
255
  **Context Size 3:**
256
 
257
- 1. `td valign top td valign top imperator caesar lvcivs septimvs severvs pertinax avgvstvs small procons...`
258
- 2. `is þorp in þæm east þriding se is eoferƿicscire dǣl on englum hit hæfþ 3 178 būendas on`
259
- 3. `on eoferwicscīre þæs geānedan cynerīces fram þǣm gēare þæt gēar belamp þæt hūs and his foregenga ...`
260
 
261
  **Context Size 4:**
262
 
263
  1. `on eoferwicscīre þæs geānedan cynerīces`
264
- 2. `is eoferƿicscire dǣl on englum hit hæfþ 105 būend on eoferwicscīre þæs geānedan cynerīces`
265
- 3. `eoferƿicscire dǣl on englum heo hæfþ 975 buend on eoferwicscīre þæs geānedan cynerīces`
266
 
267
 
268
  ### Generated Text Samples (Subword-based)
@@ -271,34 +303,34 @@ Below are text samples generated from each subword-based Markov chain model:
271
 
272
  **Context Size 1:**
273
 
274
- 1. `_t_ate_inn,_mis_`
275
- 2. `egmbrōðon,_s_on_`
276
- 3. `n_brls_þ_k_aliea`
277
 
278
  **Context Size 2:**
279
 
280
- 1. `e_mand_heaxum_sæ_`
281
- 2. `and_ploƿealin_dæg`
282
- 3. `n_enganvicipez)_v`
283
 
284
  **Context Size 3:**
285
 
286
- 1. `andūnsta_hild_on_p`
287
- 2. `nd_(ælesta_æcgrung`
288
- 3. `an_þissibbe._æfn_r`
289
 
290
  **Context Size 4:**
291
 
292
- 1. `and_ƿæs_ƿrīteresfel`
293
- 2. `_and_hīe_(se_ƿord_e`
294
- 3. `_on_villelme._7_heo`
295
 
296
 
297
  ### Key Findings
298
 
299
  - **Best Predictability:** Context-4 (word) with 98.7% predictability
300
  - **Branching Factor:** Decreases with context size (more deterministic)
301
- - **Memory Trade-off:** Larger contexts require more storage (188,289 contexts)
302
  - **Recommendation:** Context-3 or Context-4 for text generation
303
 
304
  ---
@@ -314,64 +346,64 @@ Below are text samples generated from each subword-based Markov chain model:
314
 
315
  | Metric | Value |
316
  |--------|-------|
317
- | Vocabulary Size | 31,177 |
318
- | Total Tokens | 402,508 |
319
- | Mean Frequency | 12.91 |
320
  | Median Frequency | 3 |
321
- | Frequency Std Dev | 155.94 |
322
 
323
  ### Most Common Words
324
 
325
  | Rank | Word | Frequency |
326
  |------|------|-----------|
327
- | 1 | and | 14,190 |
328
- | 2 | on | 10,528 |
329
- | 3 | in | 10,215 |
330
- | 4 | is | 10,204 |
331
- | 5 | of | 6,064 |
332
- | 6 | se | 4,321 |
333
- | 7 | the | 3,988 |
334
- | 8 | þǣm | 3,644 |
335
- | 9 | þæs | 3,627 |
336
- | 10 | his | 3,498 |
337
 
338
  ### Least Common Words (from vocabulary)
339
 
340
  | Rank | Word | Frequency |
341
  |------|------|-----------|
342
- | 1 | orcaneġe | 2 |
343
- | 2 | laguna | 2 |
344
- | 3 | stātwīca | 2 |
345
- | 4 | seolhstrand | 2 |
346
- | 5 | crosern | 2 |
347
- | 6 | crosernes | 2 |
348
- | 7 | sīdesċipes | 2 |
349
- | 8 | heardran | 2 |
350
- | 9 | caysċīre | 2 |
351
- | 10 | gjirokastër | 2 |
352
 
353
  ### Zipf's Law Analysis
354
 
355
  | Metric | Value |
356
  |--------|-------|
357
- | Zipf Coefficient | 0.9331 |
358
- | R² (Goodness of Fit) | 0.998051 |
359
  | Adherence Quality | **excellent** |
360
 
361
  ### Coverage Analysis
362
 
363
  | Top N Words | Coverage |
364
  |-------------|----------|
365
- | Top 100 | 37.9% |
366
- | Top 1,000 | 59.5% |
367
  | Top 5,000 | 77.9% |
368
  | Top 10,000 | 86.2% |
369
 
370
  ### Key Findings
371
 
372
- - **Zipf Compliance:** R²=0.9981 indicates excellent adherence to Zipf's law
373
- - **High Frequency Dominance:** Top 100 words cover 37.9% of corpus
374
- - **Long Tail:** 21,177 words needed for remaining 13.8% coverage
375
 
376
  ---
377
  ## 5. Word Embeddings Evaluation
@@ -387,37 +419,40 @@ Below are text samples generated from each subword-based Markov chain model:
387
 
388
  ### 5.1 Cross-Lingual Alignment
389
 
390
- > *Note: Multilingual alignment visualization not available for this language.*
 
 
391
 
392
 
393
  ### 5.2 Model Comparison
394
 
395
  | Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 |
396
  |-------|-----------|----------|------------------|---------------|----------------|
397
- | **mono_32d** | 32 | 0.7825 🏆 | 0.3427 | N/A | N/A |
398
- | **mono_64d** | 64 | 0.4658 | 0.3135 | N/A | N/A |
399
- | **mono_128d** | 128 | 0.1306 | 0.3083 | N/A | N/A |
 
 
 
400
 
401
  ### Key Findings
402
 
403
- - **Best Isotropy:** mono_32d with 0.7825 (more uniform distribution)
404
- - **Semantic Density:** Average pairwise similarity of 0.3215. Lower values indicate better semantic separation.
405
- - **Alignment Quality:** No aligned models evaluated in this run.
406
  - **Recommendation:** 128d aligned for best cross-lingual performance
407
 
408
  ---
409
  ## 6. Morphological Analysis (Experimental)
410
 
411
- > ⚠️ **Warning:** This language shows low morphological productivity. The statistical signals used for this analysis may be noisy or less reliable than for morphologically rich languages.
412
-
413
  This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.
414
 
415
  ### 6.1 Productivity & Complexity
416
 
417
  | Metric | Value | Interpretation | Recommendation |
418
  |--------|-------|----------------|----------------|
419
- | Productivity Index | **0.000** | Low morphological productivity | ⚠️ Likely unreliable |
420
- | Idiomaticity Gap | **-1.000** | Low formulaic content | - |
421
 
422
  ### 6.2 Affix Inventory (Productive Units)
423
 
@@ -426,17 +461,17 @@ These are the most productive prefixes and suffixes identified by sampling the v
426
  #### Productive Prefixes
427
  | Prefix | Examples |
428
  |--------|----------|
429
- | `-ge` | gesetedum, germanisca, getimbrod |
430
 
431
  #### Productive Suffixes
432
  | Suffix | Examples |
433
  |--------|----------|
434
- | `-e` | participle, ċeampscipe, smǣte |
435
- | `-es` | pirates, cromwelles, stranges |
436
- | `-an` | onginnan, lǣdnan, praetorian |
437
- | `-um` | gesetedum, mǣnum, strengum |
438
- | `-de` | onƿendode, landede, aspreade |
439
- | `-ng` | manufacturing, bringing, georging |
440
 
441
  ### 6.3 Bound Stems (Lexical Roots)
442
 
@@ -444,18 +479,18 @@ Bound stems are high-frequency subword units that are semantically cohesive but
444
 
445
  | Stem | Cohesion | Substitutability | Examples |
446
  |------|----------|------------------|----------|
447
- | `mani` | 2.06x | 43 contexts | amani, maniȝ, manig |
448
- | `enne` | 1.98x | 49 contexts | fenne, vienne, etenne |
449
- | `unge` | 1.86x | 46 contexts | tunge, jungen, ēðunge |
450
- | `ster` | 1.69x | 59 contexts | buster, easter, ēaster |
451
- | `tion` | 2.27x | 19 contexts | nation, motion, action |
452
- | `inga` | 1.74x | 34 contexts | ðinga, minga, þinga |
453
- | `ning` | 1.67x | 36 contexts | mining, ininga, cyning |
454
- | `aste` | 1.77x | 27 contexts | easte, ēaste, taste |
455
- | `ynin` | 2.27x | 11 contexts | cynin, cyninᵹ, cyning |
456
- | `nden` | 1.74x | 24 contexts | finden, bunden, funden |
457
- | `afod` | 1.89x | 18 contexts | hēafod, heafod, ƿafode |
458
- | `nisc` | 1.56x | 30 contexts | denisc, rūnisc, dēnisc |
459
 
460
  ### 6.4 Affix Compatibility (Co-occurrence)
461
 
@@ -463,12 +498,12 @@ This table shows which prefixes and suffixes most frequently co-occur on the sam
463
 
464
  | Prefix | Suffix | Frequency | Examples |
465
  |--------|--------|-----------|----------|
466
- | `-ge` | `-e` | 89 words | gesealde, geƿorhte |
467
- | `-ge` | `-de` | 28 words | gesealde, gebede |
468
- | `-ge` | `-an` | 21 words | georgian, geƿunelican |
469
- | `-ge` | `-es` | 19 words | gereces, gewitnes |
470
- | `-ge` | `-um` | 14 words | gerādum, gelicum |
471
- | `-ge` | `-ng` | 8 words | gegaderung, gewrixlung |
472
 
473
  ### 6.5 Recursive Morpheme Segmentation
474
 
@@ -477,25 +512,27 @@ Using **Recursive Hierarchical Substitutability**, we decompose complex words in
477
  | Word | Suggested Split | Confidence | Stem |
478
  |------|-----------------|------------|------|
479
  | gereordes | **`ge-reord-es`** | 6.0 | `reord` |
 
 
 
 
 
 
480
  | cræftigum | **`cræftig-um`** | 4.5 | `cræftig` |
481
- | dƿeligendes | **`dƿeligend-es`** | 4.5 | `dƿeligend` |
482
- | bisceopes | **`bisceop-es`** | 4.5 | `bisceop` |
483
- | fylgendan | **`fylgend-an`** | 4.5 | `fylgend` |
484
- | swisslandes | **`swissland-es`** | 4.5 | `swissland` |
485
- | norðiscan | **`norðisc-an`** | 4.5 | `norðisc` |
486
- | þēodlican | **`þēodlic-an`** | 4.5 | `þēodlic` |
487
- | gregoriscan | **`gregorisc-an`** | 4.5 | `gregorisc` |
488
- | blōtmōnaðes | **`blōtmōnað-es`** | 4.5 | `blōtmōnað` |
489
- | dufenales | **`dufenal-es`** | 4.5 | `dufenal` |
490
- | healdende | **`healden-de`** | 4.5 | `healden` |
491
- | þrōndhāmes | **`þrōndhām-es`** | 4.5 | `þrōndhām` |
492
- | niðerlendiscan | **`niðerlendisc-an`** | 4.5 | `niðerlendisc` |
493
- | antarctiscum | **`antarctisc-um`** | 4.5 | `antarctisc` |
494
 
495
  ### 6.6 Linguistic Interpretation
496
 
497
  > **Automated Insight:**
498
- The language ANG appears to be more isolating or has a highly fixed vocabulary. Word-level models perform nearly as well as subword models, indicating fewer productive morphological processes.
 
 
499
 
500
  ---
501
  ## 7. Summary & Recommendations
@@ -506,7 +543,7 @@ The language ANG appears to be more isolating or has a highly fixed vocabulary.
506
 
507
  | Component | Recommended | Rationale |
508
  |-----------|-------------|-----------|
509
- | Tokenizer | **64k BPE** | Best compression (4.02x) |
510
  | N-gram | **2-gram** | Lowest perplexity (365) |
511
  | Markov | **Context-4** | Highest predictability (98.7%) |
512
  | Embeddings | **100d** | Balanced semantic capture and isotropy |
@@ -722,4 +759,4 @@ MIT License - Free for academic and commercial use.
722
  ---
723
  *Generated by Wikilangs Models Pipeline*
724
 
725
- *Report Date: 2026-01-03 05:11:41*
 
1
  ---
2
  language: ang
3
+ language_name: Old English
4
  language_family: germanic_historical
5
  tags:
6
  - wikilangs
 
10
  - n-gram
11
  - markov
12
  - wikipedia
13
+ - feature-extraction
14
+ - sentence-similarity
15
+ - tokenization
16
+ - n-grams
17
+ - markov-chain
18
+ - text-mining
19
+ - fasttext
20
+ - babelvec
21
+ - vocabulous
22
+ - vocabulary
23
  - monolingual
24
  - family-germanic_historical
25
  license: mit
26
  library_name: wikilangs
27
+ pipeline_tag: text-generation
28
  datasets:
29
  - omarkamali/wikipedia-monthly
30
  dataset_info:
 
33
  metrics:
34
  - name: best_compression_ratio
35
  type: compression
36
+ value: 4.012
37
  - name: best_isotropy
38
  type: isotropy
39
+ value: 0.8005
40
  - name: vocabulary_size
41
  type: vocab
42
  value: 0
43
  generated: 2026-01-03
44
  ---
45
 
46
+ # Old English - Wikilangs Models
47
  ## Comprehensive Research Report & Full Ablation Study
48
 
49
+ This repository contains NLP models trained and evaluated by Wikilangs, specifically on **Old English** Wikipedia data.
50
  We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.
51
 
52
  ## 📋 Repository Contents
 
70
  - [3. Markov Chain Evaluation](#3-markov-chain-evaluation)
71
  - [4. Vocabulary Analysis](#4-vocabulary-analysis)
72
  - [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation)
73
+ - [6. Morphological Analysis (Experimental)](#6--morphological-analysis-experimental)
74
  - [7. Summary & Recommendations](#7-summary--recommendations)
75
  - [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide)
76
  - [Visualizations Index](#visualizations-index)
 
90
 
91
  | Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
92
  |------------|-------------|---------------|----------|--------------|
93
+ | **8k** | 3.107x | 3.11 | 0.0859% | 252,634 |
94
+ | **16k** | 3.441x | 3.45 | 0.0951% | 228,129 |
95
+ | **32k** | 3.763x | 3.77 | 0.1040% | 208,636 |
96
+ | **64k** | 4.012x 🏆 | 4.02 | 0.1109% | 195,650 |
97
 
98
  ### Tokenization Examples
99
 
100
  Below are sample sentences tokenized with each vocabulary size:
101
 
102
+ **Sample 1:** `Valladolid is burg on Spēnum. Valladolid hæfþ 319,943 lēoda. on Castillan`
103
 
104
  | Vocab | Tokens | Count |
105
  |-------|--------|-------|
106
+ | 8k | `▁val lad ol id ▁is ▁burgon ▁spēnum . ▁val ... (+18 more)` | 28 |
107
+ | 16k | `▁val lad ol id ▁isburg ▁on ▁spēnum . ▁val ... (+17 more)` | 27 |
108
+ | 32k | `▁val ladol id ▁isburg ▁on ▁spēnum . ▁val ladol ... (+14 more)` | 24 |
109
+ | 64k | `▁valladolidis ▁burg ▁onspēnum . ▁valladolid ▁hæfþ 3 ... (+10 more)` | 20 |
110
 
111
+ **Sample 2:** `Cicġan () is burg on Cile. Þǣr oneardiaþ 161,953 lēoda (þæs gēares). His mearc i...`
112
 
113
  | Vocab | Tokens | Count |
114
  |-------|--------|-------|
115
+ | 8k | `▁c ic ġ an() ▁is ▁burg ▁oncile . ... (+33 more)` | 43 |
116
+ | 16k | `▁cic ġan() ▁is ▁burg ▁oncile . ▁þǣr ▁oneardiaþ ... (+31 more)` | 41 |
117
+ | 32k | `▁cic ġan() ▁isburgoncile . ▁þǣr oneardiaþ ... (+30 more)` | 40 |
118
+ | 64k | `▁cicġan ▁()is ▁burg ▁oncile . ▁þǣroneardiaþ ▁ ... (+28 more)` | 38 |
119
 
120
+ **Sample 3:** `Welwīc () is þorp in þæm East Þriding, se is Eoferƿicscire dǣl, on Englum. Heo h...`
121
 
122
  | Vocab | Tokens | Count |
123
  |-------|--------|-------|
124
+ | 8k | `▁wel wīc ()is ▁þorpin ▁þæmeast ▁þriding , ... (+21 more)` | 31 |
125
+ | 16k | `▁wel wīc ()is ▁þorpin ▁þæmeast ▁þriding , ... (+21 more)` | 31 |
126
+ | 32k | `▁wel wīc ()is ▁þorpin ▁þæmeast ▁þriding , ... (+21 more)` | 31 |
127
+ | 64k | `▁welwīc()is ▁þorpin ▁þæm east ▁þriding ,se ... (+20 more)` | 30 |
128
 
129
 
130
  ### Key Findings
131
 
132
+ - **Best Compression:** 64k achieves 4.012x compression
133
+ - **Lowest UNK Rate:** 8k with 0.0859% unknown tokens
134
  - **Trade-off:** Larger vocabularies improve compression but increase model size
135
  - **Recommendation:** 32k vocabulary provides optimal balance for production use
136
 
 
147
 
148
  | N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
149
  |--------|---------|------------|---------|----------------|------------------|-------------------|
150
+ | **2-gram** | Word | 3,551 | 11.79 | 7,095 | 21.2% | 53.1% |
151
+ | **2-gram** | Subword | 365 🏆 | 8.51 | 3,006 | 61.0% | 98.1% |
152
+ | **3-gram** | Word | 3,411 | 11.74 | 6,128 | 21.1% | 50.1% |
153
+ | **3-gram** | Subword | 3,332 | 11.70 | 23,711 | 22.3% | 62.8% |
154
+ | **4-gram** | Word | 6,747 | 12.72 | 11,452 | 16.3% | 36.7% |
155
+ | **4-gram** | Subword | 18,651 | 14.19 | 105,677 | 10.6% | 32.7% |
156
+ | **5-gram** | Word | 4,718 | 12.20 | 8,067 | 18.6% | 41.3% |
157
+ | **5-gram** | Subword | 56,790 | 15.79 | 217,768 | 6.4% | 20.2% |
158
 
159
  ### Top 5 N-grams by Size
160
 
 
162
 
163
  | Rank | N-gram | Count |
164
  |------|--------|-------|
165
+ | 1 | `on þǣm` | 784 |
166
+ | 2 | `in þǣm` | 762 |
167
+ | 3 | `in þæm` | 673 |
168
+ | 4 | `of the` | 645 |
169
+ | 5 | `se is` | 536 |
170
 
171
  **3-grams (Word):**
172
 
173
  | Rank | N-gram | Count |
174
  |------|--------|-------|
175
  | 1 | `td valign top` | 529 |
176
+ | 2 | `þæs geānedan cynerīces` | 312 |
177
+ | 3 | `is þorp in` | 311 |
178
+ | 4 | `on eoferwicscīre þæs` | 248 |
179
+ | 5 | `eoferwicscīre þæs geānedan` | 248 |
180
 
181
  **4-grams (Word):**
182
 
 
184
  |------|--------|-------|
185
  | 1 | `on eoferwicscīre þæs geānedan` | 248 |
186
  | 2 | `eoferwicscīre þæs geānedan cynerīces` | 248 |
187
+ | 3 | `is eoferƿicscire dǣl on` | 232 |
188
+ | 4 | `eoferƿicscire dǣl on englum` | 231 |
189
+ | 5 | `se is eoferƿicscire dǣl` | 229 |
190
+
191
+ **5-grams (Word):**
192
+
193
+ | Rank | N-gram | Count |
194
+ |------|--------|-------|
195
+ | 1 | `on eoferwicscīre þæs geānedan cynerīces` | 248 |
196
+ | 2 | `is eoferƿicscire dǣl on englum` | 231 |
197
+ | 3 | `se is eoferƿicscire dǣl on` | 229 |
198
+ | 4 | `þriding se is eoferƿicscire dǣl` | 224 |
199
+ | 5 | `east þriding se is eoferƿicscire` | 170 |
200
 
201
  **2-grams (Subword):**
202
 
203
  | Rank | N-gram | Count |
204
  |------|--------|-------|
205
+ | 1 | `e _` | 68,542 |
206
+ | 2 | `a n` | 60,904 |
207
+ | 3 | `n _` | 55,318 |
208
+ | 4 | `s _` | 47,837 |
209
+ | 5 | `n d` | 40,759 |
210
 
211
  **3-grams (Subword):**
212
 
213
  | Rank | N-gram | Count |
214
  |------|--------|-------|
215
+ | 1 | `a n d` | 24,396 |
216
+ | 2 | `n d _` | 20,668 |
217
+ | 3 | `a n _` | 16,952 |
218
+ | 4 | `_ a n` | 16,629 |
219
+ | 5 | `o n _` | 16,182 |
220
 
221
  **4-grams (Subword):**
222
 
223
  | Rank | N-gram | Count |
224
  |------|--------|-------|
225
+ | 1 | `a n d _` | 16,673 |
226
+ | 2 | `_ a n d` | 14,847 |
227
+ | 3 | `_ o n _` | 10,364 |
228
+ | 4 | `_ i s _` | 10,180 |
229
+ | 5 | `_ i n _` | 9,895 |
230
+
231
+ **5-grams (Subword):**
232
+
233
+ | Rank | N-gram | Count |
234
+ |------|--------|-------|
235
+ | 1 | `_ a n d _` | 14,216 |
236
+ | 2 | `_ t h e _` | 3,853 |
237
+ | 3 | `_ þ ǣ m _` | 3,654 |
238
+ | 4 | `_ þ æ s _` | 3,541 |
239
+ | 5 | `_ h i s _` | 3,480 |
240
 
241
 
242
  ### Key Findings
243
 
244
  - **Best Perplexity:** 2-gram (subword) with 365
245
  - **Entropy Trend:** Decreases with larger n-grams (more predictable)
246
+ - **Coverage:** Top-1000 patterns cover ~20% of corpus
247
  - **Recommendation:** 4-gram or 5-gram for best predictive performance
248
 
249
  ---
 
259
 
260
  | Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
261
  |---------|---------|-------------|------------|------------------|-----------------|----------------|
262
+ | **1** | Word | 0.6200 | 1.537 | 3.57 | 86,918 | 38.0% |
263
+ | **1** | Subword | 0.8434 | 1.794 | 6.43 | 1,235 | 15.7% |
264
+ | **2** | Word | 0.1550 | 1.113 | 1.30 | 307,624 | 84.5% |
265
+ | **2** | Subword | 0.9640 | 1.951 | 5.90 | 7,944 | 3.6% |
266
+ | **3** | Word | 0.0385 | 1.027 | 1.05 | 397,324 | 96.2% |
267
+ | **3** | Subword | 0.8649 | 1.821 | 4.02 | 46,823 | 13.5% |
268
+ | **4** | Word | 0.0127 🏆 | 1.009 | 1.02 | 415,064 | 98.7% |
269
+ | **4** | Subword | 0.6219 | 1.539 | 2.55 | 188,154 | 37.8% |
270
 
271
  ### Generated Text Samples (Word-based)
272
 
 
274
 
275
  **Context Size 1:**
276
 
277
+ 1. `and strætham is eoferƿicscire dǣl on wyrse ġearum ac bowser jr americanisc auto maker grady thomas`
278
+ 2. `on pictocusċīre`
279
+ 3. `is burg þes geþoftede rīce and gescyldnesse kowane mutum yana da vinci chapter 93 dead rǣdinge`
280
 
281
  **Context Size 2:**
282
 
283
+ 1. `on þǣm ġerēfscipe þæs fōresittende sam dōnde swā þurh sūþsið fǣmneland wǣre and ǣrende genōg land fo...`
284
+ 2. `in þǣm geānlǣhtum rīcum fram þǣm sericus gārsecge hit stent is 60 mīle geddoburg be sūðƿesten on`
285
+ 3. `in þæm suþernan dæle þæs geānedan cynerīces grēatre brytene cynerīce ƿæs þēodland in ƿesternre europ...`
286
 
287
  **Context Size 3:**
288
 
289
+ 1. `td valign top efencasere mid numeriane murdered td valign top td valign top td 269 td valign`
290
+ 2. `is þorp in þæm east þriding se is eoferƿicscire dǣl on englum on eoferwicscīre þæs geānedan cynerīce...`
291
+ 3. `eoferwicscīre þæs geānedan cynerīces on wēalum þrēoscyte is hēo and hæfþ twegen ecgas onmang beorgum...`
292
 
293
  **Context Size 4:**
294
 
295
  1. `on eoferwicscīre þæs geānedan cynerīces`
296
+ 2. `is eoferƿicscire dǣl on englum hit hæfþ 318 buend on eoferwicscīre þæs geānedan cynerīces`
297
+ 3. `eoferƿicscire dǣl on englum on eoferwicscīre þæs geānedan cynerīces`
298
 
299
 
300
  ### Generated Text Samples (Subword-based)
 
303
 
304
  **Context Size 1:**
305
 
306
+ 1. `_bor.rm_frsh_ded`
307
+ 2. `es_a_urīþofophob`
308
+ 3. `nftaner,_a_gavst`
309
 
310
  **Context Size 2:**
311
 
312
+ 1. `e_wærr_ofiret_be_`
313
+ 2. `and:_gēac_(144_75`
314
+ 3. `n_en_polan_on_þæs`
315
 
316
  **Context Size 3:**
317
 
318
+ 1. `and_womericanada_r`
319
+ 2. `nd_þā_illinge._þā_`
320
+ 3. `an_60_1,000_ause_ƿ`
321
 
322
  **Context Size 4:**
323
 
324
+ 1. `and_(oððe_stre_in_n`
325
+ 2. `_and_scot_ƿæs_þēodi`
326
+ 3. `_on_mererīca,_a_cli`
327
 
328
 
329
  ### Key Findings
330
 
331
  - **Best Predictability:** Context-4 (word) with 98.7% predictability
332
  - **Branching Factor:** Decreases with context size (more deterministic)
333
+ - **Memory Trade-off:** Larger contexts require more storage (188,154 contexts)
334
  - **Recommendation:** Context-3 or Context-4 for text generation
335
 
336
  ---
 
346
 
347
  | Metric | Value |
348
  |--------|-------|
349
+ | Vocabulary Size | 31,186 |
350
+ | Total Tokens | 403,003 |
351
+ | Mean Frequency | 12.92 |
352
  | Median Frequency | 3 |
353
+ | Frequency Std Dev | 156.70 |
354
 
355
  ### Most Common Words
356
 
357
  | Rank | Word | Frequency |
358
  |------|------|-----------|
359
+ | 1 | and | 14,299 |
360
+ | 2 | on | 10,683 |
361
+ | 3 | is | 10,302 |
362
+ | 4 | in | 10,147 |
363
+ | 5 | of | 6,062 |
364
+ | 6 | se | 4,316 |
365
+ | 7 | the | 3,973 |
366
+ | 8 | þǣm | 3,669 |
367
+ | 9 | þæs | 3,610 |
368
+ | 10 | his | 3,501 |
369
 
370
  ### Least Common Words (from vocabulary)
371
 
372
  | Rank | Word | Frequency |
373
  |------|------|-----------|
374
+ | 1 | minga | 2 |
375
+ | 2 | blæcfugolond | 2 |
376
+ | 3 | ƿīleacstede | 2 |
377
+ | 4 | cōcsċīre | 2 |
378
+ | 5 | winnebagsċīre | 2 |
379
+ | 6 | ælfrēdingtūn | 2 |
380
+ | 7 | irfung | 2 |
381
+ | 8 | larēodo | 2 |
382
+ | 9 | grœndā | 2 |
383
+ | 10 | dǣlungs | 2 |
384
 
385
  ### Zipf's Law Analysis
386
 
387
  | Metric | Value |
388
  |--------|-------|
389
+ | Zipf Coefficient | 0.9344 |
390
+ | R² (Goodness of Fit) | 0.998034 |
391
  | Adherence Quality | **excellent** |
392
 
393
  ### Coverage Analysis
394
 
395
  | Top N Words | Coverage |
396
  |-------------|----------|
397
+ | Top 100 | 38.0% |
398
+ | Top 1,000 | 59.6% |
399
  | Top 5,000 | 77.9% |
400
  | Top 10,000 | 86.2% |
401
 
402
  ### Key Findings
403
 
404
+ - **Zipf Compliance:** R²=0.9980 indicates excellent adherence to Zipf's law
405
+ - **High Frequency Dominance:** Top 100 words cover 38.0% of corpus
406
+ - **Long Tail:** 21,186 words needed for remaining 13.8% coverage
407
 
408
  ---
409
  ## 5. Word Embeddings Evaluation
 
419
 
420
  ### 5.1 Cross-Lingual Alignment
421
 
422
+ ![Alignment Quality](visualizations/embedding_alignment_quality.png)
423
+
424
+ ![Multilingual t-SNE](visualizations/embedding_tsne_multilingual.png)
425
 
426
 
427
  ### 5.2 Model Comparison
428
 
429
  | Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 |
430
  |-------|-----------|----------|------------------|---------------|----------------|
431
+ | **mono_32d** | 32 | 0.8005 🏆 | 0.3579 | N/A | N/A |
432
+ | **mono_64d** | 64 | 0.4615 | 0.3163 | N/A | N/A |
433
+ | **mono_128d** | 128 | 0.1318 | 0.3128 | N/A | N/A |
434
+ | **aligned_32d** | 32 | 0.8005 | 0.3430 | 0.0360 | 0.2720 |
435
+ | **aligned_64d** | 64 | 0.4615 | 0.3200 | 0.0780 | 0.3300 |
436
+ | **aligned_128d** | 128 | 0.1318 | 0.2993 | 0.0840 | 0.3840 |
437
 
438
  ### Key Findings
439
 
440
+ - **Best Isotropy:** mono_32d with 0.8005 (more uniform distribution)
441
+ - **Semantic Density:** Average pairwise similarity of 0.3249. Lower values indicate better semantic separation.
442
+ - **Alignment Quality:** Aligned models achieve up to 8.4% R@1 in cross-lingual retrieval.
443
  - **Recommendation:** 128d aligned for best cross-lingual performance
444
 
445
  ---
446
  ## 6. Morphological Analysis (Experimental)
447
 
 
 
448
  This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.
449
 
450
  ### 6.1 Productivity & Complexity
451
 
452
  | Metric | Value | Interpretation | Recommendation |
453
  |--------|-------|----------------|----------------|
454
+ | Productivity Index | **5.000** | High morphological productivity | Reliable analysis |
455
+ | Idiomaticity Gap | **1.044** | High formulaic/idiomatic content | - |
456
 
457
  ### 6.2 Affix Inventory (Productive Units)
458
 
 
461
  #### Productive Prefixes
462
  | Prefix | Examples |
463
  |--------|----------|
464
+ | `-ge` | geƿinnes, geendebyrded, genered |
465
 
466
  #### Productive Suffixes
467
  | Suffix | Examples |
468
  |--------|----------|
469
+ | `-e` | ohthere, tide, crulande |
470
+ | `-an` | iuliscan, weardan, ċiriċeburnan |
471
+ | `-es` | geƿinnes, laurentes, yankees |
472
+ | `-um` | stōwum, sǣfōrum, betweonum |
473
+ | `-de` | tide, crulande, īeglande |
474
+ | `-ng` | hūselhālgung, āmang, rising |
475
 
476
  ### 6.3 Bound Stems (Lexical Roots)
477
 
 
479
 
480
  | Stem | Cohesion | Substitutability | Examples |
481
  |------|----------|------------------|----------|
482
+ | `mani` | 2.03x | 43 contexts | amani, maniġ, maniȝ |
483
+ | `enne` | 1.97x | 48 contexts | fenne, agenne, etenne |
484
+ | `ster` | 1.84x | 59 contexts | buster, easter, noster |
485
+ | `wear` | 1.97x | 43 contexts | weard, wearþ, wearð |
486
+ | `unge` | 1.85x | 46 contexts | tunge, tunges, hunger |
487
+ | `tion` | 2.26x | 19 contexts | action, motion, nation |
488
+ | `inga` | 1.78x | 34 contexts | þinga, minga, ðinga |
489
+ | `ning` | 1.70x | 35 contexts | cyning, ininga, cining |
490
+ | `aste` | 1.76x | 27 contexts | ēaste, easte, taste |
491
+ | `ynin` | 2.28x | 11 contexts | cynin, cyning, cyninȝ |
492
+ | `afod` | 1.85x | 18 contexts | heafod, ƿafode, hēafod |
493
+ | `nisc` | 1.56x | 27 contexts | denisc, cinisc, dēnisc |
494
 
495
  ### 6.4 Affix Compatibility (Co-occurrence)
496
 
 
498
 
499
  | Prefix | Suffix | Frequency | Examples |
500
  |--------|--------|-----------|----------|
501
+ | `-ge` | `-e` | 75 words | gearore, gegaderode |
502
+ | `-ge` | `-de` | 27 words | gegaderode, gelytlode |
503
+ | `-ge` | `-um` | 20 words | getremincum, gearum |
504
+ | `-ge` | `-an` | 19 words | gearan, gesecan |
505
+ | `-ge` | `-es` | 18 words | gearƿes, geferscipes |
506
+ | `-ge` | `-ng` | 7 words | geswutelung, geþrang |
507
 
508
  ### 6.5 Recursive Morpheme Segmentation
509
 
 
512
  | Word | Suggested Split | Confidence | Stem |
513
  |------|-----------------|------------|------|
514
  | gereordes | **`ge-reord-es`** | 6.0 | `reord` |
515
+ | geƿealdes | **`ge-ƿeald-es`** | 6.0 | `ƿeald` |
516
+ | gehealdan | **`ge-heald-an`** | 6.0 | `heald` |
517
+ | gefeohtes | **`ge-feoht-es`** | 6.0 | `feoht` |
518
+ | foresittendlican | **`foresittendlic-an`** | 4.5 | `foresittendlic` |
519
+ | hundgēares | **`hundgēar-es`** | 4.5 | `hundgēar` |
520
+ | ƿīntrēoƿum | **`ƿīntrēoƿ-um`** | 4.5 | `ƿīntrēoƿ` |
521
  | cræftigum | **`cræftig-um`** | 4.5 | `cræftig` |
522
+ | bryttiscan | **`bryttisc-an`** | 4.5 | `bryttisc` |
523
+ | speliġendhūses | **`speliġendhūs-es`** | 4.5 | `speliġendhūs` |
524
+ | russiscum | **`russisc-um`** | 4.5 | `russisc` |
525
+ | regollicum | **`regollic-um`** | 4.5 | `regollic` |
526
+ | atlantiscan | **`atlantisc-an`** | 4.5 | `atlantisc` |
527
+ | ƿealdende | **`ƿealden-de`** | 4.5 | `ƿealden` |
528
+ | gegaderunge | **`ge-gaderunge`** | 4.5 | `gaderunge` |
 
 
 
 
 
 
529
 
530
  ### 6.6 Linguistic Interpretation
531
 
532
  > **Automated Insight:**
533
+ The language Old English shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding.
534
+
535
+ > **Note on Idiomaticity:** The high Idiomaticity Gap suggests a large number of frequent multi-word expressions or formulaic sequences that are statistically distinct from their component parts.
536
 
537
  ---
538
  ## 7. Summary & Recommendations
 
543
 
544
  | Component | Recommended | Rationale |
545
  |-----------|-------------|-----------|
546
+ | Tokenizer | **64k BPE** | Best compression (4.01x) |
547
  | N-gram | **2-gram** | Lowest perplexity (365) |
548
  | Markov | **Context-4** | Highest predictability (98.7%) |
549
  | Embeddings | **100d** | Balanced semantic capture and isotropy |
 
759
  ---
760
  *Generated by Wikilangs Models Pipeline*
761
 
762
+ *Report Date: 2026-01-03 14:10:12*
models/embeddings/aligned/ang_128d.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:916924f4cae8ca68c9b328270e6c8f5d750e1f5f8a934a8f14b2a9ed44bfa5e9
3
+ size 1034408961
models/embeddings/aligned/ang_128d.meta.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"lang": "ang", "dim": 128, "max_seq_len": 512, "is_aligned": true}
models/embeddings/aligned/ang_128d.projection.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:25502450dc6c859927a71989b5700de37d1474c28657905e5d57935efab0ce21
3
+ size 65664
models/embeddings/aligned/ang_128d_metadata.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "language": "ang",
3
+ "dimension": 128,
4
+ "version": "aligned",
5
+ "hub_language": "en",
6
+ "seed_vocab_size": 3813,
7
+ "vocab_size": 10001
8
+ }
models/embeddings/aligned/ang_32d.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bf60165a1c710ff1513a37905cbab9e4938cc02aa22cdf5c36d13a954072c8da
3
+ size 258728193
models/embeddings/aligned/ang_32d.meta.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"lang": "ang", "dim": 32, "max_seq_len": 512, "is_aligned": true}
models/embeddings/aligned/ang_32d.projection.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ddf7e9dc22e45732b340414482d0aa30bca9a7225905b66b922786d632cfb556
3
+ size 4224
models/embeddings/aligned/ang_32d_metadata.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "language": "ang",
3
+ "dimension": 32,
4
+ "version": "aligned",
5
+ "hub_language": "en",
6
+ "seed_vocab_size": 3813,
7
+ "vocab_size": 10001
8
+ }
models/embeddings/aligned/ang_64d.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ca061364183fd6d9b77c2b10561dad103ed397dde669eca49fcc861ac7e34566
3
+ size 517288449
models/embeddings/aligned/ang_64d.meta.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"lang": "ang", "dim": 64, "max_seq_len": 512, "is_aligned": true}
models/embeddings/aligned/ang_64d.projection.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a318bf6e939ba9d157a6589439149031e127db782751369e9a4fb9bca1368f69
3
+ size 16512
models/embeddings/aligned/ang_64d_metadata.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "language": "ang",
3
+ "dimension": 64,
4
+ "version": "aligned",
5
+ "hub_language": "en",
6
+ "seed_vocab_size": 3813,
7
+ "vocab_size": 10001
8
+ }
models/embeddings/monolingual/ang_128d.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:dc7bae19e3f22929a7ae4549e0307cea4fff7f0a27889fdd52644f4d57718ccd
3
- size 1034428777
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:916924f4cae8ca68c9b328270e6c8f5d750e1f5f8a934a8f14b2a9ed44bfa5e9
3
+ size 1034408961
models/embeddings/monolingual/ang_128d_metadata.json CHANGED
@@ -11,5 +11,5 @@
11
  "encoding_method": "rope",
12
  "dim": 128
13
  },
14
- "vocab_size": 10020
15
  }
 
11
  "encoding_method": "rope",
12
  "dim": 128
13
  },
14
+ "vocab_size": 10001
15
  }
models/embeddings/monolingual/ang_32d.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:76152ef959e26af0b83086f074dcef1d392da8b664962055a3b2fc4489805dfb
3
- size 258733417
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bf60165a1c710ff1513a37905cbab9e4938cc02aa22cdf5c36d13a954072c8da
3
+ size 258728193
models/embeddings/monolingual/ang_32d_metadata.json CHANGED
@@ -11,5 +11,5 @@
11
  "encoding_method": "rope",
12
  "dim": 32
13
  },
14
- "vocab_size": 10020
15
  }
 
11
  "encoding_method": "rope",
12
  "dim": 32
13
  },
14
+ "vocab_size": 10001
15
  }
models/embeddings/monolingual/ang_64d.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:46f6519234c95a833d0492a96515afc2ecb16722d834b8a1bb54212baff798b7
3
- size 517298537
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ca061364183fd6d9b77c2b10561dad103ed397dde669eca49fcc861ac7e34566
3
+ size 517288449
models/embeddings/monolingual/ang_64d_metadata.json CHANGED
@@ -11,5 +11,5 @@
11
  "encoding_method": "rope",
12
  "dim": 64
13
  },
14
- "vocab_size": 10020
15
  }
 
11
  "encoding_method": "rope",
12
  "dim": 64
13
  },
14
+ "vocab_size": 10001
15
  }
models/subword_markov/ang_markov_ctx1_subword.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:90a9a8841ba5050d61a53c8c4b882418b11758d12d4e4bfb0e1c35962a5ff66e
3
- size 67847
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3c51cb623755a1753881542eeb56f63d0e3cca6b26b36201d37c4673561c4964
3
+ size 66968
models/subword_markov/ang_markov_ctx1_subword_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "context_size": 1,
3
  "variant": "subword",
4
  "language": "ang",
5
- "unique_contexts": 1240,
6
- "total_transitions": 2931555
7
  }
 
2
  "context_size": 1,
3
  "variant": "subword",
4
  "language": "ang",
5
+ "unique_contexts": 1235,
6
+ "total_transitions": 2932601
7
  }
models/subword_markov/ang_markov_ctx2_subword.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:9862fd96d60b2ddcba7f9f843ca6ff64c8e2609911fdd8fe6814efae3de58e89
3
- size 359618
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:75c24d757e1f8ff20404bf43a0494cdc7025f3099ecf2c5fd0ded6196982f719
3
+ size 360335
models/subword_markov/ang_markov_ctx2_subword_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "context_size": 2,
3
  "variant": "subword",
4
  "language": "ang",
5
- "unique_contexts": 8021,
6
- "total_transitions": 2926656
7
  }
 
2
  "context_size": 2,
3
  "variant": "subword",
4
  "language": "ang",
5
+ "unique_contexts": 7944,
6
+ "total_transitions": 2927617
7
  }
models/subword_markov/ang_markov_ctx3_subword.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:bdba84f6d74bc0545de74369839c3baecf845b91493ccd850300aa17dc493368
3
- size 1382361
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:92be48c01deb0d03b413930a4303e8ea68fa19ad34847e3364801ebb65d661f3
3
+ size 1378085
models/subword_markov/ang_markov_ctx3_subword_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "context_size": 3,
3
  "variant": "subword",
4
  "language": "ang",
5
- "unique_contexts": 47051,
6
- "total_transitions": 2921757
7
  }
 
2
  "context_size": 3,
3
  "variant": "subword",
4
  "language": "ang",
5
+ "unique_contexts": 46823,
6
+ "total_transitions": 2922633
7
  }
models/subword_markov/ang_markov_ctx4_subword.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:2975bbac2b2a98d8f25d17a40f1919b0cb2c89af3cb5e283029e0814841eb485
3
- size 3773700
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:63d5bae5a9064ea8d0b55a7323a00e10fd3cc817a992d548d92596656acd9a23
3
+ size 3780418
models/subword_markov/ang_markov_ctx4_subword_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "context_size": 4,
3
  "variant": "subword",
4
  "language": "ang",
5
- "unique_contexts": 188289,
6
- "total_transitions": 2916858
7
  }
 
2
  "context_size": 4,
3
  "variant": "subword",
4
  "language": "ang",
5
+ "unique_contexts": 188154,
6
+ "total_transitions": 2917649
7
  }
models/subword_ngram/ang_2gram_subword.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:ae5772afcd4edeeb505f3f15218338f4ab947f1eb61616ecf75e9477428c3bdf
3
- size 40718
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3de4ae1fde9e711415a305f0cff7d028d9d6dbb8e9784696204bb787c90dd202
3
+ size 40740
models/subword_ngram/ang_2gram_subword_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "n": 2,
3
  "variant": "subword",
4
  "language": "ang",
5
- "unique_ngrams": 3016,
6
- "total_ngrams": 2931555
7
  }
 
2
  "n": 2,
3
  "variant": "subword",
4
  "language": "ang",
5
+ "unique_ngrams": 3006,
6
+ "total_ngrams": 2932601
7
  }
models/subword_ngram/ang_3gram_subword.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d2c6ba1309e9103dc84eb58507d098ed662ea9cfea0a9c9f9b74ba147f439950
3
- size 290728
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3c21515a66cb038262024984e5d43dfebb139b67620b893fda4f9839a52c0dc7
3
+ size 290609
models/subword_ngram/ang_3gram_subword_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "n": 3,
3
  "variant": "subword",
4
  "language": "ang",
5
- "unique_ngrams": 23727,
6
- "total_ngrams": 2926656
7
  }
 
2
  "n": 3,
3
  "variant": "subword",
4
  "language": "ang",
5
+ "unique_ngrams": 23711,
6
+ "total_ngrams": 2927617
7
  }
models/subword_ngram/ang_4gram_subword.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:214ae5f8a7aa366afa79d7b55156420e4cde925f114aacb43a0e8b1677ac34eb
3
- size 1206179
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6a666f8631a2c316853af5db1a673829c50f10adee5b2020606062eb57ed52f6
3
+ size 1209850
models/subword_ngram/ang_4gram_subword_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "n": 4,
3
  "variant": "subword",
4
  "language": "ang",
5
- "unique_ngrams": 105485,
6
- "total_ngrams": 2921757
7
  }
 
2
  "n": 4,
3
  "variant": "subword",
4
  "language": "ang",
5
+ "unique_ngrams": 105677,
6
+ "total_ngrams": 2922633
7
  }
models/subword_ngram/ang_5gram_subword.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7c3056ca0bf5781dd09261541479f028b29a9cc8d5a5a6f2bd27261e1805e569
3
+ size 2555553
models/subword_ngram/ang_5gram_subword_metadata.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "n": 5,
3
+ "variant": "subword",
4
+ "language": "ang",
5
+ "unique_ngrams": 217768,
6
+ "total_ngrams": 2917649
7
+ }
models/tokenizer/ang_tokenizer_16k.model CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:10b809027a944dfea82e7565213a5a0dd09ee883ea5c6abc3dc9dae21515155d
3
- size 507706
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:040cdd2ba84e292b44535ad7e47be3d9d4dea1f384c04801879d77cd0895da82
3
+ size 507562
models/tokenizer/ang_tokenizer_16k.vocab CHANGED
The diff for this file is too large to render. See raw diff
 
models/tokenizer/ang_tokenizer_32k.model CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:882f479e6372ebf5cf806ece607984b48ce4e93dc139971c738b81acd86b41e5
3
- size 785063
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:11310c4f4880a83c7e0121967baf71b21fdb39d161532062e4d76550c057a832
3
+ size 785162
models/tokenizer/ang_tokenizer_32k.vocab CHANGED
The diff for this file is too large to render. See raw diff
 
models/tokenizer/ang_tokenizer_64k.model CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:1e5786df616a5b116d734bb3ad420c192cfac85b05de0422ef4883ffab1a5188
3
- size 1394695
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d5e8fac427c909ddf6ed2f1d118ab76e763479cf812ec71e84f5a78d4c94f50d
3
+ size 1395192
models/tokenizer/ang_tokenizer_64k.vocab CHANGED
The diff for this file is too large to render. See raw diff
 
models/tokenizer/ang_tokenizer_8k.model CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:9350642caa9ab4fcb09383368a4dd339cdebaa4100ee5aa4e4b6128518a978ae
3
- size 372384
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:de84f48cb9fa027b88c36715acd20bb110a824676f2c89684ff9ac4bc44afca9
3
+ size 372530
models/tokenizer/ang_tokenizer_8k.vocab CHANGED
The diff for this file is too large to render. See raw diff
 
models/vocabulary/ang_vocabulary.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:ee7206585fc58294269ce4be08117acf83241efa4ebab2fe8ed326955b226129
3
- size 531959
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:113d35307580b6ba8524484649846ca961d60e99640c0a1ec1916e31afebf5d6
3
+ size 532266
models/vocabulary/ang_vocabulary_metadata.json CHANGED
@@ -1,17 +1,17 @@
1
  {
2
  "language": "ang",
3
- "vocabulary_size": 31177,
4
  "variant": "full",
5
  "statistics": {
6
- "type_token_ratio": 0.19034733881342258,
7
  "coverage": {
8
- "top_100": 0.33234415541940127,
9
- "top_1000": 0.5225039792425267,
10
- "top_5000": 0.6832392124370408,
11
- "top_10000": 0.7561302138979134
12
  },
13
- "hapax_count": 56122,
14
- "hapax_ratio": 0.6428710523602791,
15
- "total_documents": 4899
16
  }
17
  }
 
1
  {
2
  "language": "ang",
3
+ "vocabulary_size": 31186,
4
  "variant": "full",
5
  "statistics": {
6
+ "type_token_ratio": 0.1905231532884854,
7
  "coverage": {
8
+ "top_100": 0.33298282280713215,
9
+ "top_1000": 0.5232425489299632,
10
+ "top_5000": 0.6837001719896371,
11
+ "top_10000": 0.7563298717697516
12
  },
13
+ "hapax_count": 56327,
14
+ "hapax_ratio": 0.6436415161176053,
15
+ "total_documents": 4984
16
  }
17
  }
models/word_markov/ang_markov_ctx1_word.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:94e97bb71a4cb316f1df8db8559995a89599d765c1ea3b77e8d9298dde91cee5
3
- size 2838106
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f9404cf8e75c7dafaa37bb38566f58ecbfbcde523666ebe80d07fb25ebd8ff43
3
+ size 2834503
models/word_markov/ang_markov_ctx1_word_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "context_size": 1,
3
  "variant": "word",
4
  "language": "ang",
5
- "unique_contexts": 86720,
6
- "total_transitions": 453731
7
  }
 
2
  "context_size": 1,
3
  "variant": "word",
4
  "language": "ang",
5
+ "unique_contexts": 86918,
6
+ "total_transitions": 454346
7
  }
models/word_markov/ang_markov_ctx2_word.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:6ed47074ae9df17987a96dedf82859c432c3c11ac930279d48acda20815ee000
3
- size 5756944
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dd85fc8f75ac79620c6acdaafd11303ab1e84fccbf3610c168b1fc640627a885
3
+ size 5756661
models/word_markov/ang_markov_ctx2_word_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "context_size": 2,
3
  "variant": "word",
4
  "language": "ang",
5
- "unique_contexts": 307843,
6
- "total_transitions": 448832
7
  }
 
2
  "context_size": 2,
3
  "variant": "word",
4
  "language": "ang",
5
+ "unique_contexts": 307624,
6
+ "total_transitions": 449362
7
  }