Upload all models and assets for ang (latest)
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +1 -0
- README.md +214 -177
- models/embeddings/aligned/ang_128d.bin +3 -0
- models/embeddings/aligned/ang_128d.meta.json +1 -0
- models/embeddings/aligned/ang_128d.projection.npy +3 -0
- models/embeddings/aligned/ang_128d_metadata.json +8 -0
- models/embeddings/aligned/ang_32d.bin +3 -0
- models/embeddings/aligned/ang_32d.meta.json +1 -0
- models/embeddings/aligned/ang_32d.projection.npy +3 -0
- models/embeddings/aligned/ang_32d_metadata.json +8 -0
- models/embeddings/aligned/ang_64d.bin +3 -0
- models/embeddings/aligned/ang_64d.meta.json +1 -0
- models/embeddings/aligned/ang_64d.projection.npy +3 -0
- models/embeddings/aligned/ang_64d_metadata.json +8 -0
- models/embeddings/monolingual/ang_128d.bin +2 -2
- models/embeddings/monolingual/ang_128d_metadata.json +1 -1
- models/embeddings/monolingual/ang_32d.bin +2 -2
- models/embeddings/monolingual/ang_32d_metadata.json +1 -1
- models/embeddings/monolingual/ang_64d.bin +2 -2
- models/embeddings/monolingual/ang_64d_metadata.json +1 -1
- models/subword_markov/ang_markov_ctx1_subword.parquet +2 -2
- models/subword_markov/ang_markov_ctx1_subword_metadata.json +2 -2
- models/subword_markov/ang_markov_ctx2_subword.parquet +2 -2
- models/subword_markov/ang_markov_ctx2_subword_metadata.json +2 -2
- models/subword_markov/ang_markov_ctx3_subword.parquet +2 -2
- models/subword_markov/ang_markov_ctx3_subword_metadata.json +2 -2
- models/subword_markov/ang_markov_ctx4_subword.parquet +2 -2
- models/subword_markov/ang_markov_ctx4_subword_metadata.json +2 -2
- models/subword_ngram/ang_2gram_subword.parquet +2 -2
- models/subword_ngram/ang_2gram_subword_metadata.json +2 -2
- models/subword_ngram/ang_3gram_subword.parquet +2 -2
- models/subword_ngram/ang_3gram_subword_metadata.json +2 -2
- models/subword_ngram/ang_4gram_subword.parquet +2 -2
- models/subword_ngram/ang_4gram_subword_metadata.json +2 -2
- models/subword_ngram/ang_5gram_subword.parquet +3 -0
- models/subword_ngram/ang_5gram_subword_metadata.json +7 -0
- models/tokenizer/ang_tokenizer_16k.model +2 -2
- models/tokenizer/ang_tokenizer_16k.vocab +0 -0
- models/tokenizer/ang_tokenizer_32k.model +2 -2
- models/tokenizer/ang_tokenizer_32k.vocab +0 -0
- models/tokenizer/ang_tokenizer_64k.model +2 -2
- models/tokenizer/ang_tokenizer_64k.vocab +0 -0
- models/tokenizer/ang_tokenizer_8k.model +2 -2
- models/tokenizer/ang_tokenizer_8k.vocab +0 -0
- models/vocabulary/ang_vocabulary.parquet +2 -2
- models/vocabulary/ang_vocabulary_metadata.json +9 -9
- models/word_markov/ang_markov_ctx1_word.parquet +2 -2
- models/word_markov/ang_markov_ctx1_word_metadata.json +2 -2
- models/word_markov/ang_markov_ctx2_word.parquet +2 -2
- models/word_markov/ang_markov_ctx2_word_metadata.json +2 -2
.gitattributes
CHANGED
|
@@ -39,3 +39,4 @@ visualizations/position_encoding_comparison.png filter=lfs diff=lfs merge=lfs -t
|
|
| 39 |
visualizations/tsne_sentences.png filter=lfs diff=lfs merge=lfs -text
|
| 40 |
visualizations/tsne_words.png filter=lfs diff=lfs merge=lfs -text
|
| 41 |
visualizations/zipf_law.png filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 39 |
visualizations/tsne_sentences.png filter=lfs diff=lfs merge=lfs -text
|
| 40 |
visualizations/tsne_words.png filter=lfs diff=lfs merge=lfs -text
|
| 41 |
visualizations/zipf_law.png filter=lfs diff=lfs merge=lfs -text
|
| 42 |
+
visualizations/embedding_tsne_multilingual.png filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
---
|
| 2 |
language: ang
|
| 3 |
-
language_name:
|
| 4 |
language_family: germanic_historical
|
| 5 |
tags:
|
| 6 |
- wikilangs
|
|
@@ -10,11 +10,21 @@ tags:
|
|
| 10 |
- n-gram
|
| 11 |
- markov
|
| 12 |
- wikipedia
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
- monolingual
|
| 14 |
- family-germanic_historical
|
| 15 |
license: mit
|
| 16 |
library_name: wikilangs
|
| 17 |
-
pipeline_tag:
|
| 18 |
datasets:
|
| 19 |
- omarkamali/wikipedia-monthly
|
| 20 |
dataset_info:
|
|
@@ -23,20 +33,20 @@ dataset_info:
|
|
| 23 |
metrics:
|
| 24 |
- name: best_compression_ratio
|
| 25 |
type: compression
|
| 26 |
-
value: 4.
|
| 27 |
- name: best_isotropy
|
| 28 |
type: isotropy
|
| 29 |
-
value: 0.
|
| 30 |
- name: vocabulary_size
|
| 31 |
type: vocab
|
| 32 |
value: 0
|
| 33 |
generated: 2026-01-03
|
| 34 |
---
|
| 35 |
|
| 36 |
-
#
|
| 37 |
## Comprehensive Research Report & Full Ablation Study
|
| 38 |
|
| 39 |
-
This repository contains NLP models trained and evaluated by Wikilangs, specifically on **
|
| 40 |
We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.
|
| 41 |
|
| 42 |
## 📋 Repository Contents
|
|
@@ -60,7 +70,7 @@ We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and
|
|
| 60 |
- [3. Markov Chain Evaluation](#3-markov-chain-evaluation)
|
| 61 |
- [4. Vocabulary Analysis](#4-vocabulary-analysis)
|
| 62 |
- [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation)
|
| 63 |
-
- [6. Morphological Analysis (Experimental)](#6
|
| 64 |
- [7. Summary & Recommendations](#7-summary--recommendations)
|
| 65 |
- [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide)
|
| 66 |
- [Visualizations Index](#visualizations-index)
|
|
@@ -80,47 +90,47 @@ We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and
|
|
| 80 |
|
| 81 |
| Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
|
| 82 |
|------------|-------------|---------------|----------|--------------|
|
| 83 |
-
| **8k** | 3.
|
| 84 |
-
| **16k** | 3.
|
| 85 |
-
| **32k** | 3.
|
| 86 |
-
| **64k** | 4.
|
| 87 |
|
| 88 |
### Tokenization Examples
|
| 89 |
|
| 90 |
Below are sample sentences tokenized with each vocabulary size:
|
| 91 |
|
| 92 |
-
**Sample 1:**
|
| 93 |
|
| 94 |
| Vocab | Tokens | Count |
|
| 95 |
|-------|--------|-------|
|
| 96 |
-
| 8k |
|
| 97 |
-
| 16k |
|
| 98 |
-
| 32k |
|
| 99 |
-
| 64k |
|
| 100 |
|
| 101 |
-
**Sample 2:** `
|
| 102 |
|
| 103 |
| Vocab | Tokens | Count |
|
| 104 |
|-------|--------|-------|
|
| 105 |
-
| 8k | `▁
|
| 106 |
-
| 16k | `▁
|
| 107 |
-
| 32k | `▁
|
| 108 |
-
| 64k | `▁
|
| 109 |
|
| 110 |
-
**Sample 3:** `
|
| 111 |
|
| 112 |
| Vocab | Tokens | Count |
|
| 113 |
|-------|--------|-------|
|
| 114 |
-
| 8k | `▁
|
| 115 |
-
| 16k | `▁
|
| 116 |
-
| 32k | `▁
|
| 117 |
-
| 64k | `▁
|
| 118 |
|
| 119 |
|
| 120 |
### Key Findings
|
| 121 |
|
| 122 |
-
- **Best Compression:** 64k achieves 4.
|
| 123 |
-
- **Lowest UNK Rate:** 8k with 0.
|
| 124 |
- **Trade-off:** Larger vocabularies improve compression but increase model size
|
| 125 |
- **Recommendation:** 32k vocabulary provides optimal balance for production use
|
| 126 |
|
|
@@ -137,12 +147,14 @@ Below are sample sentences tokenized with each vocabulary size:
|
|
| 137 |
|
| 138 |
| N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
|
| 139 |
|--------|---------|------------|---------|----------------|------------------|-------------------|
|
| 140 |
-
| **2-gram** | Word | 3,
|
| 141 |
-
| **2-gram** | Subword | 365 🏆 | 8.51 | 3,
|
| 142 |
-
| **3-gram** | Word | 3,
|
| 143 |
-
| **3-gram** | Subword | 3,
|
| 144 |
-
| **4-gram** | Word | 6,
|
| 145 |
-
| **4-gram** | Subword | 18,
|
|
|
|
|
|
|
| 146 |
|
| 147 |
### Top 5 N-grams by Size
|
| 148 |
|
|
@@ -150,21 +162,21 @@ Below are sample sentences tokenized with each vocabulary size:
|
|
| 150 |
|
| 151 |
| Rank | N-gram | Count |
|
| 152 |
|------|--------|-------|
|
| 153 |
-
| 1 | `
|
| 154 |
-
| 2 | `
|
| 155 |
-
| 3 | `in þæm` |
|
| 156 |
-
| 4 | `of the` |
|
| 157 |
-
| 5 | `se is` |
|
| 158 |
|
| 159 |
**3-grams (Word):**
|
| 160 |
|
| 161 |
| Rank | N-gram | Count |
|
| 162 |
|------|--------|-------|
|
| 163 |
| 1 | `td valign top` | 529 |
|
| 164 |
-
| 2 |
|
| 165 |
-
| 3 |
|
| 166 |
-
| 4 | `eoferwicscīre þæs
|
| 167 |
-
| 5 | `
|
| 168 |
|
| 169 |
**4-grams (Word):**
|
| 170 |
|
|
@@ -172,46 +184,66 @@ Below are sample sentences tokenized with each vocabulary size:
|
|
| 172 |
|------|--------|-------|
|
| 173 |
| 1 | `on eoferwicscīre þæs geānedan` | 248 |
|
| 174 |
| 2 | `eoferwicscīre þæs geānedan cynerīces` | 248 |
|
| 175 |
-
| 3 | `is eoferƿicscire dǣl on` |
|
| 176 |
-
| 4 | `eoferƿicscire dǣl on englum` |
|
| 177 |
-
| 5 | `se is eoferƿicscire dǣl` |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
|
| 179 |
**2-grams (Subword):**
|
| 180 |
|
| 181 |
| Rank | N-gram | Count |
|
| 182 |
|------|--------|-------|
|
| 183 |
-
| 1 | `e _` | 68,
|
| 184 |
-
| 2 | `a n` | 60,
|
| 185 |
-
| 3 | `n _` | 55,
|
| 186 |
-
| 4 | `s _` | 47,
|
| 187 |
-
| 5 | `n d` | 40,
|
| 188 |
|
| 189 |
**3-grams (Subword):**
|
| 190 |
|
| 191 |
| Rank | N-gram | Count |
|
| 192 |
|------|--------|-------|
|
| 193 |
-
| 1 | `a n d` | 24,
|
| 194 |
-
| 2 | `n d _` | 20,
|
| 195 |
-
| 3 | `a n _` |
|
| 196 |
-
| 4 | `_ a n` | 16,
|
| 197 |
-
| 5 | `o n _` |
|
| 198 |
|
| 199 |
**4-grams (Subword):**
|
| 200 |
|
| 201 |
| Rank | N-gram | Count |
|
| 202 |
|------|--------|-------|
|
| 203 |
-
| 1 | `a n d _` | 16,
|
| 204 |
-
| 2 | `_ a n d` | 14,
|
| 205 |
-
| 3 | `_ o n _` | 10,
|
| 206 |
-
| 4 | `_ i s _` | 10,
|
| 207 |
-
| 5 | `_ i n _` | 9,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 208 |
|
| 209 |
|
| 210 |
### Key Findings
|
| 211 |
|
| 212 |
- **Best Perplexity:** 2-gram (subword) with 365
|
| 213 |
- **Entropy Trend:** Decreases with larger n-grams (more predictable)
|
| 214 |
-
- **Coverage:** Top-1000 patterns cover ~
|
| 215 |
- **Recommendation:** 4-gram or 5-gram for best predictive performance
|
| 216 |
|
| 217 |
---
|
|
@@ -227,14 +259,14 @@ Below are sample sentences tokenized with each vocabulary size:
|
|
| 227 |
|
| 228 |
| Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
|
| 229 |
|---------|---------|-------------|------------|------------------|-----------------|----------------|
|
| 230 |
-
| **1** | Word | 0.
|
| 231 |
-
| **1** | Subword | 0.
|
| 232 |
-
| **2** | Word | 0.
|
| 233 |
-
| **2** | Subword | 0.
|
| 234 |
-
| **3** | Word | 0.
|
| 235 |
-
| **3** | Subword | 0.
|
| 236 |
-
| **4** | Word | 0.
|
| 237 |
-
| **4** | Subword | 0.
|
| 238 |
|
| 239 |
### Generated Text Samples (Word-based)
|
| 240 |
|
|
@@ -242,27 +274,27 @@ Below are text samples generated from each word-based Markov chain model:
|
|
| 242 |
|
| 243 |
**Context Size 1:**
|
| 244 |
|
| 245 |
-
1. `and
|
| 246 |
-
2. `on
|
| 247 |
-
3. `is
|
| 248 |
|
| 249 |
**Context Size 2:**
|
| 250 |
|
| 251 |
-
1. `
|
| 252 |
-
2. `
|
| 253 |
-
3. `in þæm
|
| 254 |
|
| 255 |
**Context Size 3:**
|
| 256 |
|
| 257 |
-
1. `td valign top td valign top
|
| 258 |
-
2. `is þorp in þæm east þriding se is eoferƿicscire dǣl on englum
|
| 259 |
-
3. `
|
| 260 |
|
| 261 |
**Context Size 4:**
|
| 262 |
|
| 263 |
1. `on eoferwicscīre þæs geānedan cynerīces`
|
| 264 |
-
2. `is eoferƿicscire dǣl on englum hit hæfþ
|
| 265 |
-
3. `eoferƿicscire dǣl on englum
|
| 266 |
|
| 267 |
|
| 268 |
### Generated Text Samples (Subword-based)
|
|
@@ -271,34 +303,34 @@ Below are text samples generated from each subword-based Markov chain model:
|
|
| 271 |
|
| 272 |
**Context Size 1:**
|
| 273 |
|
| 274 |
-
1. `
|
| 275 |
-
2. `
|
| 276 |
-
3. `
|
| 277 |
|
| 278 |
**Context Size 2:**
|
| 279 |
|
| 280 |
-
1. `
|
| 281 |
-
2. `
|
| 282 |
-
3. `
|
| 283 |
|
| 284 |
**Context Size 3:**
|
| 285 |
|
| 286 |
-
1. `
|
| 287 |
-
2. `nd_
|
| 288 |
-
3. `
|
| 289 |
|
| 290 |
**Context Size 4:**
|
| 291 |
|
| 292 |
-
1. `and_
|
| 293 |
-
2. `
|
| 294 |
-
3. `
|
| 295 |
|
| 296 |
|
| 297 |
### Key Findings
|
| 298 |
|
| 299 |
- **Best Predictability:** Context-4 (word) with 98.7% predictability
|
| 300 |
- **Branching Factor:** Decreases with context size (more deterministic)
|
| 301 |
-
- **Memory Trade-off:** Larger contexts require more storage (188,
|
| 302 |
- **Recommendation:** Context-3 or Context-4 for text generation
|
| 303 |
|
| 304 |
---
|
|
@@ -314,64 +346,64 @@ Below are text samples generated from each subword-based Markov chain model:
|
|
| 314 |
|
| 315 |
| Metric | Value |
|
| 316 |
|--------|-------|
|
| 317 |
-
| Vocabulary Size | 31,
|
| 318 |
-
| Total Tokens |
|
| 319 |
-
| Mean Frequency | 12.
|
| 320 |
| Median Frequency | 3 |
|
| 321 |
-
| Frequency Std Dev |
|
| 322 |
|
| 323 |
### Most Common Words
|
| 324 |
|
| 325 |
| Rank | Word | Frequency |
|
| 326 |
|------|------|-----------|
|
| 327 |
-
| 1 | and | 14,
|
| 328 |
-
| 2 | on | 10,
|
| 329 |
-
| 3 |
|
| 330 |
-
| 4 |
|
| 331 |
-
| 5 | of | 6,
|
| 332 |
-
| 6 | se | 4,
|
| 333 |
-
| 7 | the | 3,
|
| 334 |
-
| 8 | þǣm | 3,
|
| 335 |
-
| 9 | þæs | 3,
|
| 336 |
-
| 10 | his | 3,
|
| 337 |
|
| 338 |
### Least Common Words (from vocabulary)
|
| 339 |
|
| 340 |
| Rank | Word | Frequency |
|
| 341 |
|------|------|-----------|
|
| 342 |
-
| 1 |
|
| 343 |
-
| 2 |
|
| 344 |
-
| 3 |
|
| 345 |
-
| 4 |
|
| 346 |
-
| 5 |
|
| 347 |
-
| 6 |
|
| 348 |
-
| 7 |
|
| 349 |
-
| 8 |
|
| 350 |
-
| 9 |
|
| 351 |
-
| 10 |
|
| 352 |
|
| 353 |
### Zipf's Law Analysis
|
| 354 |
|
| 355 |
| Metric | Value |
|
| 356 |
|--------|-------|
|
| 357 |
-
| Zipf Coefficient | 0.
|
| 358 |
-
| R² (Goodness of Fit) | 0.
|
| 359 |
| Adherence Quality | **excellent** |
|
| 360 |
|
| 361 |
### Coverage Analysis
|
| 362 |
|
| 363 |
| Top N Words | Coverage |
|
| 364 |
|-------------|----------|
|
| 365 |
-
| Top 100 |
|
| 366 |
-
| Top 1,000 | 59.
|
| 367 |
| Top 5,000 | 77.9% |
|
| 368 |
| Top 10,000 | 86.2% |
|
| 369 |
|
| 370 |
### Key Findings
|
| 371 |
|
| 372 |
-
- **Zipf Compliance:** R²=0.
|
| 373 |
-
- **High Frequency Dominance:** Top 100 words cover
|
| 374 |
-
- **Long Tail:** 21,
|
| 375 |
|
| 376 |
---
|
| 377 |
## 5. Word Embeddings Evaluation
|
|
@@ -387,37 +419,40 @@ Below are text samples generated from each subword-based Markov chain model:
|
|
| 387 |
|
| 388 |
### 5.1 Cross-Lingual Alignment
|
| 389 |
|
| 390 |
-
|
|
|
|
|
|
|
| 391 |
|
| 392 |
|
| 393 |
### 5.2 Model Comparison
|
| 394 |
|
| 395 |
| Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 |
|
| 396 |
|-------|-----------|----------|------------------|---------------|----------------|
|
| 397 |
-
| **mono_32d** | 32 | 0.
|
| 398 |
-
| **mono_64d** | 64 | 0.
|
| 399 |
-
| **mono_128d** | 128 | 0.
|
|
|
|
|
|
|
|
|
|
| 400 |
|
| 401 |
### Key Findings
|
| 402 |
|
| 403 |
-
- **Best Isotropy:** mono_32d with 0.
|
| 404 |
-
- **Semantic Density:** Average pairwise similarity of 0.
|
| 405 |
-
- **Alignment Quality:**
|
| 406 |
- **Recommendation:** 128d aligned for best cross-lingual performance
|
| 407 |
|
| 408 |
---
|
| 409 |
## 6. Morphological Analysis (Experimental)
|
| 410 |
|
| 411 |
-
> ⚠️ **Warning:** This language shows low morphological productivity. The statistical signals used for this analysis may be noisy or less reliable than for morphologically rich languages.
|
| 412 |
-
|
| 413 |
This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.
|
| 414 |
|
| 415 |
### 6.1 Productivity & Complexity
|
| 416 |
|
| 417 |
| Metric | Value | Interpretation | Recommendation |
|
| 418 |
|--------|-------|----------------|----------------|
|
| 419 |
-
| Productivity Index | **
|
| 420 |
-
| Idiomaticity Gap |
|
| 421 |
|
| 422 |
### 6.2 Affix Inventory (Productive Units)
|
| 423 |
|
|
@@ -426,17 +461,17 @@ These are the most productive prefixes and suffixes identified by sampling the v
|
|
| 426 |
#### Productive Prefixes
|
| 427 |
| Prefix | Examples |
|
| 428 |
|--------|----------|
|
| 429 |
-
| `-ge` |
|
| 430 |
|
| 431 |
#### Productive Suffixes
|
| 432 |
| Suffix | Examples |
|
| 433 |
|--------|----------|
|
| 434 |
-
| `-e` |
|
| 435 |
-
| `-
|
| 436 |
-
| `-
|
| 437 |
-
| `-um` |
|
| 438 |
-
| `-de` |
|
| 439 |
-
| `-ng` |
|
| 440 |
|
| 441 |
### 6.3 Bound Stems (Lexical Roots)
|
| 442 |
|
|
@@ -444,18 +479,18 @@ Bound stems are high-frequency subword units that are semantically cohesive but
|
|
| 444 |
|
| 445 |
| Stem | Cohesion | Substitutability | Examples |
|
| 446 |
|------|----------|------------------|----------|
|
| 447 |
-
| `mani` | 2.
|
| 448 |
-
| `enne` | 1.
|
| 449 |
-
| `
|
| 450 |
-
| `
|
| 451 |
-
| `
|
| 452 |
-
| `
|
| 453 |
-
| `
|
| 454 |
-
| `
|
| 455 |
-
| `
|
| 456 |
-
| `
|
| 457 |
-
| `afod` | 1.
|
| 458 |
-
| `nisc` | 1.56x |
|
| 459 |
|
| 460 |
### 6.4 Affix Compatibility (Co-occurrence)
|
| 461 |
|
|
@@ -463,12 +498,12 @@ This table shows which prefixes and suffixes most frequently co-occur on the sam
|
|
| 463 |
|
| 464 |
| Prefix | Suffix | Frequency | Examples |
|
| 465 |
|--------|--------|-----------|----------|
|
| 466 |
-
| `-ge` | `-e` |
|
| 467 |
-
| `-ge` | `-de` |
|
| 468 |
-
| `-ge` | `-
|
| 469 |
-
| `-ge` | `-
|
| 470 |
-
| `-ge` | `-
|
| 471 |
-
| `-ge` | `-ng` |
|
| 472 |
|
| 473 |
### 6.5 Recursive Morpheme Segmentation
|
| 474 |
|
|
@@ -477,25 +512,27 @@ Using **Recursive Hierarchical Substitutability**, we decompose complex words in
|
|
| 477 |
| Word | Suggested Split | Confidence | Stem |
|
| 478 |
|------|-----------------|------------|------|
|
| 479 |
| gereordes | **`ge-reord-es`** | 6.0 | `reord` |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 480 |
| cræftigum | **`cræftig-um`** | 4.5 | `cræftig` |
|
| 481 |
-
|
|
| 482 |
-
|
|
| 483 |
-
|
|
| 484 |
-
|
|
| 485 |
-
|
|
| 486 |
-
|
|
| 487 |
-
|
|
| 488 |
-
| blōtmōnaðes | **`blōtmōnað-es`** | 4.5 | `blōtmōnað` |
|
| 489 |
-
| dufenales | **`dufenal-es`** | 4.5 | `dufenal` |
|
| 490 |
-
| healdende | **`healden-de`** | 4.5 | `healden` |
|
| 491 |
-
| þrōndhāmes | **`þrōndhām-es`** | 4.5 | `þrōndhām` |
|
| 492 |
-
| niðerlendiscan | **`niðerlendisc-an`** | 4.5 | `niðerlendisc` |
|
| 493 |
-
| antarctiscum | **`antarctisc-um`** | 4.5 | `antarctisc` |
|
| 494 |
|
| 495 |
### 6.6 Linguistic Interpretation
|
| 496 |
|
| 497 |
> **Automated Insight:**
|
| 498 |
-
The language
|
|
|
|
|
|
|
| 499 |
|
| 500 |
---
|
| 501 |
## 7. Summary & Recommendations
|
|
@@ -506,7 +543,7 @@ The language ANG appears to be more isolating or has a highly fixed vocabulary.
|
|
| 506 |
|
| 507 |
| Component | Recommended | Rationale |
|
| 508 |
|-----------|-------------|-----------|
|
| 509 |
-
| Tokenizer | **64k BPE** | Best compression (4.
|
| 510 |
| N-gram | **2-gram** | Lowest perplexity (365) |
|
| 511 |
| Markov | **Context-4** | Highest predictability (98.7%) |
|
| 512 |
| Embeddings | **100d** | Balanced semantic capture and isotropy |
|
|
@@ -722,4 +759,4 @@ MIT License - Free for academic and commercial use.
|
|
| 722 |
---
|
| 723 |
*Generated by Wikilangs Models Pipeline*
|
| 724 |
|
| 725 |
-
*Report Date: 2026-01-03
|
|
|
|
| 1 |
---
|
| 2 |
language: ang
|
| 3 |
+
language_name: Old English
|
| 4 |
language_family: germanic_historical
|
| 5 |
tags:
|
| 6 |
- wikilangs
|
|
|
|
| 10 |
- n-gram
|
| 11 |
- markov
|
| 12 |
- wikipedia
|
| 13 |
+
- feature-extraction
|
| 14 |
+
- sentence-similarity
|
| 15 |
+
- tokenization
|
| 16 |
+
- n-grams
|
| 17 |
+
- markov-chain
|
| 18 |
+
- text-mining
|
| 19 |
+
- fasttext
|
| 20 |
+
- babelvec
|
| 21 |
+
- vocabulous
|
| 22 |
+
- vocabulary
|
| 23 |
- monolingual
|
| 24 |
- family-germanic_historical
|
| 25 |
license: mit
|
| 26 |
library_name: wikilangs
|
| 27 |
+
pipeline_tag: text-generation
|
| 28 |
datasets:
|
| 29 |
- omarkamali/wikipedia-monthly
|
| 30 |
dataset_info:
|
|
|
|
| 33 |
metrics:
|
| 34 |
- name: best_compression_ratio
|
| 35 |
type: compression
|
| 36 |
+
value: 4.012
|
| 37 |
- name: best_isotropy
|
| 38 |
type: isotropy
|
| 39 |
+
value: 0.8005
|
| 40 |
- name: vocabulary_size
|
| 41 |
type: vocab
|
| 42 |
value: 0
|
| 43 |
generated: 2026-01-03
|
| 44 |
---
|
| 45 |
|
| 46 |
+
# Old English - Wikilangs Models
|
| 47 |
## Comprehensive Research Report & Full Ablation Study
|
| 48 |
|
| 49 |
+
This repository contains NLP models trained and evaluated by Wikilangs, specifically on **Old English** Wikipedia data.
|
| 50 |
We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.
|
| 51 |
|
| 52 |
## 📋 Repository Contents
|
|
|
|
| 70 |
- [3. Markov Chain Evaluation](#3-markov-chain-evaluation)
|
| 71 |
- [4. Vocabulary Analysis](#4-vocabulary-analysis)
|
| 72 |
- [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation)
|
| 73 |
+
- [6. Morphological Analysis (Experimental)](#6--morphological-analysis-experimental)
|
| 74 |
- [7. Summary & Recommendations](#7-summary--recommendations)
|
| 75 |
- [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide)
|
| 76 |
- [Visualizations Index](#visualizations-index)
|
|
|
|
| 90 |
|
| 91 |
| Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
|
| 92 |
|------------|-------------|---------------|----------|--------------|
|
| 93 |
+
| **8k** | 3.107x | 3.11 | 0.0859% | 252,634 |
|
| 94 |
+
| **16k** | 3.441x | 3.45 | 0.0951% | 228,129 |
|
| 95 |
+
| **32k** | 3.763x | 3.77 | 0.1040% | 208,636 |
|
| 96 |
+
| **64k** | 4.012x 🏆 | 4.02 | 0.1109% | 195,650 |
|
| 97 |
|
| 98 |
### Tokenization Examples
|
| 99 |
|
| 100 |
Below are sample sentences tokenized with each vocabulary size:
|
| 101 |
|
| 102 |
+
**Sample 1:** `Valladolid is burg on Spēnum. Valladolid hæfþ 319,943 lēoda. on Castillan`
|
| 103 |
|
| 104 |
| Vocab | Tokens | Count |
|
| 105 |
|-------|--------|-------|
|
| 106 |
+
| 8k | `▁val lad ol id ▁is ▁burg ▁on ▁spēnum . ▁val ... (+18 more)` | 28 |
|
| 107 |
+
| 16k | `▁val lad ol id ▁is ▁burg ▁on ▁spēnum . ▁val ... (+17 more)` | 27 |
|
| 108 |
+
| 32k | `▁val ladol id ▁is ▁burg ▁on ▁spēnum . ▁val ladol ... (+14 more)` | 24 |
|
| 109 |
+
| 64k | `▁valladolid ▁is ▁burg ▁on ▁spēnum . ▁valladolid ▁hæfþ ▁ 3 ... (+10 more)` | 20 |
|
| 110 |
|
| 111 |
+
**Sample 2:** `Cicġan () is burg on Cile. Þǣr oneardiaþ 161,953 lēoda (þæs gēares). His mearc i...`
|
| 112 |
|
| 113 |
| Vocab | Tokens | Count |
|
| 114 |
|-------|--------|-------|
|
| 115 |
+
| 8k | `▁c ic ġ an ▁() ▁is ▁burg ▁on ▁cile . ... (+33 more)` | 43 |
|
| 116 |
+
| 16k | `▁cic ġan ▁() ▁is ▁burg ▁on ▁cile . ▁þǣr ▁oneardiaþ ... (+31 more)` | 41 |
|
| 117 |
+
| 32k | `▁cic ġan ▁() ▁is ▁burg ▁on ▁cile . ▁þǣr ▁oneardiaþ ... (+30 more)` | 40 |
|
| 118 |
+
| 64k | `▁cicġan ▁() ▁is ▁burg ▁on ▁cile . ▁þǣr ▁oneardiaþ ▁ ... (+28 more)` | 38 |
|
| 119 |
|
| 120 |
+
**Sample 3:** `Welwīc () is þorp in þæm East Þriding, se is Eoferƿicscire dǣl, on Englum. Heo h...`
|
| 121 |
|
| 122 |
| Vocab | Tokens | Count |
|
| 123 |
|-------|--------|-------|
|
| 124 |
+
| 8k | `▁wel wīc ▁() ▁is ▁þorp ▁in ▁þæm ▁east ▁þriding , ... (+21 more)` | 31 |
|
| 125 |
+
| 16k | `▁wel wīc ▁() ▁is ▁þorp ▁in ▁þæm ▁east ▁þriding , ... (+21 more)` | 31 |
|
| 126 |
+
| 32k | `▁wel wīc ▁() ▁is ▁þorp ▁in ▁þæm ▁east ▁þriding , ... (+21 more)` | 31 |
|
| 127 |
+
| 64k | `▁welwīc ▁() ▁is ▁þorp ▁in ▁þæm ▁east ▁þriding , ▁se ... (+20 more)` | 30 |
|
| 128 |
|
| 129 |
|
| 130 |
### Key Findings
|
| 131 |
|
| 132 |
+
- **Best Compression:** 64k achieves 4.012x compression
|
| 133 |
+
- **Lowest UNK Rate:** 8k with 0.0859% unknown tokens
|
| 134 |
- **Trade-off:** Larger vocabularies improve compression but increase model size
|
| 135 |
- **Recommendation:** 32k vocabulary provides optimal balance for production use
|
| 136 |
|
|
|
|
| 147 |
|
| 148 |
| N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
|
| 149 |
|--------|---------|------------|---------|----------------|------------------|-------------------|
|
| 150 |
+
| **2-gram** | Word | 3,551 | 11.79 | 7,095 | 21.2% | 53.1% |
|
| 151 |
+
| **2-gram** | Subword | 365 🏆 | 8.51 | 3,006 | 61.0% | 98.1% |
|
| 152 |
+
| **3-gram** | Word | 3,411 | 11.74 | 6,128 | 21.1% | 50.1% |
|
| 153 |
+
| **3-gram** | Subword | 3,332 | 11.70 | 23,711 | 22.3% | 62.8% |
|
| 154 |
+
| **4-gram** | Word | 6,747 | 12.72 | 11,452 | 16.3% | 36.7% |
|
| 155 |
+
| **4-gram** | Subword | 18,651 | 14.19 | 105,677 | 10.6% | 32.7% |
|
| 156 |
+
| **5-gram** | Word | 4,718 | 12.20 | 8,067 | 18.6% | 41.3% |
|
| 157 |
+
| **5-gram** | Subword | 56,790 | 15.79 | 217,768 | 6.4% | 20.2% |
|
| 158 |
|
| 159 |
### Top 5 N-grams by Size
|
| 160 |
|
|
|
|
| 162 |
|
| 163 |
| Rank | N-gram | Count |
|
| 164 |
|------|--------|-------|
|
| 165 |
+
| 1 | `on þǣm` | 784 |
|
| 166 |
+
| 2 | `in þǣm` | 762 |
|
| 167 |
+
| 3 | `in þæm` | 673 |
|
| 168 |
+
| 4 | `of the` | 645 |
|
| 169 |
+
| 5 | `se is` | 536 |
|
| 170 |
|
| 171 |
**3-grams (Word):**
|
| 172 |
|
| 173 |
| Rank | N-gram | Count |
|
| 174 |
|------|--------|-------|
|
| 175 |
| 1 | `td valign top` | 529 |
|
| 176 |
+
| 2 | `þæs geānedan cynerīces` | 312 |
|
| 177 |
+
| 3 | `is þorp in` | 311 |
|
| 178 |
+
| 4 | `on eoferwicscīre þæs` | 248 |
|
| 179 |
+
| 5 | `eoferwicscīre þæs geānedan` | 248 |
|
| 180 |
|
| 181 |
**4-grams (Word):**
|
| 182 |
|
|
|
|
| 184 |
|------|--------|-------|
|
| 185 |
| 1 | `on eoferwicscīre þæs geānedan` | 248 |
|
| 186 |
| 2 | `eoferwicscīre þæs geānedan cynerīces` | 248 |
|
| 187 |
+
| 3 | `is eoferƿicscire dǣl on` | 232 |
|
| 188 |
+
| 4 | `eoferƿicscire dǣl on englum` | 231 |
|
| 189 |
+
| 5 | `se is eoferƿicscire dǣl` | 229 |
|
| 190 |
+
|
| 191 |
+
**5-grams (Word):**
|
| 192 |
+
|
| 193 |
+
| Rank | N-gram | Count |
|
| 194 |
+
|------|--------|-------|
|
| 195 |
+
| 1 | `on eoferwicscīre þæs geānedan cynerīces` | 248 |
|
| 196 |
+
| 2 | `is eoferƿicscire dǣl on englum` | 231 |
|
| 197 |
+
| 3 | `se is eoferƿicscire dǣl on` | 229 |
|
| 198 |
+
| 4 | `þriding se is eoferƿicscire dǣl` | 224 |
|
| 199 |
+
| 5 | `east þriding se is eoferƿicscire` | 170 |
|
| 200 |
|
| 201 |
**2-grams (Subword):**
|
| 202 |
|
| 203 |
| Rank | N-gram | Count |
|
| 204 |
|------|--------|-------|
|
| 205 |
+
| 1 | `e _` | 68,542 |
|
| 206 |
+
| 2 | `a n` | 60,904 |
|
| 207 |
+
| 3 | `n _` | 55,318 |
|
| 208 |
+
| 4 | `s _` | 47,837 |
|
| 209 |
+
| 5 | `n d` | 40,759 |
|
| 210 |
|
| 211 |
**3-grams (Subword):**
|
| 212 |
|
| 213 |
| Rank | N-gram | Count |
|
| 214 |
|------|--------|-------|
|
| 215 |
+
| 1 | `a n d` | 24,396 |
|
| 216 |
+
| 2 | `n d _` | 20,668 |
|
| 217 |
+
| 3 | `a n _` | 16,952 |
|
| 218 |
+
| 4 | `_ a n` | 16,629 |
|
| 219 |
+
| 5 | `o n _` | 16,182 |
|
| 220 |
|
| 221 |
**4-grams (Subword):**
|
| 222 |
|
| 223 |
| Rank | N-gram | Count |
|
| 224 |
|------|--------|-------|
|
| 225 |
+
| 1 | `a n d _` | 16,673 |
|
| 226 |
+
| 2 | `_ a n d` | 14,847 |
|
| 227 |
+
| 3 | `_ o n _` | 10,364 |
|
| 228 |
+
| 4 | `_ i s _` | 10,180 |
|
| 229 |
+
| 5 | `_ i n _` | 9,895 |
|
| 230 |
+
|
| 231 |
+
**5-grams (Subword):**
|
| 232 |
+
|
| 233 |
+
| Rank | N-gram | Count |
|
| 234 |
+
|------|--------|-------|
|
| 235 |
+
| 1 | `_ a n d _` | 14,216 |
|
| 236 |
+
| 2 | `_ t h e _` | 3,853 |
|
| 237 |
+
| 3 | `_ þ ǣ m _` | 3,654 |
|
| 238 |
+
| 4 | `_ þ æ s _` | 3,541 |
|
| 239 |
+
| 5 | `_ h i s _` | 3,480 |
|
| 240 |
|
| 241 |
|
| 242 |
### Key Findings
|
| 243 |
|
| 244 |
- **Best Perplexity:** 2-gram (subword) with 365
|
| 245 |
- **Entropy Trend:** Decreases with larger n-grams (more predictable)
|
| 246 |
+
- **Coverage:** Top-1000 patterns cover ~20% of corpus
|
| 247 |
- **Recommendation:** 4-gram or 5-gram for best predictive performance
|
| 248 |
|
| 249 |
---
|
|
|
|
| 259 |
|
| 260 |
| Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
|
| 261 |
|---------|---------|-------------|------------|------------------|-----------------|----------------|
|
| 262 |
+
| **1** | Word | 0.6200 | 1.537 | 3.57 | 86,918 | 38.0% |
|
| 263 |
+
| **1** | Subword | 0.8434 | 1.794 | 6.43 | 1,235 | 15.7% |
|
| 264 |
+
| **2** | Word | 0.1550 | 1.113 | 1.30 | 307,624 | 84.5% |
|
| 265 |
+
| **2** | Subword | 0.9640 | 1.951 | 5.90 | 7,944 | 3.6% |
|
| 266 |
+
| **3** | Word | 0.0385 | 1.027 | 1.05 | 397,324 | 96.2% |
|
| 267 |
+
| **3** | Subword | 0.8649 | 1.821 | 4.02 | 46,823 | 13.5% |
|
| 268 |
+
| **4** | Word | 0.0127 🏆 | 1.009 | 1.02 | 415,064 | 98.7% |
|
| 269 |
+
| **4** | Subword | 0.6219 | 1.539 | 2.55 | 188,154 | 37.8% |
|
| 270 |
|
| 271 |
### Generated Text Samples (Word-based)
|
| 272 |
|
|
|
|
| 274 |
|
| 275 |
**Context Size 1:**
|
| 276 |
|
| 277 |
+
1. `and strætham is eoferƿicscire dǣl on wyrse ġearum ac bowser jr americanisc auto maker grady thomas`
|
| 278 |
+
2. `on pictocusċīre`
|
| 279 |
+
3. `is burg þes geþoftede rīce and gescyldnesse kowane mutum yana da vinci chapter 93 dead rǣdinge`
|
| 280 |
|
| 281 |
**Context Size 2:**
|
| 282 |
|
| 283 |
+
1. `on þǣm ġerēfscipe þæs fōresittende sam dōnde swā þurh sūþsið fǣmneland wǣre and ǣrende genōg land fo...`
|
| 284 |
+
2. `in þǣm geānlǣhtum rīcum fram þǣm sericus gārsecge hit stent is 60 mīle geddoburg be sūðƿesten on`
|
| 285 |
+
3. `in þæm suþernan dæle þæs geānedan cynerīces grēatre brytene cynerīce ƿæs þēodland in ƿesternre europ...`
|
| 286 |
|
| 287 |
**Context Size 3:**
|
| 288 |
|
| 289 |
+
1. `td valign top efencasere mid numeriane murdered td valign top td valign top td oþ 269 td valign`
|
| 290 |
+
2. `is þorp in þæm east þriding se is eoferƿicscire dǣl on englum on eoferwicscīre þæs geānedan cynerīce...`
|
| 291 |
+
3. `eoferwicscīre þæs geānedan cynerīces on wēalum þrēoscyte is hēo and hæfþ twegen ecgas onmang beorgum...`
|
| 292 |
|
| 293 |
**Context Size 4:**
|
| 294 |
|
| 295 |
1. `on eoferwicscīre þæs geānedan cynerīces`
|
| 296 |
+
2. `is eoferƿicscire dǣl on englum hit hæfþ 318 buend on eoferwicscīre þæs geānedan cynerīces`
|
| 297 |
+
3. `eoferƿicscire dǣl on englum on eoferwicscīre þæs geānedan cynerīces`
|
| 298 |
|
| 299 |
|
| 300 |
### Generated Text Samples (Subword-based)
|
|
|
|
| 303 |
|
| 304 |
**Context Size 1:**
|
| 305 |
|
| 306 |
+
1. `_bor.rm_frsh_ded`
|
| 307 |
+
2. `es_a_urīþofophob`
|
| 308 |
+
3. `nftaner,_a_gavst`
|
| 309 |
|
| 310 |
**Context Size 2:**
|
| 311 |
|
| 312 |
+
1. `e_wærr_ofiret_be_`
|
| 313 |
+
2. `and:_gēac_(144_75`
|
| 314 |
+
3. `n_en_polan_on_þæs`
|
| 315 |
|
| 316 |
**Context Size 3:**
|
| 317 |
|
| 318 |
+
1. `and_womericanada_r`
|
| 319 |
+
2. `nd_þā_illinge._þā_`
|
| 320 |
+
3. `an_60_1,000_ause_ƿ`
|
| 321 |
|
| 322 |
**Context Size 4:**
|
| 323 |
|
| 324 |
+
1. `and_(oððe_stre_in_n`
|
| 325 |
+
2. `_and_scot_ƿæs_þēodi`
|
| 326 |
+
3. `_on_mererīca,_a_cli`
|
| 327 |
|
| 328 |
|
| 329 |
### Key Findings
|
| 330 |
|
| 331 |
- **Best Predictability:** Context-4 (word) with 98.7% predictability
|
| 332 |
- **Branching Factor:** Decreases with context size (more deterministic)
|
| 333 |
+
- **Memory Trade-off:** Larger contexts require more storage (188,154 contexts)
|
| 334 |
- **Recommendation:** Context-3 or Context-4 for text generation
|
| 335 |
|
| 336 |
---
|
|
|
|
| 346 |
|
| 347 |
| Metric | Value |
|
| 348 |
|--------|-------|
|
| 349 |
+
| Vocabulary Size | 31,186 |
|
| 350 |
+
| Total Tokens | 403,003 |
|
| 351 |
+
| Mean Frequency | 12.92 |
|
| 352 |
| Median Frequency | 3 |
|
| 353 |
+
| Frequency Std Dev | 156.70 |
|
| 354 |
|
| 355 |
### Most Common Words
|
| 356 |
|
| 357 |
| Rank | Word | Frequency |
|
| 358 |
|------|------|-----------|
|
| 359 |
+
| 1 | and | 14,299 |
|
| 360 |
+
| 2 | on | 10,683 |
|
| 361 |
+
| 3 | is | 10,302 |
|
| 362 |
+
| 4 | in | 10,147 |
|
| 363 |
+
| 5 | of | 6,062 |
|
| 364 |
+
| 6 | se | 4,316 |
|
| 365 |
+
| 7 | the | 3,973 |
|
| 366 |
+
| 8 | þǣm | 3,669 |
|
| 367 |
+
| 9 | þæs | 3,610 |
|
| 368 |
+
| 10 | his | 3,501 |
|
| 369 |
|
| 370 |
### Least Common Words (from vocabulary)
|
| 371 |
|
| 372 |
| Rank | Word | Frequency |
|
| 373 |
|------|------|-----------|
|
| 374 |
+
| 1 | minga | 2 |
|
| 375 |
+
| 2 | blæcfugolond | 2 |
|
| 376 |
+
| 3 | ƿīleacstede | 2 |
|
| 377 |
+
| 4 | cōcsċīre | 2 |
|
| 378 |
+
| 5 | winnebagsċīre | 2 |
|
| 379 |
+
| 6 | ælfrēdingtūn | 2 |
|
| 380 |
+
| 7 | irfung | 2 |
|
| 381 |
+
| 8 | larēodo | 2 |
|
| 382 |
+
| 9 | grœndā | 2 |
|
| 383 |
+
| 10 | dǣlungs | 2 |
|
| 384 |
|
| 385 |
### Zipf's Law Analysis
|
| 386 |
|
| 387 |
| Metric | Value |
|
| 388 |
|--------|-------|
|
| 389 |
+
| Zipf Coefficient | 0.9344 |
|
| 390 |
+
| R² (Goodness of Fit) | 0.998034 |
|
| 391 |
| Adherence Quality | **excellent** |
|
| 392 |
|
| 393 |
### Coverage Analysis
|
| 394 |
|
| 395 |
| Top N Words | Coverage |
|
| 396 |
|-------------|----------|
|
| 397 |
+
| Top 100 | 38.0% |
|
| 398 |
+
| Top 1,000 | 59.6% |
|
| 399 |
| Top 5,000 | 77.9% |
|
| 400 |
| Top 10,000 | 86.2% |
|
| 401 |
|
| 402 |
### Key Findings
|
| 403 |
|
| 404 |
+
- **Zipf Compliance:** R²=0.9980 indicates excellent adherence to Zipf's law
|
| 405 |
+
- **High Frequency Dominance:** Top 100 words cover 38.0% of corpus
|
| 406 |
+
- **Long Tail:** 21,186 words needed for remaining 13.8% coverage
|
| 407 |
|
| 408 |
---
|
| 409 |
## 5. Word Embeddings Evaluation
|
|
|
|
| 419 |
|
| 420 |
### 5.1 Cross-Lingual Alignment
|
| 421 |
|
| 422 |
+

|
| 423 |
+
|
| 424 |
+

|
| 425 |
|
| 426 |
|
| 427 |
### 5.2 Model Comparison
|
| 428 |
|
| 429 |
| Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 |
|
| 430 |
|-------|-----------|----------|------------------|---------------|----------------|
|
| 431 |
+
| **mono_32d** | 32 | 0.8005 🏆 | 0.3579 | N/A | N/A |
|
| 432 |
+
| **mono_64d** | 64 | 0.4615 | 0.3163 | N/A | N/A |
|
| 433 |
+
| **mono_128d** | 128 | 0.1318 | 0.3128 | N/A | N/A |
|
| 434 |
+
| **aligned_32d** | 32 | 0.8005 | 0.3430 | 0.0360 | 0.2720 |
|
| 435 |
+
| **aligned_64d** | 64 | 0.4615 | 0.3200 | 0.0780 | 0.3300 |
|
| 436 |
+
| **aligned_128d** | 128 | 0.1318 | 0.2993 | 0.0840 | 0.3840 |
|
| 437 |
|
| 438 |
### Key Findings
|
| 439 |
|
| 440 |
+
- **Best Isotropy:** mono_32d with 0.8005 (more uniform distribution)
|
| 441 |
+
- **Semantic Density:** Average pairwise similarity of 0.3249. Lower values indicate better semantic separation.
|
| 442 |
+
- **Alignment Quality:** Aligned models achieve up to 8.4% R@1 in cross-lingual retrieval.
|
| 443 |
- **Recommendation:** 128d aligned for best cross-lingual performance
|
| 444 |
|
| 445 |
---
|
| 446 |
## 6. Morphological Analysis (Experimental)
|
| 447 |
|
|
|
|
|
|
|
| 448 |
This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.
|
| 449 |
|
| 450 |
### 6.1 Productivity & Complexity
|
| 451 |
|
| 452 |
| Metric | Value | Interpretation | Recommendation |
|
| 453 |
|--------|-------|----------------|----------------|
|
| 454 |
+
| Productivity Index | **5.000** | High morphological productivity | Reliable analysis |
|
| 455 |
+
| Idiomaticity Gap | **1.044** | High formulaic/idiomatic content | - |
|
| 456 |
|
| 457 |
### 6.2 Affix Inventory (Productive Units)
|
| 458 |
|
|
|
|
| 461 |
#### Productive Prefixes
|
| 462 |
| Prefix | Examples |
|
| 463 |
|--------|----------|
|
| 464 |
+
| `-ge` | geƿinnes, geendebyrded, genered |
|
| 465 |
|
| 466 |
#### Productive Suffixes
|
| 467 |
| Suffix | Examples |
|
| 468 |
|--------|----------|
|
| 469 |
+
| `-e` | ohthere, tide, crulande |
|
| 470 |
+
| `-an` | iuliscan, weardan, ċiriċeburnan |
|
| 471 |
+
| `-es` | geƿinnes, laurentes, yankees |
|
| 472 |
+
| `-um` | stōwum, sǣfōrum, betweonum |
|
| 473 |
+
| `-de` | tide, crulande, īeglande |
|
| 474 |
+
| `-ng` | hūselhālgung, āmang, rising |
|
| 475 |
|
| 476 |
### 6.3 Bound Stems (Lexical Roots)
|
| 477 |
|
|
|
|
| 479 |
|
| 480 |
| Stem | Cohesion | Substitutability | Examples |
|
| 481 |
|------|----------|------------------|----------|
|
| 482 |
+
| `mani` | 2.03x | 43 contexts | amani, maniġ, maniȝ |
|
| 483 |
+
| `enne` | 1.97x | 48 contexts | fenne, agenne, etenne |
|
| 484 |
+
| `ster` | 1.84x | 59 contexts | buster, easter, noster |
|
| 485 |
+
| `wear` | 1.97x | 43 contexts | weard, wearþ, wearð |
|
| 486 |
+
| `unge` | 1.85x | 46 contexts | tunge, tunges, hunger |
|
| 487 |
+
| `tion` | 2.26x | 19 contexts | action, motion, nation |
|
| 488 |
+
| `inga` | 1.78x | 34 contexts | þinga, minga, ðinga |
|
| 489 |
+
| `ning` | 1.70x | 35 contexts | cyning, ininga, cining |
|
| 490 |
+
| `aste` | 1.76x | 27 contexts | ēaste, easte, taste |
|
| 491 |
+
| `ynin` | 2.28x | 11 contexts | cynin, cyning, cyninȝ |
|
| 492 |
+
| `afod` | 1.85x | 18 contexts | heafod, ƿafode, hēafod |
|
| 493 |
+
| `nisc` | 1.56x | 27 contexts | denisc, cinisc, dēnisc |
|
| 494 |
|
| 495 |
### 6.4 Affix Compatibility (Co-occurrence)
|
| 496 |
|
|
|
|
| 498 |
|
| 499 |
| Prefix | Suffix | Frequency | Examples |
|
| 500 |
|--------|--------|-----------|----------|
|
| 501 |
+
| `-ge` | `-e` | 75 words | gearore, gegaderode |
|
| 502 |
+
| `-ge` | `-de` | 27 words | gegaderode, gelytlode |
|
| 503 |
+
| `-ge` | `-um` | 20 words | getremincum, gearum |
|
| 504 |
+
| `-ge` | `-an` | 19 words | gearan, gesecan |
|
| 505 |
+
| `-ge` | `-es` | 18 words | gearƿes, geferscipes |
|
| 506 |
+
| `-ge` | `-ng` | 7 words | geswutelung, geþrang |
|
| 507 |
|
| 508 |
### 6.5 Recursive Morpheme Segmentation
|
| 509 |
|
|
|
|
| 512 |
| Word | Suggested Split | Confidence | Stem |
|
| 513 |
|------|-----------------|------------|------|
|
| 514 |
| gereordes | **`ge-reord-es`** | 6.0 | `reord` |
|
| 515 |
+
| geƿealdes | **`ge-ƿeald-es`** | 6.0 | `ƿeald` |
|
| 516 |
+
| gehealdan | **`ge-heald-an`** | 6.0 | `heald` |
|
| 517 |
+
| gefeohtes | **`ge-feoht-es`** | 6.0 | `feoht` |
|
| 518 |
+
| foresittendlican | **`foresittendlic-an`** | 4.5 | `foresittendlic` |
|
| 519 |
+
| hundgēares | **`hundgēar-es`** | 4.5 | `hundgēar` |
|
| 520 |
+
| ƿīntrēoƿum | **`ƿīntrēoƿ-um`** | 4.5 | `ƿīntrēoƿ` |
|
| 521 |
| cræftigum | **`cræftig-um`** | 4.5 | `cræftig` |
|
| 522 |
+
| bryttiscan | **`bryttisc-an`** | 4.5 | `bryttisc` |
|
| 523 |
+
| speliġendhūses | **`speliġendhūs-es`** | 4.5 | `speliġendhūs` |
|
| 524 |
+
| russiscum | **`russisc-um`** | 4.5 | `russisc` |
|
| 525 |
+
| regollicum | **`regollic-um`** | 4.5 | `regollic` |
|
| 526 |
+
| atlantiscan | **`atlantisc-an`** | 4.5 | `atlantisc` |
|
| 527 |
+
| ƿealdende | **`ƿealden-de`** | 4.5 | `ƿealden` |
|
| 528 |
+
| gegaderunge | **`ge-gaderunge`** | 4.5 | `gaderunge` |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 529 |
|
| 530 |
### 6.6 Linguistic Interpretation
|
| 531 |
|
| 532 |
> **Automated Insight:**
|
| 533 |
+
The language Old English shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding.
|
| 534 |
+
|
| 535 |
+
> **Note on Idiomaticity:** The high Idiomaticity Gap suggests a large number of frequent multi-word expressions or formulaic sequences that are statistically distinct from their component parts.
|
| 536 |
|
| 537 |
---
|
| 538 |
## 7. Summary & Recommendations
|
|
|
|
| 543 |
|
| 544 |
| Component | Recommended | Rationale |
|
| 545 |
|-----------|-------------|-----------|
|
| 546 |
+
| Tokenizer | **64k BPE** | Best compression (4.01x) |
|
| 547 |
| N-gram | **2-gram** | Lowest perplexity (365) |
|
| 548 |
| Markov | **Context-4** | Highest predictability (98.7%) |
|
| 549 |
| Embeddings | **100d** | Balanced semantic capture and isotropy |
|
|
|
|
| 759 |
---
|
| 760 |
*Generated by Wikilangs Models Pipeline*
|
| 761 |
|
| 762 |
+
*Report Date: 2026-01-03 14:10:12*
|
models/embeddings/aligned/ang_128d.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:916924f4cae8ca68c9b328270e6c8f5d750e1f5f8a934a8f14b2a9ed44bfa5e9
|
| 3 |
+
size 1034408961
|
models/embeddings/aligned/ang_128d.meta.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"lang": "ang", "dim": 128, "max_seq_len": 512, "is_aligned": true}
|
models/embeddings/aligned/ang_128d.projection.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:25502450dc6c859927a71989b5700de37d1474c28657905e5d57935efab0ce21
|
| 3 |
+
size 65664
|
models/embeddings/aligned/ang_128d_metadata.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"language": "ang",
|
| 3 |
+
"dimension": 128,
|
| 4 |
+
"version": "aligned",
|
| 5 |
+
"hub_language": "en",
|
| 6 |
+
"seed_vocab_size": 3813,
|
| 7 |
+
"vocab_size": 10001
|
| 8 |
+
}
|
models/embeddings/aligned/ang_32d.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:bf60165a1c710ff1513a37905cbab9e4938cc02aa22cdf5c36d13a954072c8da
|
| 3 |
+
size 258728193
|
models/embeddings/aligned/ang_32d.meta.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"lang": "ang", "dim": 32, "max_seq_len": 512, "is_aligned": true}
|
models/embeddings/aligned/ang_32d.projection.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ddf7e9dc22e45732b340414482d0aa30bca9a7225905b66b922786d632cfb556
|
| 3 |
+
size 4224
|
models/embeddings/aligned/ang_32d_metadata.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"language": "ang",
|
| 3 |
+
"dimension": 32,
|
| 4 |
+
"version": "aligned",
|
| 5 |
+
"hub_language": "en",
|
| 6 |
+
"seed_vocab_size": 3813,
|
| 7 |
+
"vocab_size": 10001
|
| 8 |
+
}
|
models/embeddings/aligned/ang_64d.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ca061364183fd6d9b77c2b10561dad103ed397dde669eca49fcc861ac7e34566
|
| 3 |
+
size 517288449
|
models/embeddings/aligned/ang_64d.meta.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"lang": "ang", "dim": 64, "max_seq_len": 512, "is_aligned": true}
|
models/embeddings/aligned/ang_64d.projection.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a318bf6e939ba9d157a6589439149031e127db782751369e9a4fb9bca1368f69
|
| 3 |
+
size 16512
|
models/embeddings/aligned/ang_64d_metadata.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"language": "ang",
|
| 3 |
+
"dimension": 64,
|
| 4 |
+
"version": "aligned",
|
| 5 |
+
"hub_language": "en",
|
| 6 |
+
"seed_vocab_size": 3813,
|
| 7 |
+
"vocab_size": 10001
|
| 8 |
+
}
|
models/embeddings/monolingual/ang_128d.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:916924f4cae8ca68c9b328270e6c8f5d750e1f5f8a934a8f14b2a9ed44bfa5e9
|
| 3 |
+
size 1034408961
|
models/embeddings/monolingual/ang_128d_metadata.json
CHANGED
|
@@ -11,5 +11,5 @@
|
|
| 11 |
"encoding_method": "rope",
|
| 12 |
"dim": 128
|
| 13 |
},
|
| 14 |
-
"vocab_size":
|
| 15 |
}
|
|
|
|
| 11 |
"encoding_method": "rope",
|
| 12 |
"dim": 128
|
| 13 |
},
|
| 14 |
+
"vocab_size": 10001
|
| 15 |
}
|
models/embeddings/monolingual/ang_32d.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:bf60165a1c710ff1513a37905cbab9e4938cc02aa22cdf5c36d13a954072c8da
|
| 3 |
+
size 258728193
|
models/embeddings/monolingual/ang_32d_metadata.json
CHANGED
|
@@ -11,5 +11,5 @@
|
|
| 11 |
"encoding_method": "rope",
|
| 12 |
"dim": 32
|
| 13 |
},
|
| 14 |
-
"vocab_size":
|
| 15 |
}
|
|
|
|
| 11 |
"encoding_method": "rope",
|
| 12 |
"dim": 32
|
| 13 |
},
|
| 14 |
+
"vocab_size": 10001
|
| 15 |
}
|
models/embeddings/monolingual/ang_64d.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ca061364183fd6d9b77c2b10561dad103ed397dde669eca49fcc861ac7e34566
|
| 3 |
+
size 517288449
|
models/embeddings/monolingual/ang_64d_metadata.json
CHANGED
|
@@ -11,5 +11,5 @@
|
|
| 11 |
"encoding_method": "rope",
|
| 12 |
"dim": 64
|
| 13 |
},
|
| 14 |
-
"vocab_size":
|
| 15 |
}
|
|
|
|
| 11 |
"encoding_method": "rope",
|
| 12 |
"dim": 64
|
| 13 |
},
|
| 14 |
+
"vocab_size": 10001
|
| 15 |
}
|
models/subword_markov/ang_markov_ctx1_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3c51cb623755a1753881542eeb56f63d0e3cca6b26b36201d37c4673561c4964
|
| 3 |
+
size 66968
|
models/subword_markov/ang_markov_ctx1_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 1,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "ang",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 1,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "ang",
|
| 5 |
+
"unique_contexts": 1235,
|
| 6 |
+
"total_transitions": 2932601
|
| 7 |
}
|
models/subword_markov/ang_markov_ctx2_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:75c24d757e1f8ff20404bf43a0494cdc7025f3099ecf2c5fd0ded6196982f719
|
| 3 |
+
size 360335
|
models/subword_markov/ang_markov_ctx2_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 2,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "ang",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 2,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "ang",
|
| 5 |
+
"unique_contexts": 7944,
|
| 6 |
+
"total_transitions": 2927617
|
| 7 |
}
|
models/subword_markov/ang_markov_ctx3_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:92be48c01deb0d03b413930a4303e8ea68fa19ad34847e3364801ebb65d661f3
|
| 3 |
+
size 1378085
|
models/subword_markov/ang_markov_ctx3_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 3,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "ang",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 3,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "ang",
|
| 5 |
+
"unique_contexts": 46823,
|
| 6 |
+
"total_transitions": 2922633
|
| 7 |
}
|
models/subword_markov/ang_markov_ctx4_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:63d5bae5a9064ea8d0b55a7323a00e10fd3cc817a992d548d92596656acd9a23
|
| 3 |
+
size 3780418
|
models/subword_markov/ang_markov_ctx4_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 4,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "ang",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 4,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "ang",
|
| 5 |
+
"unique_contexts": 188154,
|
| 6 |
+
"total_transitions": 2917649
|
| 7 |
}
|
models/subword_ngram/ang_2gram_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3de4ae1fde9e711415a305f0cff7d028d9d6dbb8e9784696204bb787c90dd202
|
| 3 |
+
size 40740
|
models/subword_ngram/ang_2gram_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"n": 2,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "ang",
|
| 5 |
-
"unique_ngrams":
|
| 6 |
-
"total_ngrams":
|
| 7 |
}
|
|
|
|
| 2 |
"n": 2,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "ang",
|
| 5 |
+
"unique_ngrams": 3006,
|
| 6 |
+
"total_ngrams": 2932601
|
| 7 |
}
|
models/subword_ngram/ang_3gram_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3c21515a66cb038262024984e5d43dfebb139b67620b893fda4f9839a52c0dc7
|
| 3 |
+
size 290609
|
models/subword_ngram/ang_3gram_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"n": 3,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "ang",
|
| 5 |
-
"unique_ngrams":
|
| 6 |
-
"total_ngrams":
|
| 7 |
}
|
|
|
|
| 2 |
"n": 3,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "ang",
|
| 5 |
+
"unique_ngrams": 23711,
|
| 6 |
+
"total_ngrams": 2927617
|
| 7 |
}
|
models/subword_ngram/ang_4gram_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6a666f8631a2c316853af5db1a673829c50f10adee5b2020606062eb57ed52f6
|
| 3 |
+
size 1209850
|
models/subword_ngram/ang_4gram_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"n": 4,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "ang",
|
| 5 |
-
"unique_ngrams":
|
| 6 |
-
"total_ngrams":
|
| 7 |
}
|
|
|
|
| 2 |
"n": 4,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "ang",
|
| 5 |
+
"unique_ngrams": 105677,
|
| 6 |
+
"total_ngrams": 2922633
|
| 7 |
}
|
models/subword_ngram/ang_5gram_subword.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7c3056ca0bf5781dd09261541479f028b29a9cc8d5a5a6f2bd27261e1805e569
|
| 3 |
+
size 2555553
|
models/subword_ngram/ang_5gram_subword_metadata.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"n": 5,
|
| 3 |
+
"variant": "subword",
|
| 4 |
+
"language": "ang",
|
| 5 |
+
"unique_ngrams": 217768,
|
| 6 |
+
"total_ngrams": 2917649
|
| 7 |
+
}
|
models/tokenizer/ang_tokenizer_16k.model
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:040cdd2ba84e292b44535ad7e47be3d9d4dea1f384c04801879d77cd0895da82
|
| 3 |
+
size 507562
|
models/tokenizer/ang_tokenizer_16k.vocab
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/tokenizer/ang_tokenizer_32k.model
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:11310c4f4880a83c7e0121967baf71b21fdb39d161532062e4d76550c057a832
|
| 3 |
+
size 785162
|
models/tokenizer/ang_tokenizer_32k.vocab
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/tokenizer/ang_tokenizer_64k.model
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d5e8fac427c909ddf6ed2f1d118ab76e763479cf812ec71e84f5a78d4c94f50d
|
| 3 |
+
size 1395192
|
models/tokenizer/ang_tokenizer_64k.vocab
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/tokenizer/ang_tokenizer_8k.model
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:de84f48cb9fa027b88c36715acd20bb110a824676f2c89684ff9ac4bc44afca9
|
| 3 |
+
size 372530
|
models/tokenizer/ang_tokenizer_8k.vocab
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/vocabulary/ang_vocabulary.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:113d35307580b6ba8524484649846ca961d60e99640c0a1ec1916e31afebf5d6
|
| 3 |
+
size 532266
|
models/vocabulary/ang_vocabulary_metadata.json
CHANGED
|
@@ -1,17 +1,17 @@
|
|
| 1 |
{
|
| 2 |
"language": "ang",
|
| 3 |
-
"vocabulary_size":
|
| 4 |
"variant": "full",
|
| 5 |
"statistics": {
|
| 6 |
-
"type_token_ratio": 0.
|
| 7 |
"coverage": {
|
| 8 |
-
"top_100": 0.
|
| 9 |
-
"top_1000": 0.
|
| 10 |
-
"top_5000": 0.
|
| 11 |
-
"top_10000": 0.
|
| 12 |
},
|
| 13 |
-
"hapax_count":
|
| 14 |
-
"hapax_ratio": 0.
|
| 15 |
-
"total_documents":
|
| 16 |
}
|
| 17 |
}
|
|
|
|
| 1 |
{
|
| 2 |
"language": "ang",
|
| 3 |
+
"vocabulary_size": 31186,
|
| 4 |
"variant": "full",
|
| 5 |
"statistics": {
|
| 6 |
+
"type_token_ratio": 0.1905231532884854,
|
| 7 |
"coverage": {
|
| 8 |
+
"top_100": 0.33298282280713215,
|
| 9 |
+
"top_1000": 0.5232425489299632,
|
| 10 |
+
"top_5000": 0.6837001719896371,
|
| 11 |
+
"top_10000": 0.7563298717697516
|
| 12 |
},
|
| 13 |
+
"hapax_count": 56327,
|
| 14 |
+
"hapax_ratio": 0.6436415161176053,
|
| 15 |
+
"total_documents": 4984
|
| 16 |
}
|
| 17 |
}
|
models/word_markov/ang_markov_ctx1_word.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f9404cf8e75c7dafaa37bb38566f58ecbfbcde523666ebe80d07fb25ebd8ff43
|
| 3 |
+
size 2834503
|
models/word_markov/ang_markov_ctx1_word_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 1,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "ang",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 1,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "ang",
|
| 5 |
+
"unique_contexts": 86918,
|
| 6 |
+
"total_transitions": 454346
|
| 7 |
}
|
models/word_markov/ang_markov_ctx2_word.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:dd85fc8f75ac79620c6acdaafd11303ab1e84fccbf3610c168b1fc640627a885
|
| 3 |
+
size 5756661
|
models/word_markov/ang_markov_ctx2_word_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 2,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "ang",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 2,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "ang",
|
| 5 |
+
"unique_contexts": 307624,
|
| 6 |
+
"total_transitions": 449362
|
| 7 |
}
|