--- language: ary language_name: Moroccan Arabic language_family: arabic tags: - wikilangs - nlp - tokenizer - embeddings - n-gram - markov - wikipedia - feature-extraction - sentence-similarity - tokenization - n-grams - markov-chain - text-mining - fasttext - babelvec - vocabulous - vocabulary - monolingual - family-arabic license: mit library_name: wikilangs pipeline_tag: text-generation datasets: - omarkamali/wikipedia-monthly dataset_info: name: wikipedia-monthly description: Monthly snapshots of Wikipedia articles across 300+ languages metrics: - name: best_compression_ratio type: compression value: 4.171 - name: best_isotropy type: isotropy value: 0.8284 - name: vocabulary_size type: vocab value: 0 generated: 2026-01-03 --- # Moroccan Arabic - Wikilangs Models ## Comprehensive Research Report & Full Ablation Study This repository contains NLP models trained and evaluated by Wikilangs, specifically on **Moroccan Arabic** Wikipedia data. We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings. ## 📋 Repository Contents ### Models & Assets - Tokenizers (8k, 16k, 32k, 64k) - N-gram models (2, 3, 4, 5-gram) - Markov chains (context of 1, 2, 3, 4 and 5) - Subword N-gram and Markov chains - Embeddings in various sizes and dimensions (aligned and unaligned) - Language Vocabulary - Language Statistics ![Performance Dashboard](visualizations/performance_dashboard.png) ### Analysis and Evaluation - [1. Tokenizer Evaluation](#1-tokenizer-evaluation) - [2. N-gram Model Evaluation](#2-n-gram-model-evaluation) - [3. Markov Chain Evaluation](#3-markov-chain-evaluation) - [4. Vocabulary Analysis](#4-vocabulary-analysis) - [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation) - [6. Morphological Analysis (Experimental)](#6--morphological-analysis-experimental) - [7. Summary & Recommendations](#7-summary--recommendations) - [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide) - [Visualizations Index](#visualizations-index) --- ## 1. Tokenizer Evaluation ![Tokenizer Compression](visualizations/tokenizer_compression.png) ![Tokenizer Fertility](visualizations/tokenizer_fertility.png) ![Tokenizer OOV](visualizations/tokenizer_oov.png) ![Total Tokens](visualizations/tokenizer_total_tokens.png) ### Results | Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens | |------------|-------------|---------------|----------|--------------| | **8k** | 3.480x | 3.48 | 0.0910% | 300,099 | | **16k** | 3.753x | 3.76 | 0.0981% | 278,271 | | **32k** | 3.983x | 3.99 | 0.1041% | 262,209 | | **64k** | 4.171x 🏆 | 4.18 | 0.1090% | 250,397 | ### Tokenization Examples Below are sample sentences tokenized with each vocabulary size: **Sample 1:** `هادي صفحة د التوضيح، كلمة بركان يمكن يكونو عندها هاد لمعاني: بْرْكان: مدينة مغري...` | Vocab | Tokens | Count | |-------|--------|-------| | 8k | `▁هادي ▁صفحة ▁د ▁التوضيح ، ▁كلمة ▁بركان ▁يمكن ▁يكونو ▁عندها ... (+23 more)` | 33 | | 16k | `▁هادي ▁صفحة ▁د ▁التوضيح ، ▁كلمة ▁بركان ▁يمكن ▁يكونو ▁عندها ... (+21 more)` | 31 | | 32k | `▁هادي ▁صفحة ▁د ▁التوضيح ، ▁كلمة ▁بركان ▁يمكن ▁يكونو ▁عندها ... (+19 more)` | 29 | | 64k | `▁هادي ▁صفحة ▁د ▁التوضيح ، ▁كلمة ▁بركان ▁يمكن ▁يكونو ▁عندها ... (+18 more)` | 28 | **Sample 2:** `لْفزضاض ؤلا أفزضاض (سمية لعلمية Microcosmus sabatieri) حيوان لاسنسولي كيعيش ف لب...` | Vocab | Tokens | Count | |-------|--------|-------| | 8k | `▁لْ ف ز ضاض ▁ؤلا ▁أف ز ضاض ▁( سمية ... (+31 more)` | 41 | | 16k | `▁لْ ف ز ضاض ▁ؤلا ▁أف ز ضاض ▁( سمية ... (+28 more)` | 38 | | 32k | `▁لْف ز ضاض ▁ؤلا ▁أف ز ضاض ▁( سمية ▁لعلمية ... (+25 more)` | 35 | | 64k | `▁لْف زضاض ▁ؤلا ▁أف زضاض ▁( سمية ▁لعلمية ▁microcos mus ... (+17 more)` | 27 | **Sample 3:** `نيلز أبراهام لانݣليت (مزيود ف 9 يوليوز - مات ف 30 مارس هوّا عالم د شّيمي سويدي. ...` | Vocab | Tokens | Count | |-------|--------|-------| | 8k | `▁نيل ز ▁أب راهام ▁ل انݣ ليت ▁( مزيود ▁ف ... (+19 more)` | 29 | | 16k | `▁نيل ز ▁أبراهام ▁ل انݣ ليت ▁( مزيود ▁ف ▁ ... (+16 more)` | 26 | | 32k | `▁نيلز ▁أبراهام ▁لانݣ ليت ▁( مزيود ▁ف ▁ 9 ▁يوليوز ... (+14 more)` | 24 | | 64k | `▁نيلز ▁أبراهام ▁لانݣليت ▁( مزيود ▁ف ▁ 9 ▁يوليوز ▁- ... (+13 more)` | 23 | ### Key Findings - **Best Compression:** 64k achieves 4.171x compression - **Lowest UNK Rate:** 8k with 0.0910% unknown tokens - **Trade-off:** Larger vocabularies improve compression but increase model size - **Recommendation:** 32k vocabulary provides optimal balance for production use --- ## 2. N-gram Model Evaluation ![N-gram Perplexity](visualizations/ngram_perplexity.png) ![N-gram Unique](visualizations/ngram_unique.png) ![N-gram Coverage](visualizations/ngram_coverage.png) ### Results | N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage | |--------|---------|------------|---------|----------------|------------------|-------------------| | **2-gram** | Word | 7,228 | 12.82 | 39,512 | 23.0% | 50.8% | | **2-gram** | Subword | 424 🏆 | 8.73 | 5,903 | 58.0% | 96.4% | | **3-gram** | Word | 5,655 | 12.47 | 43,555 | 27.5% | 57.1% | | **3-gram** | Subword | 3,784 | 11.89 | 44,651 | 23.1% | 60.7% | | **4-gram** | Word | 7,985 | 12.96 | 70,559 | 27.5% | 53.6% | | **4-gram** | Subword | 20,064 | 14.29 | 220,807 | 12.0% | 36.0% | | **5-gram** | Word | 7,565 | 12.89 | 58,964 | 28.5% | 52.9% | | **5-gram** | Subword | 62,379 | 15.93 | 527,725 | 7.3% | 25.0% | ### Top 5 N-grams by Size **2-grams (Word):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `واصلة ل` | 8,540 | | 2 | `نسبة د` | 7,170 | | 3 | `ف لمغريب` | 6,305 | | 4 | `ف إقليم` | 6,018 | | 5 | `ف نسبة` | 4,265 | **3-grams (Word):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `ف نسبة د` | 4,264 | | 2 | `فيها مصدر و` | 3,236 | | 3 | `و نسبة د` | 2,894 | | 4 | `مصدر و بايت` | 2,856 | | 5 | `اللي خدامين ف` | 2,760 | **4-grams (Word):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `فيها مصدر و بايت` | 2,856 | | 2 | `نسبة نّاس اللي خدامين` | 2,705 | | 3 | `نّاس اللي خدامين ف` | 2,594 | | 4 | `على حساب لإحصاء الرسمي` | 2,501 | | 5 | `حساب لإحصاء الرسمي د` | 2,500 | **5-grams (Word):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `نسبة نّاس اللي خدامين ف` | 2,593 | | 2 | `ف لمغريب هاد دّوار كينتامي` | 2,500 | | 3 | `هاد دّوار كينتامي ل مشيخة` | 2,500 | | 4 | `لمغريب هاد دّوار كينتامي ل` | 2,500 | | 5 | `حساب لإحصاء الرسمي د عام` | 2,500 | **2-grams (Subword):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `ا ل` | 347,466 | | 2 | `_ ل` | 278,371 | | 3 | `ة _` | 229,442 | | 4 | `_ ا` | 220,960 | | 5 | `_ م` | 156,801 | **3-grams (Subword):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `_ ا ل` | 216,048 | | 2 | `_ ف _` | 83,146 | | 3 | `ا ت _` | 63,800 | | 4 | `ي ة _` | 60,271 | | 5 | `_ د _` | 59,563 | **4-grams (Subword):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `_ د ي ا` | 47,798 | | 2 | `د ي ا ل` | 47,559 | | 3 | `ي ا ل _` | 33,039 | | 4 | `د _ ا ل` | 32,831 | | 5 | `_ م ن _` | 28,909 | **5-grams (Subword):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `_ د ي ا ل` | 47,427 | | 2 | `د ي ا ل _` | 32,608 | | 3 | `_ ع ل ى _` | 19,473 | | 4 | `_ ا ل ل ي` | 18,967 | | 5 | `ا ل ل ي _` | 18,744 | ### Key Findings - **Best Perplexity:** 2-gram (subword) with 424 - **Entropy Trend:** Decreases with larger n-grams (more predictable) - **Coverage:** Top-1000 patterns cover ~25% of corpus - **Recommendation:** 4-gram or 5-gram for best predictive performance --- ## 3. Markov Chain Evaluation ![Markov Entropy](visualizations/markov_entropy.png) ![Markov Contexts](visualizations/markov_contexts.png) ![Markov Branching](visualizations/markov_branching.png) ### Results | Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability | |---------|---------|-------------|------------|------------------|-----------------|----------------| | **1** | Word | 0.8561 | 1.810 | 5.38 | 178,865 | 14.4% | | **1** | Subword | 1.1236 | 2.179 | 8.36 | 2,156 | 0.0% | | **2** | Word | 0.2259 | 1.169 | 1.49 | 962,233 | 77.4% | | **2** | Subword | 0.8160 | 1.761 | 5.10 | 18,029 | 18.4% | | **3** | Word | 0.0618 | 1.044 | 1.10 | 1,431,084 | 93.8% | | **3** | Subword | 0.8022 | 1.744 | 4.13 | 91,858 | 19.8% | | **4** | Word | 0.0208 🏆 | 1.015 | 1.04 | 1,574,083 | 97.9% | | **4** | Subword | 0.6604 | 1.581 | 2.86 | 379,445 | 34.0% | ### Generated Text Samples (Word-based) Below are text samples generated from each word-based Markov chain model: **Context Size 1:** 1. `ف لمغريب فيها 5 463 462 461 كم من غير ب شبه منقّر مكررعبد المسيح في` 2. `و أداب روسيا ف لمغريب ف وقت مابين اللغات الرسمية ديال حيزب لإستقلال تا سينيما ليها` 3. `د الناس فليبيا اكتشفو أنه يتقتل ولكن بقات كتلعب فالتيران ديال هاد الريحلة معا لمونتاخاب و` **Context Size 2:** 1. `واصلة ل 98 6 و عدد لفاميلات تزاد ب 81 6 و نسبة د الناس و لمحيط` 2. `نسبة د الشوماج واصلة ل 21 12 نوطات مصادر ف لمغريب جّبل معروف عند الصامويين حتال ليوم` 3. `ف لمغريب هاد دّوار كينتامي ل مشيخة سدي حمد الدغوغي لي كتضم 14 د دّواور لعاداد د` **Context Size 3:** 1. `ف نسبة د التسكويل واصلة ل 91 89 و نسبة د الشوماج واصلة ل 7 6 و لخصوبة` 2. `فيها مصدر و بايت زادهوم داريجابوت حيين مغاربا د لقرن 21 مغاربا مغاربا فيها مصدر و بايت زادهوم` 3. `و نسبة د لأمية واصلة ل 53 4 و نسبة د لأمية واصلة ل 92 5 و نسبة` **Context Size 4:** 1. `نسبة نّاس اللي خدامين ف دّولة ولا لبيطاليين اللي سبق ليهوم خدمو 44 3 نسبة نّاس اللي خدامين ف` 2. `نّاس اللي خدامين ف لپريڤي ولا لبيطاليين اللي سبق ليهوم مصادر الدار البيضاء سطات قروية ف إقليم سطات ق...` 3. `على حساب لإحصاء الرسمي د عام إحصائيات إحصائيات عامة عدد السكان ديال أورسفان نقص ب 30 7 و عدد` ### Generated Text Samples (Subword-based) Below are text samples generated from each subword-based Markov chain model: **Context Size 1:** 1. `_دّرى_لجالب_لتالع` 2. `اكترن_لعاميلة_ن_` 3. `لت_پرومدي_و_ماتم` **Context Size 2:** 1. `الرجل_بين_ماعة_لخ` 2. `_لكينو_العرفوقعوه` 3. `ة_27_نت،_خري_د_لج` **Context Size 3:** 1. `_الروس_و_هي_ماية_ك` 2. `_ف_موقريب._الدفايي` 3. `ات_ف_البالشخصياتول` **Context Size 4:** 1. `_ديالو._ميامينش_و_ت` 2. `ديال_أسباب_الغرب_6_` 3. `يال_تعرّض_للحزب_الوه` ### Key Findings - **Best Predictability:** Context-4 (word) with 97.9% predictability - **Branching Factor:** Decreases with context size (more deterministic) - **Memory Trade-off:** Larger contexts require more storage (379,445 contexts) - **Recommendation:** Context-3 or Context-4 for text generation --- ## 4. Vocabulary Analysis ![Zipf's Law](visualizations/zipf_law.png) ![Top Words](visualizations/top20_words.png) ![Coverage Curve](visualizations/vocab_coverage.png) ### Statistics | Metric | Value | |--------|-------| | Vocabulary Size | 78,779 | | Total Tokens | 2,032,841 | | Mean Frequency | 25.80 | | Median Frequency | 4 | | Frequency Std Dev | 515.92 | ### Most Common Words | Rank | Word | Frequency | |------|------|-----------| | 1 | ف | 83,458 | | 2 | و | 59,829 | | 3 | د | 59,731 | | 4 | ديال | 32,565 | | 5 | من | 29,236 | | 6 | ل | 23,572 | | 7 | على | 19,570 | | 8 | لي | 18,402 | | 9 | اللي | 17,442 | | 10 | ب | 17,233 | ### Least Common Words (from vocabulary) | Rank | Word | Frequency | |------|------|-----------| | 1 | بوفوار | 2 | | 2 | بيتسي | 2 | | 3 | وصانعي | 2 | | 4 | وأهميتها | 2 | | 5 | بورديو | 2 | | 6 | بلومر | 2 | | 7 | مقترحة | 2 | | 8 | anchor | 2 | | 9 | بعصبة | 2 | | 10 | ماڭي | 2 | ### Zipf's Law Analysis | Metric | Value | |--------|-------| | Zipf Coefficient | 1.0213 | | R² (Goodness of Fit) | 0.998918 | | Adherence Quality | **excellent** | ### Coverage Analysis | Top N Words | Coverage | |-------------|----------| | Top 100 | 38.6% | | Top 1,000 | 62.9% | | Top 5,000 | 77.8% | | Top 10,000 | 84.2% | ### Key Findings - **Zipf Compliance:** R²=0.9989 indicates excellent adherence to Zipf's law - **High Frequency Dominance:** Top 100 words cover 38.6% of corpus - **Long Tail:** 68,779 words needed for remaining 15.8% coverage --- ## 5. Word Embeddings Evaluation ![Embedding Isotropy](visualizations/embedding_isotropy.png) ![Similarity Matrix](visualizations/embedding_similarity.png) ![t-SNE Words](visualizations/tsne_words.png) ![t-SNE Sentences](visualizations/tsne_sentences.png) ### 5.1 Cross-Lingual Alignment ![Alignment Quality](visualizations/embedding_alignment_quality.png) ![Multilingual t-SNE](visualizations/embedding_tsne_multilingual.png) ### 5.2 Model Comparison | Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 | |-------|-----------|----------|------------------|---------------|----------------| | **mono_32d** | 32 | 0.8284 🏆 | 0.3330 | N/A | N/A | | **mono_64d** | 64 | 0.8181 | 0.2588 | N/A | N/A | | **mono_128d** | 128 | 0.7036 | 0.2093 | N/A | N/A | | **aligned_32d** | 32 | 0.8284 | 0.3345 | 0.0180 | 0.1360 | | **aligned_64d** | 64 | 0.8181 | 0.2550 | 0.0380 | 0.1760 | | **aligned_128d** | 128 | 0.7036 | 0.2072 | 0.0620 | 0.2760 | ### Key Findings - **Best Isotropy:** mono_32d with 0.8284 (more uniform distribution) - **Semantic Density:** Average pairwise similarity of 0.2663. Lower values indicate better semantic separation. - **Alignment Quality:** Aligned models achieve up to 6.2% R@1 in cross-lingual retrieval. - **Recommendation:** 128d aligned for best cross-lingual performance --- ## 6. Morphological Analysis (Experimental) This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data. ### 6.1 Productivity & Complexity | Metric | Value | Interpretation | Recommendation | |--------|-------|----------------|----------------| | Productivity Index | **5.000** | High morphological productivity | Reliable analysis | | Idiomaticity Gap | **1.114** | High formulaic/idiomatic content | - | ### 6.2 Affix Inventory (Productive Units) These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts. #### Productive Prefixes | Prefix | Examples | |--------|----------| | `-ال` | الأمني, اللحظة, الفيرمات | | `-لم` | لمتعصبين, لمحافض, لمونضامة | | `-كا` | كاتدير, كايتحلو, كايقممو | #### Productive Suffixes | Suffix | Examples | |--------|----------| | `-ة` | سميّة, رقصة, اللحظة | | `-ات` | سطراتيجيات, الفيرمات, لحتيفالات | | `-ية` | الشرقية, اللاجنسية, ولوسطانية | | `-ين` | لمتعصبين, ثنين, لمالحين | ### 6.3 Bound Stems (Lexical Roots) Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid. | Stem | Cohesion | Substitutability | Examples | |------|----------|------------------|----------| | `انية` | 1.80x | 68 contexts | غانية, ثانية, سانية | | `اللو` | 1.74x | 61 contexts | اللوه, اللور, اللول | | `الات` | 1.71x | 65 contexts | تالات, حالات, صالات | | `جماع` | 1.90x | 38 contexts | جماعي, تجماع, إجماع | | `النا` | 1.63x | 63 contexts | الناي, النار, الناس | | `لمغر` | 1.92x | 30 contexts | لمغرب, لمغربب, للمغرب | | `إحصا` | 2.13x | 17 contexts | إحصاء, لإحصا, إحصائي | | `مغري` | 2.08x | 18 contexts | مغريب, مغرية, مغريبي | | `حصاء` | 2.24x | 14 contexts | إحصاء, لإحصاء, ليحصاء | | `دهوم` | 2.14x | 16 contexts | ضدهوم, يردهوم, زادهوم | | `قليم` | 2.06x | 17 contexts | فقليم, اقليم, إقليم | | `لجوا` | 1.77x | 26 contexts | لجواب, لجواد, الجوا | ### 6.4 Affix Compatibility (Co-occurrence) This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology. | Prefix | Suffix | Frequency | Examples | |--------|--------|-----------|----------| | `-ال` | `-ة` | 280 words | الراكوبة, العمدة | | `-ال` | `-ات` | 163 words | الشلالات, العبرات | | `-ال` | `-ية` | 152 words | الزراعية, الطباشيرية | | `-ال` | `-ين` | 76 words | الموحدين, الاثنين | | `-لم` | `-ة` | 66 words | لمملكة, لمُحمدية | | `-لم` | `-ين` | 45 words | لموناضيلين, لمعتقلين | | `-لم` | `-ات` | 25 words | لمونضّامات, لممرات | | `-لم` | `-ية` | 21 words | لمُحمدية, لمراكشية | | `-كا` | `-ين` | 2 words | كايسين, كاتبين | ### 6.5 Recursive Morpheme Segmentation Using **Recursive Hierarchical Substitutability**, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., `prefix-prefix-root-suffix`). | Word | Suggested Split | Confidence | Stem | |------|-----------------|------------|------| | التوجيهات | **`ال-توجيه-ات`** | 6.0 | `توجيه` | | الصومالية | **`ال-صومال-ية`** | 6.0 | `صومال` | | الپاكستانية | **`ال-پاكستان-ية`** | 6.0 | `پاكستان` | | الدوّازات | **`ال-دوّاز-ات`** | 6.0 | `دوّاز` | | الصالونات | **`ال-صالون-ات`** | 6.0 | `صالون` | | التعبيرية | **`ال-تعبير-ية`** | 6.0 | `تعبير` | | الانقلابية | **`ال-انقلاب-ية`** | 6.0 | `انقلاب` | | لمنقارضين | **`لم-نقارض-ين`** | 6.0 | `نقارض` | | التقليديين | **`ال-تقليدي-ين`** | 6.0 | `تقليدي` | | لمنتاشرين | **`لم-نتاشر-ين`** | 6.0 | `نتاشر` | | الماكينات | **`ال-ماكين-ات`** | 6.0 | `ماكين` | | البرونزية | **`ال-برونز-ية`** | 6.0 | `برونز` | | التكوينية | **`ال-تكوين-ية`** | 6.0 | `تكوين` | | التعليمية | **`ال-تعليم-ية`** | 6.0 | `تعليم` | | التلفزيونية | **`ال-تلفزيون-ية`** | 6.0 | `تلفزيون` | ### 6.6 Linguistic Interpretation > **Automated Insight:** The language Moroccan Arabic shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding. > **Note on Idiomaticity:** The high Idiomaticity Gap suggests a large number of frequent multi-word expressions or formulaic sequences that are statistically distinct from their component parts. --- ## 7. Summary & Recommendations ![Performance Dashboard](visualizations/performance_dashboard.png) ### Production Recommendations | Component | Recommended | Rationale | |-----------|-------------|-----------| | Tokenizer | **64k BPE** | Best compression (4.17x) | | N-gram | **2-gram** | Lowest perplexity (424) | | Markov | **Context-4** | Highest predictability (97.9%) | | Embeddings | **100d** | Balanced semantic capture and isotropy | --- ## Appendix: Metrics Glossary & Interpretation Guide This section provides definitions, intuitions, and guidance for interpreting the metrics used throughout this report. ### Tokenizer Metrics **Compression Ratio** > *Definition:* The ratio of characters to tokens (chars/token). Measures how efficiently the tokenizer represents text. > > *Intuition:* Higher compression means fewer tokens needed to represent the same text, reducing sequence lengths for downstream models. A 3x compression means ~3 characters per token on average. > > *What to seek:* Higher is generally better for efficiency, but extremely high compression may indicate overly aggressive merging that loses morphological information. **Average Token Length (Fertility)** > *Definition:* Mean number of characters per token produced by the tokenizer. > > *Intuition:* Reflects the granularity of tokenization. Longer tokens capture more context but may struggle with rare words; shorter tokens are more flexible but increase sequence length. > > *What to seek:* Balance between 2-5 characters for most languages. Arabic/morphologically-rich languages may benefit from slightly longer tokens. **Unknown Token Rate (OOV Rate)** > *Definition:* Percentage of tokens that map to the unknown/UNK token, indicating words the tokenizer cannot represent. > > *Intuition:* Lower OOV means better vocabulary coverage. High OOV indicates the tokenizer encounters many unseen character sequences. > > *What to seek:* Below 1% is excellent; below 5% is acceptable. BPE tokenizers typically achieve very low OOV due to subword fallback. ### N-gram Model Metrics **Perplexity** > *Definition:* Measures how "surprised" the model is by test data. Mathematically: 2^(cross-entropy). Lower values indicate better prediction. > > *Intuition:* If perplexity is 100, the model is as uncertain as if choosing uniformly among 100 options at each step. A perplexity of 10 means effectively choosing among 10 equally likely options. > > *What to seek:* Lower is better. Perplexity decreases with larger n-grams (more context). Values vary widely by language and corpus size. **Entropy** > *Definition:* Average information content (in bits) needed to encode the next token given the context. Related to perplexity: perplexity = 2^entropy. > > *Intuition:* High entropy means high uncertainty/randomness; low entropy means predictable patterns. Natural language typically has entropy between 1-4 bits per character. > > *What to seek:* Lower entropy indicates more predictable text patterns. Entropy should decrease as n-gram size increases. **Coverage (Top-K)** > *Definition:* Percentage of corpus occurrences explained by the top K most frequent n-grams. > > *Intuition:* High coverage with few patterns indicates repetitive/formulaic text; low coverage suggests diverse vocabulary usage. > > *What to seek:* Depends on use case. For language modeling, moderate coverage (40-60% with top-1000) is typical for natural text. ### Markov Chain Metrics **Average Entropy** > *Definition:* Mean entropy across all contexts, measuring average uncertainty in next-word prediction. > > *Intuition:* Lower entropy means the model is more confident about what comes next. Context-1 has high entropy (many possible next words); Context-4 has low entropy (few likely continuations). > > *What to seek:* Decreasing entropy with larger context sizes. Very low entropy (<0.1) indicates highly deterministic transitions. **Branching Factor** > *Definition:* Average number of unique next tokens observed for each context. > > *Intuition:* High branching = many possible continuations (flexible but uncertain); low branching = few options (predictable but potentially repetitive). > > *What to seek:* Branching factor should decrease with context size. Values near 1.0 indicate nearly deterministic chains. **Predictability** > *Definition:* Derived metric: (1 - normalized_entropy) × 100%. Indicates how deterministic the model's predictions are. > > *Intuition:* 100% predictability means the next word is always certain; 0% means completely random. Real text falls between these extremes. > > *What to seek:* Higher predictability for text generation quality, but too high (>98%) may produce repetitive output. ### Vocabulary & Zipf's Law Metrics **Zipf's Coefficient** > *Definition:* The slope of the log-log plot of word frequency vs. rank. Zipf's law predicts this should be approximately -1. > > *Intuition:* A coefficient near -1 indicates the corpus follows natural language patterns where a few words are very common and most words are rare. > > *What to seek:* Values between -0.8 and -1.2 indicate healthy natural language distribution. Deviations may suggest domain-specific or artificial text. **R² (Coefficient of Determination)** > *Definition:* Measures how well the linear fit explains the frequency-rank relationship. Ranges from 0 to 1. > > *Intuition:* R² near 1.0 means the data closely follows Zipf's law; lower values indicate deviation from expected word frequency patterns. > > *What to seek:* R² > 0.95 is excellent; > 0.99 indicates near-perfect Zipf adherence typical of large natural corpora. **Vocabulary Coverage** > *Definition:* Cumulative percentage of corpus tokens accounted for by the top N words. > > *Intuition:* Shows how concentrated word usage is. If top-100 words cover 50% of text, the corpus relies heavily on common words. > > *What to seek:* Top-100 covering 30-50% is typical. Higher coverage indicates more repetitive text; lower suggests richer vocabulary. ### Word Embedding Metrics **Isotropy** > *Definition:* Measures how uniformly distributed vectors are in the embedding space. Computed as the ratio of minimum to maximum singular values. > > *Intuition:* High isotropy (near 1.0) means vectors spread evenly in all directions; low isotropy means vectors cluster in certain directions, reducing expressiveness. > > *What to seek:* Higher isotropy generally indicates better-quality embeddings. Values > 0.1 are reasonable; > 0.3 is good. Lower-dimensional embeddings tend to have higher isotropy. **Average Norm** > *Definition:* Mean magnitude (L2 norm) of word vectors in the embedding space. > > *Intuition:* Indicates the typical "length" of vectors. Consistent norms suggest stable training; high variance may indicate some words are undertrained. > > *What to seek:* Relatively consistent norms across models. The absolute value matters less than consistency (low std deviation). **Cosine Similarity** > *Definition:* Measures angular similarity between vectors, ranging from -1 (opposite) to 1 (identical direction). > > *Intuition:* Words with similar meanings should have high cosine similarity. This is the standard metric for semantic relatedness in embeddings. > > *What to seek:* Semantically related words should score > 0.5; unrelated words should be near 0. Synonyms often score > 0.7. **t-SNE Visualization** > *Definition:* t-Distributed Stochastic Neighbor Embedding - a dimensionality reduction technique that preserves local structure for visualization. > > *Intuition:* Clusters in t-SNE plots indicate groups of semantically related words. Spread indicates vocabulary diversity; tight clusters suggest semantic coherence. > > *What to seek:* Meaningful clusters (e.g., numbers together, verbs together). Avoid over-interpreting distances - t-SNE preserves local, not global, structure. ### General Interpretation Guidelines 1. **Compare within model families:** Metrics are most meaningful when comparing models of the same type (e.g., 8k vs 64k tokenizer). 2. **Consider trade-offs:** Better performance on one metric often comes at the cost of another (e.g., compression vs. OOV rate). 3. **Context matters:** Optimal values depend on downstream tasks. Text generation may prioritize different metrics than classification. 4. **Corpus influence:** All metrics are influenced by corpus characteristics. Wikipedia text differs from social media or literature. 5. **Language-specific patterns:** Morphologically rich languages (like Arabic) may show different optimal ranges than analytic languages. ### Visualizations Index | Visualization | Description | |---------------|-------------| | Tokenizer Compression | Compression ratios by vocabulary size | | Tokenizer Fertility | Average token length by vocabulary | | Tokenizer OOV | Unknown token rates | | Tokenizer Total Tokens | Total tokens by vocabulary | | N-gram Perplexity | Perplexity by n-gram size | | N-gram Entropy | Entropy by n-gram size | | N-gram Coverage | Top pattern coverage | | N-gram Unique | Unique n-gram counts | | Markov Entropy | Entropy by context size | | Markov Branching | Branching factor by context | | Markov Contexts | Unique context counts | | Zipf's Law | Frequency-rank distribution with fit | | Vocab Frequency | Word frequency distribution | | Top 20 Words | Most frequent words | | Vocab Coverage | Cumulative coverage curve | | Embedding Isotropy | Vector space uniformity | | Embedding Norms | Vector magnitude distribution | | Embedding Similarity | Word similarity heatmap | | Nearest Neighbors | Similar words for key terms | | t-SNE Words | 2D word embedding visualization | | t-SNE Sentences | 2D sentence embedding visualization | | Position Encoding | Encoding method comparison | | Model Sizes | Storage requirements | | Performance Dashboard | Comprehensive performance overview | --- ## About This Project ### Data Source Models trained on [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly) - a monthly snapshot of Wikipedia articles across 300+ languages. ### Project A project by **[Wikilangs](https://wikilangs.org)** - Open-source NLP models for every Wikipedia language. ### Maintainer [Omar Kamali](https://omarkamali.com) - [Omneity Labs](https://omneitylabs.com) ### Citation If you use these models in your research, please cite: ```bibtex @misc{wikilangs2025, author = {Kamali, Omar}, title = {Wikilangs: Open NLP Models for Wikipedia Languages}, year = {2025}, doi = {10.5281/zenodo.18073153}, publisher = {Zenodo}, url = {https://huggingface.co/wikilangs} institution = {Omneity Labs} } ``` ### License MIT License - Free for academic and commercial use. ### Links - 🌐 Website: [wikilangs.org](https://wikilangs.org) - 🤗 Models: [huggingface.co/wikilangs](https://huggingface.co/wikilangs) - 📊 Data: [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly) - 👤 Author: [Omar Kamali](https://huggingface.co/omarkamali) - 🤝 Sponsor: [Featherless AI](https://featherless.ai) --- *Generated by Wikilangs Models Pipeline* *Report Date: 2026-01-03 16:42:17*