--- language: av language_name: Avar language_family: caucasian_northeast tags: - wikilangs - nlp - tokenizer - embeddings - n-gram - markov - wikipedia - feature-extraction - sentence-similarity - tokenization - n-grams - markov-chain - text-mining - fasttext - babelvec - vocabulous - vocabulary - monolingual - family-caucasian_northeast license: mit library_name: wikilangs pipeline_tag: text-generation datasets: - omarkamali/wikipedia-monthly dataset_info: name: wikipedia-monthly description: Monthly snapshots of Wikipedia articles across 300+ languages metrics: - name: best_compression_ratio type: compression value: 4.685 - name: best_isotropy type: isotropy value: 0.8604 - name: vocabulary_size type: vocab value: 0 generated: 2026-01-03 --- # Avar - Wikilangs Models ## Comprehensive Research Report & Full Ablation Study This repository contains NLP models trained and evaluated by Wikilangs, specifically on **Avar** Wikipedia data. We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings. ## 📋 Repository Contents ### Models & Assets - Tokenizers (8k, 16k, 32k, 64k) - N-gram models (2, 3, 4, 5-gram) - Markov chains (context of 1, 2, 3, 4 and 5) - Subword N-gram and Markov chains - Embeddings in various sizes and dimensions (aligned and unaligned) - Language Vocabulary - Language Statistics ![Performance Dashboard](visualizations/performance_dashboard.png) ### Analysis and Evaluation - [1. Tokenizer Evaluation](#1-tokenizer-evaluation) - [2. N-gram Model Evaluation](#2-n-gram-model-evaluation) - [3. Markov Chain Evaluation](#3-markov-chain-evaluation) - [4. Vocabulary Analysis](#4-vocabulary-analysis) - [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation) - [6. Morphological Analysis (Experimental)](#6--morphological-analysis-experimental) - [7. Summary & Recommendations](#7-summary--recommendations) - [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide) - [Visualizations Index](#visualizations-index) --- ## 1. Tokenizer Evaluation ![Tokenizer Compression](visualizations/tokenizer_compression.png) ![Tokenizer Fertility](visualizations/tokenizer_fertility.png) ![Tokenizer OOV](visualizations/tokenizer_oov.png) ![Total Tokens](visualizations/tokenizer_total_tokens.png) ### Results | Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens | |------------|-------------|---------------|----------|--------------| | **8k** | 3.628x | 3.63 | 0.0828% | 245,293 | | **16k** | 4.030x | 4.03 | 0.0919% | 220,825 | | **32k** | 4.383x | 4.39 | 0.1000% | 203,018 | | **64k** | 4.685x 🏆 | 4.69 | 0.1069% | 189,944 | ### Tokenization Examples Below are sample sentences tokenized with each vocabulary size: **Sample 1:** `19-абилеб Октябр — грегорианияб календаралда рекъон къо (високоснияб соналъ — св...` | Vocab | Tokens | Count | |-------|--------|-------| | 8k | `▁ 1 9 - абилеб ▁октябр ▁— ▁грегорианияб ▁календаралда ▁рекъон ... (+18 more)` | 28 | | 16k | `▁ 1 9 - абилеб ▁октябр ▁— ▁грегорианияб ▁календаралда ▁рекъон ... (+18 more)` | 28 | | 32k | `▁ 1 9 - абилеб ▁октябр ▁— ▁грегорианияб ▁календаралда ▁рекъон ... (+18 more)` | 28 | | 64k | `▁ 1 9 - абилеб ▁октябр ▁— ▁грегорианияб ▁календаралда ▁рекъон ... (+18 more)` | 28 | **Sample 2:** `Пинкь яги ГьанамагӀ (латиназул мацӀалда bulla; Bullae) — гӀадамасул лага-черх. л...` | Vocab | Tokens | Count | |-------|--------|-------| | 8k | `▁п ин кь ▁яги ▁гьан ам агӏ ▁( латиназул ▁мацӏалда ... (+18 more)` | 28 | | 16k | `▁пин кь ▁яги ▁гьан амагӏ ▁( латиназул ▁мацӏалда ▁b ul ... (+15 more)` | 25 | | 32k | `▁пин кь ▁яги ▁гьан амагӏ ▁( латиназул ▁мацӏалда ▁b ul ... (+14 more)` | 24 | | 64k | `▁пинкь ▁яги ▁гьанамагӏ ▁( латиназул ▁мацӏалда ▁b ul la ; ... (+11 more)` | 21 | **Sample 3:** `22-абилеб Октябр — грегорианияб календаралда рекъон къо (високоснияб соналъ — св...` | Vocab | Tokens | Count | |-------|--------|-------| | 8k | `▁ 2 2 - абилеб ▁октябр ▁— ▁грегорианияб ▁календаралда ▁рекъон ... (+18 more)` | 28 | | 16k | `▁ 2 2 - абилеб ▁октябр ▁— ▁грегорианияб ▁календаралда ▁рекъон ... (+18 more)` | 28 | | 32k | `▁ 2 2 - абилеб ▁октябр ▁— ▁грегорианияб ▁календаралда ▁рекъон ... (+18 more)` | 28 | | 64k | `▁ 2 2 - абилеб ▁октябр ▁— ▁грегорианияб ▁календаралда ▁рекъон ... (+18 more)` | 28 | ### Key Findings - **Best Compression:** 64k achieves 4.685x compression - **Lowest UNK Rate:** 8k with 0.0828% unknown tokens - **Trade-off:** Larger vocabularies improve compression but increase model size - **Recommendation:** 32k vocabulary provides optimal balance for production use --- ## 2. N-gram Model Evaluation ![N-gram Perplexity](visualizations/ngram_perplexity.png) ![N-gram Unique](visualizations/ngram_unique.png) ![N-gram Coverage](visualizations/ngram_coverage.png) ### Results | N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage | |--------|---------|------------|---------|----------------|------------------|-------------------| | **2-gram** | Word | 3,089 | 11.59 | 6,523 | 23.7% | 56.2% | | **2-gram** | Subword | 424 🏆 | 8.73 | 4,120 | 58.0% | 96.7% | | **3-gram** | Word | 2,775 | 11.44 | 6,745 | 26.4% | 58.9% | | **3-gram** | Subword | 3,361 | 11.71 | 28,903 | 23.9% | 63.4% | | **4-gram** | Word | 8,260 | 13.01 | 18,126 | 17.8% | 39.8% | | **4-gram** | Subword | 15,393 | 13.91 | 119,191 | 12.7% | 37.5% | | **5-gram** | Word | 7,813 | 12.93 | 15,673 | 16.8% | 39.4% | | **5-gram** | Subword | 38,531 | 15.23 | 222,134 | 8.4% | 26.5% | ### Top 5 N-grams by Size **2-grams (Word):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `росу буго` | 710 | | 2 | `география росу` | 660 | | 3 | `мухъалъул росаби` | 578 | | 4 | `буго мухъалъул` | 530 | | 5 | `мухъалъул росу` | 523 | **3-grams (Word):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `география росу буго` | 645 | | 2 | `росу буго мухъалъул` | 523 | | 3 | `лъугьа бахъинал гьаруна` | 368 | | 4 | `бахъинал гьаруна хвана` | 358 | | 5 | `байрамал лъугьа бахъинал` | 353 | **4-grams (Word):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `география росу буго мухъалъул` | 513 | | 2 | `лъугьа бахъинал гьаруна хвана` | 358 | | 3 | `байрамал лъугьа бахъинал гьаруна` | 352 | | 4 | `къо байрамал лъугьа бахъинал` | 351 | | 5 | `бахъинал гьаруна хвана ишараби` | 349 | **5-grams (Word):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `къо байрамал лъугьа бахъинал гьаруна` | 350 | | 2 | `лъугьа бахъинал гьаруна хвана ишараби` | 349 | | 3 | `байрамал лъугьа бахъинал гьаруна хвана` | 348 | | 4 | `демография ккола моноэтникияб авар росулъун` | 305 | | 5 | `география росу буго мухъалъул марказ` | 279 | **2-grams (Subword):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `а л` | 85,368 | | 2 | `л _` | 64,955 | | 3 | `л ъ` | 53,561 | | 4 | `а _` | 52,853 | | 5 | `у л` | 50,828 | **3-grams (Subword):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `у л _` | 34,266 | | 2 | `л ъ у` | 31,682 | | 3 | `ъ у л` | 26,429 | | 4 | `а л ъ` | 24,583 | | 5 | `_ г ь` | 22,014 | **4-grams (Subword):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `л ъ у л` | 25,035 | | 2 | `ъ у л _` | 22,571 | | 3 | `а л ъ у` | 16,980 | | 4 | `а л д а` | 11,684 | | 5 | `_ г ь е` | 10,931 | **5-grams (Subword):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `л ъ у л _` | 22,224 | | 2 | `а л ъ у л` | 15,591 | | 3 | `я л ъ у л` | 7,776 | | 4 | `а л д а _` | 7,381 | | 5 | `_ б у г о` | 5,843 | ### Key Findings - **Best Perplexity:** 2-gram (subword) with 424 - **Entropy Trend:** Decreases with larger n-grams (more predictable) - **Coverage:** Top-1000 patterns cover ~26% of corpus - **Recommendation:** 4-gram or 5-gram for best predictive performance --- ## 3. Markov Chain Evaluation ![Markov Entropy](visualizations/markov_entropy.png) ![Markov Contexts](visualizations/markov_contexts.png) ![Markov Branching](visualizations/markov_branching.png) ### Results | Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability | |---------|---------|-------------|------------|------------------|-----------------|----------------| | **1** | Word | 0.6594 | 1.579 | 3.57 | 90,954 | 34.1% | | **1** | Subword | 1.1677 | 2.247 | 9.26 | 1,148 | 0.0% | | **2** | Word | 0.1264 | 1.092 | 1.22 | 323,475 | 87.4% | | **2** | Subword | 0.9998 | 2.000 | 5.69 | 10,625 | 0.0% | | **3** | Word | 0.0288 | 1.020 | 1.04 | 392,122 | 97.1% | | **3** | Subword | 0.7938 | 1.734 | 3.67 | 60,414 | 20.6% | | **4** | Word | 0.0121 🏆 | 1.008 | 1.02 | 406,770 | 98.8% | | **4** | Subword | 0.5607 | 1.475 | 2.33 | 221,366 | 43.9% | ### Generated Text Samples (Word-based) Below are text samples generated from each word-based Markov chain model: **Context Size 1:** 1. `ва испан фонология цогидал туркиял мацӏаз чанго шагьрияб гӏумру яшавалда хурхарал феодализм социум с...` 2. `буго республикалъул рутул мухъ буго шартіияб рикікіеналдалъун гьабураб бищун це б грузинский алфавит...` 3. `бугеб муниципалияб гӏуцӏи гъорлӏе рачуна чӏужуялда хурхарал цогидал киналго хвана ишараби мугъчӏваял...` **Context Size 2:** 1. `росу буго мухъалъул марказ лъаратӏаса 22 км лъ жанубияб бакъбаккудехун ралъдал гьурматӏаса 968 метра...` 2. `география росу буго мухъалъул марказ лъаратӏаса 0 5 41 9 12 гуржиял 617 401 253 10 0` 3. `буго мухъалъул центер уркарахъалдаса бакътӏерхьудехун демография референсал мухъалъул росаби мухъ ро...` **Context Size 3:** 1. `география росу буго мухъалъул марказ лъаратӏаса 22 км алъ демография ккола моноэтникияб авар росулъу...` 2. `росу буго мухъалъул центер уркарахъалдаса жанубияб бакътӏерхьудехун ралъдал гьурматӏаса борхалъи буг...` 3. `лъугьа бахъинал гьаруна хвана ишараби мугъчӏваял гь балагье трактат адабият тайпаби изданиял` **Context Size 4:** 1. `география росу буго мухъалъул марказ лъаратӏаса 5 км алъ шималалиябгин бакъбаккудехун аваргӏоралъул ...` 2. `байрамал лъугьа бахъинал гьаруна хвана ишараби мугъчӏваял гь балагье` 3. `къо байрамал лъугьа бахъинал гьаруна хвана ишараби мугъчӏваял гь балагье` ### Generated Text Samples (Subword-based) Below are text samples generated from each subword-based Markov chain model: **Context Size 1:** 1. `_ссва_—_1_вадаре` 2. `ан._ия_в._тӏавар` 3. `лдацӏиялъухъуск;` **Context Size 2:** 1. `алдастияб_6_киябр` 2. `л_джибацӏаниякеап` 3. `лъул_бакъго_рахъе` **Context Size 3:** 1. `ул_намен_гьеб_раса` 2. `лъулго_справенция)` 3. `ъул_яги_перации_«г` **Context Size 4:** 1. `лъул_ассив_гьел_ккв` 2. `ъул_ківар_география` 3. `алъулалде._борхалъу` ### Key Findings - **Best Predictability:** Context-4 (word) with 98.8% predictability - **Branching Factor:** Decreases with context size (more deterministic) - **Memory Trade-off:** Larger contexts require more storage (221,366 contexts) - **Recommendation:** Context-3 or Context-4 for text generation --- ## 4. Vocabulary Analysis ![Zipf's Law](visualizations/zipf_law.png) ![Top Words](visualizations/top20_words.png) ![Coverage Curve](visualizations/vocab_coverage.png) ### Statistics | Metric | Value | |--------|-------| | Vocabulary Size | 34,315 | | Total Tokens | 413,611 | | Mean Frequency | 12.05 | | Median Frequency | 3 | | Frequency Std Dev | 77.17 | ### Most Common Words | Rank | Word | Frequency | |------|------|-----------| | 1 | ва | 7,138 | | 2 | буго | 5,684 | | 3 | бугеб | 2,903 | | 4 | ккола | 2,872 | | 5 | росу | 2,838 | | 6 | мухъалъул | 2,671 | | 7 | гьеб | 2,178 | | 8 | росдал | 1,902 | | 9 | the | 1,812 | | 10 | цо | 1,800 | ### Least Common Words (from vocabulary) | Rank | Word | Frequency | |------|------|-----------| | 1 | уркутамахьи | 2 | | 2 | континуумалде | 2 | | 3 | къулецӏмаги | 2 | | 4 | гьаркӏасуниб | 2 | | 5 | махӏарги | 2 | | 6 | пилибхиталъул | 2 | | 7 | заповедникалда | 2 | | 8 | пилибхит | 2 | | 9 | лъалъадул | 2 | | 10 | хӏанчӏи | 2 | ### Zipf's Law Analysis | Metric | Value | |--------|-------| | Zipf Coefficient | 0.9572 | | R² (Goodness of Fit) | 0.993745 | | Adherence Quality | **excellent** | ### Coverage Analysis | Top N Words | Coverage | |-------------|----------| | Top 100 | 23.1% | | Top 1,000 | 51.6% | | Top 5,000 | 74.2% | | Top 10,000 | 83.6% | ### Key Findings - **Zipf Compliance:** R²=0.9937 indicates excellent adherence to Zipf's law - **High Frequency Dominance:** Top 100 words cover 23.1% of corpus - **Long Tail:** 24,315 words needed for remaining 16.4% coverage --- ## 5. Word Embeddings Evaluation ![Embedding Isotropy](visualizations/embedding_isotropy.png) ![Similarity Matrix](visualizations/embedding_similarity.png) ![t-SNE Words](visualizations/tsne_words.png) ![t-SNE Sentences](visualizations/tsne_sentences.png) ### 5.1 Cross-Lingual Alignment ![Alignment Quality](visualizations/embedding_alignment_quality.png) ![Multilingual t-SNE](visualizations/embedding_tsne_multilingual.png) ### 5.2 Model Comparison | Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 | |-------|-----------|----------|------------------|---------------|----------------| | **mono_32d** | 32 | 0.8604 | 0.3207 | N/A | N/A | | **mono_64d** | 64 | 0.7367 | 0.2711 | N/A | N/A | | **mono_128d** | 128 | 0.2721 | 0.2530 | N/A | N/A | | **aligned_32d** | 32 | 0.8604 🏆 | 0.3335 | 0.0200 | 0.1400 | | **aligned_64d** | 64 | 0.7367 | 0.2791 | 0.0280 | 0.1780 | | **aligned_128d** | 128 | 0.2721 | 0.2649 | 0.0820 | 0.2540 | ### Key Findings - **Best Isotropy:** aligned_32d with 0.8604 (more uniform distribution) - **Semantic Density:** Average pairwise similarity of 0.2870. Lower values indicate better semantic separation. - **Alignment Quality:** Aligned models achieve up to 8.2% R@1 in cross-lingual retrieval. - **Recommendation:** 128d aligned for best cross-lingual performance --- ## 6. Morphological Analysis (Experimental) This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data. ### 6.1 Productivity & Complexity | Metric | Value | Interpretation | Recommendation | |--------|-------|----------------|----------------| | Productivity Index | **5.000** | High morphological productivity | Reliable analysis | | Idiomaticity Gap | **0.488** | High formulaic/idiomatic content | - | ### 6.2 Affix Inventory (Productive Units) These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts. #### Productive Prefixes | Prefix | Examples | |--------|----------| | `-ба` | батӏалъуда, батӏа, бахъинаро | #### Productive Suffixes | Suffix | Examples | |--------|----------| | `-л` | субтропикиял, кумикал, риччалел | | `-а` | лъараца, тіалъиялда, анатолиялдаса | | `-ул` | агьлулъиялъул, кипралъул, урарталъул | | `-ъул` | агьлулъиялъул, кипралъул, урарталъул | | `-лъул` | агьлулъиялъул, кипралъул, урарталъул | | `-да` | тіалъиялда, текстазда, батӏалъуда | | `-ал` | кумикал, туарегал, я́сал | | `-ги` | тахшагьарлъунги, яги, фортисги | ### 6.3 Bound Stems (Lexical Roots) Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid. | Stem | Cohesion | Substitutability | Examples | |------|----------|------------------|----------| | `алъу` | 1.88x | 101 contexts | алъул, далъун, малъун | | `ялъу` | 2.05x | 41 contexts | ялъул, ялъуни, аялъул | | `ьабу` | 2.11x | 29 contexts | гьабу, гьабун, кьабун | | `агьа` | 1.75x | 59 contexts | багьа, дагьа, шагьав | | `иялъ` | 1.85x | 36 contexts | химиялъ, биялъул, армиялъ | | `анал` | 1.48x | 70 contexts | канал, ханал, данал | | `иялд` | 1.69x | 36 contexts | сиялда, азиялде, азиялда | | `огра` | 1.87x | 22 contexts | географ, фотограф, этнограф | | `азда` | 1.67x | 31 contexts | гьазда, ишазда, раздан | | `налд` | 1.64x | 31 contexts | иналда, доналд, иналде | | `гъор` | 2.15x | 13 contexts | гъорлі, гъорлъ, гъорлӏ | | `лдас` | 2.01x | 15 contexts | лдаса, ялдаса, алдаса | ### 6.4 Affix Compatibility (Co-occurrence) This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology. | Prefix | Suffix | Frequency | Examples | |--------|--------|-----------|----------| | `-ба` | `-л` | 36 words | багьадурасул, бакътӏерхьул | | `-ба` | `-а` | 34 words | багъа, батӏалъана | | `-ба` | `-ул` | 17 words | багьадурасул, бакътӏерхьул | | `-ба` | `-ун` | 16 words | бахчун, бахъбаккудехун | | `-ба` | `-да` | 16 words | бащалъуда, балазда | | `-ба` | `-ал` | 11 words | бахӏсал, бакъбаккулал | | `-ба` | `-ъул` | 8 words | бавариялъул, баталйоналъул | | `-ба` | `-лда` | 8 words | бахъиялда, бахшалда | | `-ба` | `-ги` | 6 words | бакӏалъулги, бахӏарзабиги | | `-ба` | `-лъул` | 6 words | бавариялъул, баталйоналъул | ### 6.5 Recursive Morpheme Segmentation Using **Recursive Hierarchical Substitutability**, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., `prefix-prefix-root-suffix`). | Word | Suggested Split | Confidence | Stem | |------|-----------------|------------|------| | къуръаналги | **`къуръан-ал-ги`** | 6.0 | `къуръан` | | ханасдаги | **`ханас-да-ги`** | 6.0 | `ханас` | | элементалги | **`элемент-ал-ги`** | 6.0 | `элемент` | | гьелъулги | **`гьел-ъул-ги`** | 6.0 | `гьел` | | гьармониялда | **`гьармония-лда`** | 4.5 | `гьармония` | | гьолокьги | **`гьолокь-ги`** | 4.5 | `гьолокь` | | хьондасебги | **`хьондасеб-ги`** | 4.5 | `хьондасеб` | | районазул | **`районаз-ул`** | 4.5 | `районаз` | | аскаразда | **`аскараз-да`** | 4.5 | `аскараз` | | экономикаги | **`экономика-ги`** | 4.5 | `экономика` | | процессазул | **`процессаз-ул`** | 4.5 | `процессаз` | | насрудиницаги | **`насрудиница-ги`** | 4.5 | `насрудиница` | | бугиланги | **`бугилан-ги`** | 4.5 | `бугилан` | | рагьаразул | **`рагьараз-ул`** | 4.5 | `рагьараз` | | минскалъул | **`минска-лъул`** | 4.5 | `минска` | ### 6.6 Linguistic Interpretation > **Automated Insight:** The language Avar shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding. > **Note on Idiomaticity:** The high Idiomaticity Gap suggests a large number of frequent multi-word expressions or formulaic sequences that are statistically distinct from their component parts. --- ## 7. Summary & Recommendations ![Performance Dashboard](visualizations/performance_dashboard.png) ### Production Recommendations | Component | Recommended | Rationale | |-----------|-------------|-----------| | Tokenizer | **64k BPE** | Best compression (4.69x) | | N-gram | **2-gram** | Lowest perplexity (424) | | Markov | **Context-4** | Highest predictability (98.8%) | | Embeddings | **100d** | Balanced semantic capture and isotropy | --- ## Appendix: Metrics Glossary & Interpretation Guide This section provides definitions, intuitions, and guidance for interpreting the metrics used throughout this report. ### Tokenizer Metrics **Compression Ratio** > *Definition:* The ratio of characters to tokens (chars/token). Measures how efficiently the tokenizer represents text. > > *Intuition:* Higher compression means fewer tokens needed to represent the same text, reducing sequence lengths for downstream models. A 3x compression means ~3 characters per token on average. > > *What to seek:* Higher is generally better for efficiency, but extremely high compression may indicate overly aggressive merging that loses morphological information. **Average Token Length (Fertility)** > *Definition:* Mean number of characters per token produced by the tokenizer. > > *Intuition:* Reflects the granularity of tokenization. Longer tokens capture more context but may struggle with rare words; shorter tokens are more flexible but increase sequence length. > > *What to seek:* Balance between 2-5 characters for most languages. Arabic/morphologically-rich languages may benefit from slightly longer tokens. **Unknown Token Rate (OOV Rate)** > *Definition:* Percentage of tokens that map to the unknown/UNK token, indicating words the tokenizer cannot represent. > > *Intuition:* Lower OOV means better vocabulary coverage. High OOV indicates the tokenizer encounters many unseen character sequences. > > *What to seek:* Below 1% is excellent; below 5% is acceptable. BPE tokenizers typically achieve very low OOV due to subword fallback. ### N-gram Model Metrics **Perplexity** > *Definition:* Measures how "surprised" the model is by test data. Mathematically: 2^(cross-entropy). Lower values indicate better prediction. > > *Intuition:* If perplexity is 100, the model is as uncertain as if choosing uniformly among 100 options at each step. A perplexity of 10 means effectively choosing among 10 equally likely options. > > *What to seek:* Lower is better. Perplexity decreases with larger n-grams (more context). Values vary widely by language and corpus size. **Entropy** > *Definition:* Average information content (in bits) needed to encode the next token given the context. Related to perplexity: perplexity = 2^entropy. > > *Intuition:* High entropy means high uncertainty/randomness; low entropy means predictable patterns. Natural language typically has entropy between 1-4 bits per character. > > *What to seek:* Lower entropy indicates more predictable text patterns. Entropy should decrease as n-gram size increases. **Coverage (Top-K)** > *Definition:* Percentage of corpus occurrences explained by the top K most frequent n-grams. > > *Intuition:* High coverage with few patterns indicates repetitive/formulaic text; low coverage suggests diverse vocabulary usage. > > *What to seek:* Depends on use case. For language modeling, moderate coverage (40-60% with top-1000) is typical for natural text. ### Markov Chain Metrics **Average Entropy** > *Definition:* Mean entropy across all contexts, measuring average uncertainty in next-word prediction. > > *Intuition:* Lower entropy means the model is more confident about what comes next. Context-1 has high entropy (many possible next words); Context-4 has low entropy (few likely continuations). > > *What to seek:* Decreasing entropy with larger context sizes. Very low entropy (<0.1) indicates highly deterministic transitions. **Branching Factor** > *Definition:* Average number of unique next tokens observed for each context. > > *Intuition:* High branching = many possible continuations (flexible but uncertain); low branching = few options (predictable but potentially repetitive). > > *What to seek:* Branching factor should decrease with context size. Values near 1.0 indicate nearly deterministic chains. **Predictability** > *Definition:* Derived metric: (1 - normalized_entropy) × 100%. Indicates how deterministic the model's predictions are. > > *Intuition:* 100% predictability means the next word is always certain; 0% means completely random. Real text falls between these extremes. > > *What to seek:* Higher predictability for text generation quality, but too high (>98%) may produce repetitive output. ### Vocabulary & Zipf's Law Metrics **Zipf's Coefficient** > *Definition:* The slope of the log-log plot of word frequency vs. rank. Zipf's law predicts this should be approximately -1. > > *Intuition:* A coefficient near -1 indicates the corpus follows natural language patterns where a few words are very common and most words are rare. > > *What to seek:* Values between -0.8 and -1.2 indicate healthy natural language distribution. Deviations may suggest domain-specific or artificial text. **R² (Coefficient of Determination)** > *Definition:* Measures how well the linear fit explains the frequency-rank relationship. Ranges from 0 to 1. > > *Intuition:* R² near 1.0 means the data closely follows Zipf's law; lower values indicate deviation from expected word frequency patterns. > > *What to seek:* R² > 0.95 is excellent; > 0.99 indicates near-perfect Zipf adherence typical of large natural corpora. **Vocabulary Coverage** > *Definition:* Cumulative percentage of corpus tokens accounted for by the top N words. > > *Intuition:* Shows how concentrated word usage is. If top-100 words cover 50% of text, the corpus relies heavily on common words. > > *What to seek:* Top-100 covering 30-50% is typical. Higher coverage indicates more repetitive text; lower suggests richer vocabulary. ### Word Embedding Metrics **Isotropy** > *Definition:* Measures how uniformly distributed vectors are in the embedding space. Computed as the ratio of minimum to maximum singular values. > > *Intuition:* High isotropy (near 1.0) means vectors spread evenly in all directions; low isotropy means vectors cluster in certain directions, reducing expressiveness. > > *What to seek:* Higher isotropy generally indicates better-quality embeddings. Values > 0.1 are reasonable; > 0.3 is good. Lower-dimensional embeddings tend to have higher isotropy. **Average Norm** > *Definition:* Mean magnitude (L2 norm) of word vectors in the embedding space. > > *Intuition:* Indicates the typical "length" of vectors. Consistent norms suggest stable training; high variance may indicate some words are undertrained. > > *What to seek:* Relatively consistent norms across models. The absolute value matters less than consistency (low std deviation). **Cosine Similarity** > *Definition:* Measures angular similarity between vectors, ranging from -1 (opposite) to 1 (identical direction). > > *Intuition:* Words with similar meanings should have high cosine similarity. This is the standard metric for semantic relatedness in embeddings. > > *What to seek:* Semantically related words should score > 0.5; unrelated words should be near 0. Synonyms often score > 0.7. **t-SNE Visualization** > *Definition:* t-Distributed Stochastic Neighbor Embedding - a dimensionality reduction technique that preserves local structure for visualization. > > *Intuition:* Clusters in t-SNE plots indicate groups of semantically related words. Spread indicates vocabulary diversity; tight clusters suggest semantic coherence. > > *What to seek:* Meaningful clusters (e.g., numbers together, verbs together). Avoid over-interpreting distances - t-SNE preserves local, not global, structure. ### General Interpretation Guidelines 1. **Compare within model families:** Metrics are most meaningful when comparing models of the same type (e.g., 8k vs 64k tokenizer). 2. **Consider trade-offs:** Better performance on one metric often comes at the cost of another (e.g., compression vs. OOV rate). 3. **Context matters:** Optimal values depend on downstream tasks. Text generation may prioritize different metrics than classification. 4. **Corpus influence:** All metrics are influenced by corpus characteristics. Wikipedia text differs from social media or literature. 5. **Language-specific patterns:** Morphologically rich languages (like Arabic) may show different optimal ranges than analytic languages. ### Visualizations Index | Visualization | Description | |---------------|-------------| | Tokenizer Compression | Compression ratios by vocabulary size | | Tokenizer Fertility | Average token length by vocabulary | | Tokenizer OOV | Unknown token rates | | Tokenizer Total Tokens | Total tokens by vocabulary | | N-gram Perplexity | Perplexity by n-gram size | | N-gram Entropy | Entropy by n-gram size | | N-gram Coverage | Top pattern coverage | | N-gram Unique | Unique n-gram counts | | Markov Entropy | Entropy by context size | | Markov Branching | Branching factor by context | | Markov Contexts | Unique context counts | | Zipf's Law | Frequency-rank distribution with fit | | Vocab Frequency | Word frequency distribution | | Top 20 Words | Most frequent words | | Vocab Coverage | Cumulative coverage curve | | Embedding Isotropy | Vector space uniformity | | Embedding Norms | Vector magnitude distribution | | Embedding Similarity | Word similarity heatmap | | Nearest Neighbors | Similar words for key terms | | t-SNE Words | 2D word embedding visualization | | t-SNE Sentences | 2D sentence embedding visualization | | Position Encoding | Encoding method comparison | | Model Sizes | Storage requirements | | Performance Dashboard | Comprehensive performance overview | --- ## About This Project ### Data Source Models trained on [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly) - a monthly snapshot of Wikipedia articles across 300+ languages. ### Project A project by **[Wikilangs](https://wikilangs.org)** - Open-source NLP models for every Wikipedia language. ### Maintainer [Omar Kamali](https://omarkamali.com) - [Omneity Labs](https://omneitylabs.com) ### Citation If you use these models in your research, please cite: ```bibtex @misc{wikilangs2025, author = {Kamali, Omar}, title = {Wikilangs: Open NLP Models for Wikipedia Languages}, year = {2025}, doi = {10.5281/zenodo.18073153}, publisher = {Zenodo}, url = {https://huggingface.co/wikilangs} institution = {Omneity Labs} } ``` ### License MIT License - Free for academic and commercial use. ### Links - 🌐 Website: [wikilangs.org](https://wikilangs.org) - 🤗 Models: [huggingface.co/wikilangs](https://huggingface.co/wikilangs) - 📊 Data: [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly) - 👤 Author: [Omar Kamali](https://huggingface.co/omarkamali) - 🤝 Sponsor: [Featherless AI](https://featherless.ai) --- *Generated by Wikilangs Models Pipeline* *Report Date: 2026-01-03 18:29:30*