omarkamali commited on
Commit
90f3b6c
·
verified ·
1 Parent(s): 20e4a73

Upload all models and assets for avk (latest)

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +1 -0
  2. README.md +188 -142
  3. models/embeddings/aligned/avk_128d.bin +3 -0
  4. models/embeddings/aligned/avk_128d.meta.json +1 -0
  5. models/embeddings/aligned/avk_128d.projection.npy +3 -0
  6. models/embeddings/aligned/avk_128d_metadata.json +8 -0
  7. models/embeddings/aligned/avk_32d.bin +3 -0
  8. models/embeddings/aligned/avk_32d.meta.json +1 -0
  9. models/embeddings/aligned/avk_32d.projection.npy +3 -0
  10. models/embeddings/aligned/avk_32d_metadata.json +8 -0
  11. models/embeddings/aligned/avk_64d.bin +3 -0
  12. models/embeddings/aligned/avk_64d.meta.json +1 -0
  13. models/embeddings/aligned/avk_64d.projection.npy +3 -0
  14. models/embeddings/aligned/avk_64d_metadata.json +8 -0
  15. models/embeddings/monolingual/avk_128d.bin +2 -2
  16. models/embeddings/monolingual/avk_128d_metadata.json +1 -1
  17. models/embeddings/monolingual/avk_32d.bin +2 -2
  18. models/embeddings/monolingual/avk_32d_metadata.json +1 -1
  19. models/embeddings/monolingual/avk_64d.bin +2 -2
  20. models/embeddings/monolingual/avk_64d_metadata.json +1 -1
  21. models/subword_markov/avk_markov_ctx1_subword.parquet +2 -2
  22. models/subword_markov/avk_markov_ctx1_subword_metadata.json +1 -1
  23. models/subword_markov/avk_markov_ctx2_subword.parquet +2 -2
  24. models/subword_markov/avk_markov_ctx2_subword_metadata.json +2 -2
  25. models/subword_markov/avk_markov_ctx3_subword.parquet +2 -2
  26. models/subword_markov/avk_markov_ctx3_subword_metadata.json +2 -2
  27. models/subword_markov/avk_markov_ctx4_subword.parquet +2 -2
  28. models/subword_markov/avk_markov_ctx4_subword_metadata.json +2 -2
  29. models/subword_ngram/avk_2gram_subword.parquet +2 -2
  30. models/subword_ngram/avk_2gram_subword_metadata.json +2 -2
  31. models/subword_ngram/avk_3gram_subword.parquet +2 -2
  32. models/subword_ngram/avk_3gram_subword_metadata.json +2 -2
  33. models/subword_ngram/avk_4gram_subword.parquet +2 -2
  34. models/subword_ngram/avk_4gram_subword_metadata.json +2 -2
  35. models/subword_ngram/avk_5gram_subword.parquet +3 -0
  36. models/subword_ngram/avk_5gram_subword_metadata.json +7 -0
  37. models/tokenizer/avk_tokenizer_16k.model +2 -2
  38. models/tokenizer/avk_tokenizer_16k.vocab +0 -0
  39. models/tokenizer/avk_tokenizer_32k.model +2 -2
  40. models/tokenizer/avk_tokenizer_32k.vocab +0 -0
  41. models/tokenizer/avk_tokenizer_64k.model +2 -2
  42. models/tokenizer/avk_tokenizer_64k.vocab +0 -0
  43. models/tokenizer/avk_tokenizer_8k.model +2 -2
  44. models/tokenizer/avk_tokenizer_8k.vocab +0 -0
  45. models/vocabulary/avk_vocabulary.parquet +2 -2
  46. models/vocabulary/avk_vocabulary_metadata.json +9 -9
  47. models/word_markov/avk_markov_ctx1_word.parquet +2 -2
  48. models/word_markov/avk_markov_ctx1_word_metadata.json +2 -2
  49. models/word_markov/avk_markov_ctx2_word.parquet +2 -2
  50. models/word_markov/avk_markov_ctx2_word_metadata.json +2 -2
.gitattributes CHANGED
@@ -39,3 +39,4 @@ visualizations/position_encoding_comparison.png filter=lfs diff=lfs merge=lfs -t
39
  visualizations/tsne_sentences.png filter=lfs diff=lfs merge=lfs -text
40
  visualizations/tsne_words.png filter=lfs diff=lfs merge=lfs -text
41
  visualizations/zipf_law.png filter=lfs diff=lfs merge=lfs -text
 
 
39
  visualizations/tsne_sentences.png filter=lfs diff=lfs merge=lfs -text
40
  visualizations/tsne_words.png filter=lfs diff=lfs merge=lfs -text
41
  visualizations/zipf_law.png filter=lfs diff=lfs merge=lfs -text
42
+ visualizations/embedding_tsne_multilingual.png filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -1,6 +1,6 @@
1
  ---
2
  language: avk
3
- language_name: AVK
4
  language_family: constructed_other
5
  tags:
6
  - wikilangs
@@ -10,11 +10,21 @@ tags:
10
  - n-gram
11
  - markov
12
  - wikipedia
 
 
 
 
 
 
 
 
 
 
13
  - monolingual
14
  - family-constructed_other
15
  license: mit
16
  library_name: wikilangs
17
- pipeline_tag: feature-extraction
18
  datasets:
19
  - omarkamali/wikipedia-monthly
20
  dataset_info:
@@ -23,20 +33,20 @@ dataset_info:
23
  metrics:
24
  - name: best_compression_ratio
25
  type: compression
26
- value: 4.690
27
  - name: best_isotropy
28
  type: isotropy
29
- value: 0.8793
30
  - name: vocabulary_size
31
  type: vocab
32
  value: 0
33
  generated: 2026-01-03
34
  ---
35
 
36
- # AVK - Wikilangs Models
37
  ## Comprehensive Research Report & Full Ablation Study
38
 
39
- This repository contains NLP models trained and evaluated by Wikilangs, specifically on **AVK** Wikipedia data.
40
  We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.
41
 
42
  ## 📋 Repository Contents
@@ -60,7 +70,7 @@ We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and
60
  - [3. Markov Chain Evaluation](#3-markov-chain-evaluation)
61
  - [4. Vocabulary Analysis](#4-vocabulary-analysis)
62
  - [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation)
63
- - [6. Morphological Analysis (Experimental)](#6-morphological-analysis)
64
  - [7. Summary & Recommendations](#7-summary--recommendations)
65
  - [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide)
66
  - [Visualizations Index](#visualizations-index)
@@ -80,23 +90,23 @@ We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and
80
 
81
  | Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
82
  |------------|-------------|---------------|----------|--------------|
83
- | **8k** | 3.687x | 3.69 | 0.2370% | 256,066 |
84
- | **16k** | 4.050x | 4.05 | 0.2604% | 233,136 |
85
- | **32k** | 4.380x | 4.38 | 0.2816% | 215,576 |
86
- | **64k** | 4.690x 🏆 | 4.69 | 0.3015% | 201,338 |
87
 
88
  ### Tokenization Examples
89
 
90
  Below are sample sentences tokenized with each vocabulary size:
91
 
92
- **Sample 1:** `Bifa Afrika Amerika Asia Europa Oceania Koblira Awalkera sanda`
93
 
94
  | Vocab | Tokens | Count |
95
  |-------|--------|-------|
96
- | 8k | `▁bifaafrikaamerikaasiaeuropaoceaniakobliraawalkera ▁sanda` | 9 |
97
- | 16k | `▁bifaafrikaamerikaasiaeuropaoceaniakobliraawalkera ▁sanda` | 9 |
98
- | 32k | `▁bifaafrikaamerikaasiaeuropaoceaniakobliraawalkera ▁sanda` | 9 |
99
- | 64k | `▁bifaafrikaamerikaasiaeuropaoceaniakobliraawalkerasanda` | 9 |
100
 
101
  **Sample 2:** `Bifa Afrika Amerika Asia Europa Oceania Koblira Awalkera sanda`
102
 
@@ -119,7 +129,7 @@ Below are sample sentences tokenized with each vocabulary size:
119
 
120
  ### Key Findings
121
 
122
- - **Best Compression:** 64k achieves 4.690x compression
123
  - **Lowest UNK Rate:** 8k with 0.2370% unknown tokens
124
  - **Trade-off:** Larger vocabularies improve compression but increase model size
125
  - **Recommendation:** 32k vocabulary provides optimal balance for production use
@@ -137,12 +147,14 @@ Below are sample sentences tokenized with each vocabulary size:
137
 
138
  | N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
139
  |--------|---------|------------|---------|----------------|------------------|-------------------|
140
- | **2-gram** | Word | 4,363 | 12.09 | 65,566 | 38.8% | 59.5% |
141
- | **2-gram** | Subword | 284 🏆 | 8.15 | 3,342 | 63.4% | 99.6% |
142
- | **3-gram** | Word | 9,089 | 13.15 | 131,822 | 34.4% | 51.4% |
143
- | **3-gram** | Subword | 1,998 | 10.96 | 24,557 | 26.3% | 74.1% |
144
- | **4-gram** | Word | 16,964 | 14.05 | 222,393 | 30.3% | 44.4% |
145
- | **4-gram** | Subword | 7,482 | 12.87 | 124,823 | 17.3% | 50.8% |
 
 
146
 
147
  ### Top 5 N-grams by Size
148
 
@@ -154,7 +166,7 @@ Below are sample sentences tokenized with each vocabulary size:
154
  | 2 | `of life` | 25,896 |
155
  | 3 | `of the` | 24,998 |
156
  | 4 | `the world` | 24,670 |
157
- | 5 | `species of` | 24,652 |
158
 
159
  **3-grams (Word):**
160
 
@@ -173,45 +185,65 @@ Below are sample sentences tokenized with each vocabulary size:
173
  | 1 | `species of the world` | 24,652 |
174
  | 2 | `mammal species of the` | 24,652 |
175
  | 3 | `bak taneon zo pimtayar` | 15,309 |
176
- | 4 | `zo pimtayar vexala dem` | 15,224 |
177
- | 5 | `taneon zo pimtayar vexala` | 15,223 |
 
 
 
 
 
 
 
 
 
 
178
 
179
  **2-grams (Subword):**
180
 
181
  | Rank | N-gram | Count |
182
  |------|--------|-------|
183
- | 1 | `a _` | 684,240 |
184
- | 2 | `s _` | 476,785 |
185
- | 3 | `_ (` | 458,313 |
186
- | 4 | `e _` | 387,458 |
187
- | 5 | `_ v` | 360,515 |
188
 
189
  **3-grams (Subword):**
190
 
191
  | Rank | N-gram | Count |
192
  |------|--------|-------|
193
- | 1 | `_ : _` | 268,667 |
194
- | 2 | `u s _` | 176,828 |
195
- | 3 | `e s t` | 175,968 |
196
- | 4 | `_ v u` | 167,656 |
197
- | 5 | `u e s` | 166,553 |
198
 
199
  **4-grams (Subword):**
200
 
201
  | Rank | N-gram | Count |
202
  |------|--------|-------|
203
- | 1 | `u e s t` | 164,190 |
204
  | 2 | `_ v u e` | 163,879 |
205
  | 3 | `v u e s` | 163,702 |
206
  | 4 | `) _ v u` | 124,953 |
207
  | 5 | `e s t -` | 124,892 |
208
 
 
 
 
 
 
 
 
 
 
 
209
 
210
  ### Key Findings
211
 
212
  - **Best Perplexity:** 2-gram (subword) with 284
213
  - **Entropy Trend:** Decreases with larger n-grams (more predictable)
214
- - **Coverage:** Top-1000 patterns cover ~51% of corpus
215
  - **Recommendation:** 4-gram or 5-gram for best predictive performance
216
 
217
  ---
@@ -227,14 +259,14 @@ Below are sample sentences tokenized with each vocabulary size:
227
 
228
  | Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
229
  |---------|---------|-------------|------------|------------------|-----------------|----------------|
230
- | **1** | Word | 0.9061 | 1.874 | 5.53 | 115,135 | 9.4% |
231
- | **1** | Subword | 1.0381 | 2.053 | 7.87 | 900 | 0.0% |
232
- | **2** | Word | 0.2494 | 1.189 | 1.63 | 635,326 | 75.1% |
233
- | **2** | Subword | 0.9486 | 1.930 | 5.95 | 7,086 | 5.1% |
234
- | **3** | Word | 0.1397 | 1.102 | 1.31 | 1,030,372 | 86.0% |
235
- | **3** | Subword | 0.7945 | 1.734 | 4.30 | 42,171 | 20.6% |
236
- | **4** | Word | 0.1004 🏆 | 1.072 | 1.21 | 1,346,672 | 90.0% |
237
- | **4** | Subword | 0.6921 | 1.616 | 3.14 | 181,330 | 30.8% |
238
 
239
  ### Generated Text Samples (Word-based)
240
 
@@ -242,27 +274,27 @@ Below are text samples generated from each word-based Markov chain model:
242
 
243
  **Context Size 1:**
244
 
245
- 1. `en forsythe david friedrich germanaf suterotik kiren sini va kulak ke patecta divatcewer kazaxo koe ...`
246
- 2. `vuest paleobiology database lagidium viscacia katca ctenomys johannis dene internet ok ino va jontik...`
247
- 3. `ke zosteropidae yasa ke capensis philippsi hinton en vuest walvedeyafa zveriopafa aba leptotrygon ti...`
248
 
249
  **Context Size 2:**
250
 
251
- 1. `en vuest paleobiology database pipistrellus kuhlii lepidus blyth en vuest animal diversity web leopa...`
252
- 2. `of life procyon lotor grinnelli nelson and goldman tovumol thomomys umbrinus nelsoni merriam en vues...`
253
- 3. `of the world siatos ke bata katca vas 17 oxi zo torigir ise va volkeafi is kategisafi`
254
 
255
  **Context Size 3:**
256
 
257
- 1. `of the world siatos ke konakara apta dere tid ke mila veyafa katca putcuxol cephalophus ogilbyi putc...`
258
- 2. `mammal species of the world v 3 leptailurus serval lonnbergi cabrera abrugol leptailurus serval beir...`
259
- 3. `species of the world v 3 solenodontidae gill en vuest animal diversity web corythopis en vuest anima...`
260
 
261
  **Context Size 4:**
262
 
263
- 1. `species of the world siatos ke bata katca tir aptiskafa pulasa vuestexa is xantaza en vuest mammal s...`
264
- 2. `mammal species of the world v 3 sminthopsis griseoventer kitchener stoddart en fr vuest itis glaucom...`
265
- 3. `bak taneon zo pimtayar vexala dem apteem sedme mammal species of the world siatos ke konakara apta d...`
266
 
267
 
268
  ### Generated Text Samples (Subword-based)
@@ -271,34 +303,34 @@ Below are text samples generated from each subword-based Markov chain model:
271
 
272
  **Context Size 1:**
273
 
274
- 1. `_(_denata_(erus_`
275
- 2. `asa_(_sideven_t_`
276
- 3. `e_worva_(mi_rota`
277
 
278
  **Context Size 2:**
279
 
280
- 1. `a_dem_sinzo_pala_`
281
- 2. `s_rimallifa_jechy`
282
- 3. `_(_puldaegan_baka`
283
 
284
  **Context Size 3:**
285
 
286
- 1. `_:_citesa_)_ke_cou`
287
- 2. `us_flowasinafa._13`
288
- 3. `est-_:_pert_ke_cou`
289
 
290
  **Context Size 4:**
291
 
292
- 1. `uestexa_is_katceem_`
293
- 2. `_vuest-_:_cites_zib`
294
- 3. `vuestexa_iku_hulske`
295
 
296
 
297
  ### Key Findings
298
 
299
- - **Best Predictability:** Context-4 (word) with 90.0% predictability
300
  - **Branching Factor:** Decreases with context size (more deterministic)
301
- - **Memory Trade-off:** Larger contexts require more storage (181,330 contexts)
302
  - **Recommendation:** Context-3 or Context-4 for text generation
303
 
304
  ---
@@ -314,26 +346,26 @@ Below are text samples generated from each subword-based Markov chain model:
314
 
315
  | Metric | Value |
316
  |--------|-------|
317
- | Vocabulary Size | 58,132 |
318
- | Total Tokens | 3,516,474 |
319
- | Mean Frequency | 60.49 |
320
  | Median Frequency | 5 |
321
- | Frequency Std Dev | 1081.22 |
322
 
323
  ### Most Common Words
324
 
325
  | Rank | Word | Frequency |
326
  |------|------|-----------|
327
- | 1 | en | 127,536 |
328
  | 2 | vuest | 124,885 |
329
- | 3 | ke | 85,674 |
330
- | 4 | of | 52,510 |
331
  | 5 | tir | 40,501 |
332
- | 6 | is | 37,526 |
333
- | 7 | katca | 36,175 |
334
- | 8 | va | 35,605 |
335
- | 9 | bak | 28,769 |
336
- | 10 | koe | 28,642 |
337
 
338
  ### Least Common Words (from vocabulary)
339
 
@@ -354,24 +386,24 @@ Below are text samples generated from each subword-based Markov chain model:
354
 
355
  | Metric | Value |
356
  |--------|-------|
357
- | Zipf Coefficient | 1.1323 |
358
- | R² (Goodness of Fit) | 0.996890 |
359
  | Adherence Quality | **excellent** |
360
 
361
  ### Coverage Analysis
362
 
363
  | Top N Words | Coverage |
364
  |-------------|----------|
365
- | Top 100 | 48.8% |
366
- | Top 1,000 | 72.1% |
367
- | Top 5,000 | 86.1% |
368
  | Top 10,000 | 91.0% |
369
 
370
  ### Key Findings
371
 
372
  - **Zipf Compliance:** R²=0.9969 indicates excellent adherence to Zipf's law
373
- - **High Frequency Dominance:** Top 100 words cover 48.8% of corpus
374
- - **Long Tail:** 48,132 words needed for remaining 9.0% coverage
375
 
376
  ---
377
  ## 5. Word Embeddings Evaluation
@@ -387,37 +419,40 @@ Below are text samples generated from each subword-based Markov chain model:
387
 
388
  ### 5.1 Cross-Lingual Alignment
389
 
390
- > *Note: Multilingual alignment visualization not available for this language.*
 
 
391
 
392
 
393
  ### 5.2 Model Comparison
394
 
395
  | Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 |
396
  |-------|-----------|----------|------------------|---------------|----------------|
397
- | **mono_32d** | 32 | 0.8793 🏆 | 0.3481 | N/A | N/A |
398
- | **mono_64d** | 64 | 0.8305 | 0.2964 | N/A | N/A |
399
- | **mono_128d** | 128 | 0.6711 | 0.2516 | N/A | N/A |
 
 
 
400
 
401
  ### Key Findings
402
 
403
- - **Best Isotropy:** mono_32d with 0.8793 (more uniform distribution)
404
- - **Semantic Density:** Average pairwise similarity of 0.2987. Lower values indicate better semantic separation.
405
- - **Alignment Quality:** No aligned models evaluated in this run.
406
  - **Recommendation:** 128d aligned for best cross-lingual performance
407
 
408
  ---
409
  ## 6. Morphological Analysis (Experimental)
410
 
411
- > ⚠️ **Warning:** This language shows low morphological productivity. The statistical signals used for this analysis may be noisy or less reliable than for morphologically rich languages.
412
-
413
  This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.
414
 
415
  ### 6.1 Productivity & Complexity
416
 
417
  | Metric | Value | Interpretation | Recommendation |
418
  |--------|-------|----------------|----------------|
419
- | Productivity Index | **0.000** | Low morphological productivity | ⚠️ Likely unreliable |
420
- | Idiomaticity Gap | **-1.000** | Low formulaic content | - |
421
 
422
  ### 6.2 Affix Inventory (Productive Units)
423
 
@@ -426,18 +461,19 @@ These are the most productive prefixes and suffixes identified by sampling the v
426
  #### Productive Prefixes
427
  | Prefix | Examples |
428
  |--------|----------|
 
429
 
430
  #### Productive Suffixes
431
  | Suffix | Examples |
432
  |--------|----------|
433
- | `-a` | engada, winkapa, riftakola |
434
- | `-s` | latimanus, hyladelphys, adocetus |
435
- | `-us` | latimanus, adocetus, eptesicus |
436
- | `-ra` | rupera, remtrakura, prosthemadera |
437
- | `-on` | daemon, lavion, prostelayon |
438
- | `-fa` | altokafa, kalkafa, ronepafa |
439
- | `-afa` | altokafa, kalkafa, ronepafa |
440
- | `-is` | africaeaustralis, variabilis, louis |
441
 
442
  ### 6.3 Bound Stems (Lexical Roots)
443
 
@@ -445,25 +481,35 @@ Bound stems are high-frequency subword units that are semantically cohesive but
445
 
446
  | Stem | Cohesion | Substitutability | Examples |
447
  |------|----------|------------------|----------|
448
- | `ensi` | 2.40x | 45 contexts | owensi, pensil, ozensis |
449
- | `ayar` | 1.87x | 93 contexts | gayar, vayar, iayar |
450
- | `urus` | 2.16x | 23 contexts | purus, urusí, gaurus |
451
- | `anta` | 1.52x | 73 contexts | yanta, danta, canta |
452
- | `imta` | 2.04x | 22 contexts | pimtas, kimtaf, krimta |
453
- | `tava` | 1.80x | 25 contexts | stava, kotava, yultava |
454
- | `atca` | 1.63x | 31 contexts | zatca, datca, catca |
455
- | `pimt` | 2.38x | 8 contexts | pimtas, pimtar, pimtan |
456
- | `stes` | 1.74x | 16 contexts | restes, lestes, estesa |
457
- | `neon` | 2.09x | 8 contexts | roneon, taneon, deneon |
458
- | `xant` | 1.53x | 19 contexts | xanta, xanto, xantik |
459
- | `katc` | 1.55x | 14 contexts | katca, katcaf, katcaal |
460
 
461
  ### 6.4 Affix Compatibility (Co-occurrence)
462
 
463
  This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology.
464
 
465
- *No significant affix co-occurrences detected.*
466
-
 
 
 
 
 
 
 
 
 
 
467
 
468
  ### 6.5 Recursive Morpheme Segmentation
469
 
@@ -471,26 +517,26 @@ Using **Recursive Hierarchical Substitutability**, we decompose complex words in
471
 
472
  | Word | Suggested Split | Confidence | Stem |
473
  |------|-----------------|------------|------|
474
- | rumeikafa | **`rumeik-afa`** | 4.5 | `rumeik` |
475
- | dolekikafa | **`dolekik-afa`** | 4.5 | `dolekik` |
476
- | unenikafa | **`unenik-afa`** | 4.5 | `unenik` |
477
- | tetschener | **`tetschen-er`** | 4.5 | `tetschen` |
478
- | jotugalafa | **`jotugal-afa`** | 4.5 | `jotugal` |
479
- | gogolason | **`gogolas-on`** | 4.5 | `gogolas` |
480
- | rontagentimafa | **`rontagentim-afa`** | 4.5 | `rontagentim` |
481
- | getalteon | **`getalte-on`** | 4.5 | `getalte` |
482
- | azilnyofara | **`azilnyo-fa-ra`** | 3.0 | `azilnyo` |
483
- | tunotrara | **`tunot-ra-ra`** | 3.0 | `tunot` |
484
- | dimpiyison | **`dimpiy-is-on`** | 3.0 | `dimpiy` |
485
- | otonycteris | **`otonyct-er-is`** | 3.0 | `otonyct` |
486
- | rhinonicteris | **`rhinonict-er-is`** | 3.0 | `rhinonict` |
487
- | chrotopterus | **`chrotopt-er-us`** | 3.0 | `chrotopt` |
488
- | talturonon | **`taltur-on-on`** | 3.0 | `taltur` |
489
 
490
  ### 6.6 Linguistic Interpretation
491
 
492
  > **Automated Insight:**
493
- The language AVK appears to be more isolating or has a highly fixed vocabulary. Word-level models perform nearly as well as subword models, indicating fewer productive morphological processes.
494
 
495
  ---
496
  ## 7. Summary & Recommendations
@@ -503,7 +549,7 @@ The language AVK appears to be more isolating or has a highly fixed vocabulary.
503
  |-----------|-------------|-----------|
504
  | Tokenizer | **64k BPE** | Best compression (4.69x) |
505
  | N-gram | **2-gram** | Lowest perplexity (284) |
506
- | Markov | **Context-4** | Highest predictability (90.0%) |
507
  | Embeddings | **100d** | Balanced semantic capture and isotropy |
508
 
509
 
@@ -717,4 +763,4 @@ MIT License - Free for academic and commercial use.
717
  ---
718
  *Generated by Wikilangs Models Pipeline*
719
 
720
- *Report Date: 2026-01-03 05:31:10*
 
1
  ---
2
  language: avk
3
+ language_name: Kotava
4
  language_family: constructed_other
5
  tags:
6
  - wikilangs
 
10
  - n-gram
11
  - markov
12
  - wikipedia
13
+ - feature-extraction
14
+ - sentence-similarity
15
+ - tokenization
16
+ - n-grams
17
+ - markov-chain
18
+ - text-mining
19
+ - fasttext
20
+ - babelvec
21
+ - vocabulous
22
+ - vocabulary
23
  - monolingual
24
  - family-constructed_other
25
  license: mit
26
  library_name: wikilangs
27
+ pipeline_tag: text-generation
28
  datasets:
29
  - omarkamali/wikipedia-monthly
30
  dataset_info:
 
33
  metrics:
34
  - name: best_compression_ratio
35
  type: compression
36
+ value: 4.689
37
  - name: best_isotropy
38
  type: isotropy
39
+ value: 0.8768
40
  - name: vocabulary_size
41
  type: vocab
42
  value: 0
43
  generated: 2026-01-03
44
  ---
45
 
46
+ # Kotava - Wikilangs Models
47
  ## Comprehensive Research Report & Full Ablation Study
48
 
49
+ This repository contains NLP models trained and evaluated by Wikilangs, specifically on **Kotava** Wikipedia data.
50
  We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.
51
 
52
  ## 📋 Repository Contents
 
70
  - [3. Markov Chain Evaluation](#3-markov-chain-evaluation)
71
  - [4. Vocabulary Analysis](#4-vocabulary-analysis)
72
  - [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation)
73
+ - [6. Morphological Analysis (Experimental)](#6--morphological-analysis-experimental)
74
  - [7. Summary & Recommendations](#7-summary--recommendations)
75
  - [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide)
76
  - [Visualizations Index](#visualizations-index)
 
90
 
91
  | Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
92
  |------------|-------------|---------------|----------|--------------|
93
+ | **8k** | 3.689x | 3.69 | 0.2370% | 255,266 |
94
+ | **16k** | 4.051x | 4.06 | 0.2603% | 232,417 |
95
+ | **32k** | 4.380x | 4.39 | 0.2815% | 214,947 |
96
+ | **64k** | 4.689x 🏆 | 4.69 | 0.3013% | 200,817 |
97
 
98
  ### Tokenization Examples
99
 
100
  Below are sample sentences tokenized with each vocabulary size:
101
 
102
+ **Sample 1:** `Victoria tir kelu is lozolonafa widava ke Seycella tigisa valente patecta koe Ma...`
103
 
104
  | Vocab | Tokens | Count |
105
  |-------|--------|-------|
106
+ | 8k | `▁victor ia tirkeluislozolonafawidavakes ey ... (+13 more)` | 23 |
107
+ | 16k | `▁victoriatirkeluislozolonafawidavakesey c ella ... (+10 more)` | 20 |
108
+ | 32k | `▁victoriatirkeluislozolonafawidavakesey c ella ... (+10 more)` | 20 |
109
+ | 64k | `▁victoriatirkeluislozolonafawidavakeseycellatigisa ▁valente ... (+8 more)` | 18 |
110
 
111
  **Sample 2:** `Bifa Afrika Amerika Asia Europa Oceania Koblira Awalkera sanda`
112
 
 
129
 
130
  ### Key Findings
131
 
132
+ - **Best Compression:** 64k achieves 4.689x compression
133
  - **Lowest UNK Rate:** 8k with 0.2370% unknown tokens
134
  - **Trade-off:** Larger vocabularies improve compression but increase model size
135
  - **Recommendation:** 32k vocabulary provides optimal balance for production use
 
147
 
148
  | N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
149
  |--------|---------|------------|---------|----------------|------------------|-------------------|
150
+ | **2-gram** | Word | 4,342 | 12.08 | 65,378 | 38.8% | 59.6% |
151
+ | **2-gram** | Subword | 284 🏆 | 8.15 | 3,324 | 63.4% | 99.6% |
152
+ | **3-gram** | Word | 9,058 | 13.14 | 131,536 | 34.4% | 51.5% |
153
+ | **3-gram** | Subword | 1,996 | 10.96 | 24,495 | 26.3% | 74.2% |
154
+ | **4-gram** | Word | 16,918 | 14.05 | 222,038 | 30.4% | 44.4% |
155
+ | **4-gram** | Subword | 7,464 | 12.87 | 124,607 | 17.4% | 50.9% |
156
+ | **5-gram** | Word | 18,754 | 14.19 | 212,819 | 28.7% | 42.2% |
157
+ | **5-gram** | Subword | 17,155 | 14.07 | 346,727 | 14.4% | 42.8% |
158
 
159
  ### Top 5 N-grams by Size
160
 
 
166
  | 2 | `of life` | 25,896 |
167
  | 3 | `of the` | 24,998 |
168
  | 4 | `the world` | 24,670 |
169
+ | 5 | `mammal species` | 24,652 |
170
 
171
  **3-grams (Word):**
172
 
 
185
  | 1 | `species of the world` | 24,652 |
186
  | 2 | `mammal species of the` | 24,652 |
187
  | 3 | `bak taneon zo pimtayar` | 15,309 |
188
+ | 4 | `zo pimtayar vexala dem` | 15,226 |
189
+ | 5 | `taneon zo pimtayar vexala` | 15,225 |
190
+
191
+ **5-grams (Word):**
192
+
193
+ | Rank | N-gram | Count |
194
+ |------|--------|-------|
195
+ | 1 | `mammal species of the world` | 24,652 |
196
+ | 2 | `taneon zo pimtayar vexala dem` | 15,225 |
197
+ | 3 | `bak taneon zo pimtayar vexala` | 14,992 |
198
+ | 4 | `en vuest animal diversity web` | 14,121 |
199
+ | 5 | `en vuest catalogue of life` | 14,116 |
200
 
201
  **2-grams (Subword):**
202
 
203
  | Rank | N-gram | Count |
204
  |------|--------|-------|
205
+ | 1 | `a _` | 682,687 |
206
+ | 2 | `s _` | 476,530 |
207
+ | 3 | `_ (` | 458,247 |
208
+ | 4 | `e _` | 386,463 |
209
+ | 5 | `_ v` | 360,083 |
210
 
211
  **3-grams (Subword):**
212
 
213
  | Rank | N-gram | Count |
214
  |------|--------|-------|
215
+ | 1 | `_ : _` | 268,658 |
216
+ | 2 | `u s _` | 176,817 |
217
+ | 3 | `e s t` | 175,950 |
218
+ | 4 | `_ v u` | 167,654 |
219
+ | 5 | `u e s` | 166,548 |
220
 
221
  **4-grams (Subword):**
222
 
223
  | Rank | N-gram | Count |
224
  |------|--------|-------|
225
+ | 1 | `u e s t` | 164,186 |
226
  | 2 | `_ v u e` | 163,879 |
227
  | 3 | `v u e s` | 163,702 |
228
  | 4 | `) _ v u` | 124,953 |
229
  | 5 | `e s t -` | 124,892 |
230
 
231
+ **5-grams (Subword):**
232
+
233
+ | Rank | N-gram | Count |
234
+ |------|--------|-------|
235
+ | 1 | `_ v u e s` | 163,700 |
236
+ | 2 | `v u e s t` | 163,699 |
237
+ | 3 | `u e s t -` | 124,886 |
238
+ | 4 | `e s t - _` | 124,885 |
239
+ | 5 | `) _ v u e` | 124,841 |
240
+
241
 
242
  ### Key Findings
243
 
244
  - **Best Perplexity:** 2-gram (subword) with 284
245
  - **Entropy Trend:** Decreases with larger n-grams (more predictable)
246
+ - **Coverage:** Top-1000 patterns cover ~43% of corpus
247
  - **Recommendation:** 4-gram or 5-gram for best predictive performance
248
 
249
  ---
 
259
 
260
  | Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
261
  |---------|---------|-------------|------------|------------------|-----------------|----------------|
262
+ | **1** | Word | 0.9054 | 1.873 | 5.52 | 115,002 | 9.5% |
263
+ | **1** | Subword | 1.0377 | 2.053 | 7.85 | 900 | 0.0% |
264
+ | **2** | Word | 0.2492 | 1.189 | 1.63 | 633,477 | 75.1% |
265
+ | **2** | Subword | 0.9459 | 1.926 | 5.95 | 7,069 | 5.4% |
266
+ | **3** | Word | 0.1398 | 1.102 | 1.31 | 1,026,801 | 86.0% |
267
+ | **3** | Subword | 0.7949 | 1.735 | 4.30 | 42,037 | 20.5% |
268
+ | **4** | Word | 0.1005 🏆 | 1.072 | 1.21 | 1,342,358 | 89.9% |
269
+ | **4** | Subword | 0.6925 | 1.616 | 3.14 | 180,930 | 30.8% |
270
 
271
  ### Generated Text Samples (Word-based)
272
 
 
274
 
275
  **Context Size 1:**
276
 
277
+ 1. `en fr vuest paleobiology database dipodomys heermanni heermanni jolonensis grinnell and chiefdom a a...`
278
+ 2. `vuest paleobiology database xerus erythropus leucoumbrinus rüppell en vuest paleobiology database bu...`
279
+ 3. `ke otomops johnstonei en vuest itis rusa bak taneon zo bendeyer ewava vuestexa is xantaza en`
280
 
281
  **Context Size 2:**
282
 
283
+ 1. `en vuest walvedeyafa zveriopafa aba 2 2 siatos 5 katca oxi phonygammus 1 katca proklano philemon pro...`
284
+ 2. `of life dicerorhinus sumatrensis lasiotis en vuest ncbi campicoloides fr en vuest mammal species of ...`
285
+ 3. `of the world siatos ke konakara apta dere tid ke mila veyafa katca vesnol nycticeius humeralis humer...`
286
 
287
  **Context Size 3:**
288
 
289
+ 1. `of the world v 3 petrogale purpureicollis le souef en vuest cites ctenomys colburni en vuest uicn ka...`
290
+ 2. `species of the world v 3 isolobodon portoricensis j a allen vesnol myotis yumanensis sociabilis h w ...`
291
+ 3. `mammal species of the world siatos ke konakara apta dere tid ke mila veyafa katca vesnol lonchorhina...`
292
 
293
  **Context Size 4:**
294
 
295
+ 1. `species of the world siatos ke bata katca tir aptiskafa dere rupel pulasa vuestexa is xantaza en vue...`
296
+ 2. `mammal species of the world siatos ke bata katca tir aptiskafa pulasa vuestexa is xantaza en vuest m...`
297
+ 3. `bak taneon zo pimtayar vexala dem katceem sedme vuestesa pulara ke walvedeyafa zveriopafa aba 2 2 si...`
298
 
299
 
300
  ### Generated Text Samples (Subword-based)
 
303
 
304
  **Context Size 1:**
305
 
306
+ 1. `_ves_wirtis_cada`
307
+ 2. `aldronururuda_a,`
308
+ 3. `e_oe_s_ta_tcimot`
309
 
310
  **Context Size 2:**
311
 
312
+ 1. `a_:_cathirojunafa`
313
+ 2. `s_:_le="vey_tazne`
314
+ 3. `_(heropanelterifo`
315
 
316
  **Context Size 3:**
317
 
318
+ 1. `_:_burnata_kuksa_(`
319
+ 2. `us_paleobiologue_o`
320
+ 3. `ested_nudingus_vor`
321
 
322
  **Context Size 4:**
323
 
324
+ 1. `uest-_:_uicn_:_acom`
325
+ 2. `_vuestesa_vaticus_p`
326
+ 3. `vuest-_:_mephitis_:`
327
 
328
 
329
  ### Key Findings
330
 
331
+ - **Best Predictability:** Context-4 (word) with 89.9% predictability
332
  - **Branching Factor:** Decreases with context size (more deterministic)
333
+ - **Memory Trade-off:** Larger contexts require more storage (180,930 contexts)
334
  - **Recommendation:** Context-3 or Context-4 for text generation
335
 
336
  ---
 
346
 
347
  | Metric | Value |
348
  |--------|-------|
349
+ | Vocabulary Size | 58,045 |
350
+ | Total Tokens | 3,510,675 |
351
+ | Mean Frequency | 60.48 |
352
  | Median Frequency | 5 |
353
+ | Frequency Std Dev | 1080.85 |
354
 
355
  ### Most Common Words
356
 
357
  | Rank | Word | Frequency |
358
  |------|------|-----------|
359
+ | 1 | en | 127,527 |
360
  | 2 | vuest | 124,885 |
361
+ | 3 | ke | 85,172 |
362
+ | 4 | of | 52,509 |
363
  | 5 | tir | 40,501 |
364
+ | 6 | is | 37,459 |
365
+ | 7 | katca | 36,160 |
366
+ | 8 | va | 35,241 |
367
+ | 9 | bak | 28,713 |
368
+ | 10 | koe | 28,499 |
369
 
370
  ### Least Common Words (from vocabulary)
371
 
 
386
 
387
  | Metric | Value |
388
  |--------|-------|
389
+ | Zipf Coefficient | 1.1330 |
390
+ | R² (Goodness of Fit) | 0.996896 |
391
  | Adherence Quality | **excellent** |
392
 
393
  ### Coverage Analysis
394
 
395
  | Top N Words | Coverage |
396
  |-------------|----------|
397
+ | Top 100 | 48.9% |
398
+ | Top 1,000 | 72.2% |
399
+ | Top 5,000 | 86.2% |
400
  | Top 10,000 | 91.0% |
401
 
402
  ### Key Findings
403
 
404
  - **Zipf Compliance:** R²=0.9969 indicates excellent adherence to Zipf's law
405
+ - **High Frequency Dominance:** Top 100 words cover 48.9% of corpus
406
+ - **Long Tail:** 48,045 words needed for remaining 9.0% coverage
407
 
408
  ---
409
  ## 5. Word Embeddings Evaluation
 
419
 
420
  ### 5.1 Cross-Lingual Alignment
421
 
422
+ ![Alignment Quality](visualizations/embedding_alignment_quality.png)
423
+
424
+ ![Multilingual t-SNE](visualizations/embedding_tsne_multilingual.png)
425
 
426
 
427
  ### 5.2 Model Comparison
428
 
429
  | Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 |
430
  |-------|-----------|----------|------------------|---------------|----------------|
431
+ | **mono_32d** | 32 | 0.8768 🏆 | 0.3464 | N/A | N/A |
432
+ | **mono_64d** | 64 | 0.8339 | 0.2956 | N/A | N/A |
433
+ | **mono_128d** | 128 | 0.6767 | 0.2580 | N/A | N/A |
434
+ | **aligned_32d** | 32 | 0.8768 | 0.3495 | 0.0440 | 0.2440 |
435
+ | **aligned_64d** | 64 | 0.8339 | 0.2976 | 0.0760 | 0.3520 |
436
+ | **aligned_128d** | 128 | 0.6767 | 0.2493 | 0.1320 | 0.4720 |
437
 
438
  ### Key Findings
439
 
440
+ - **Best Isotropy:** mono_32d with 0.8768 (more uniform distribution)
441
+ - **Semantic Density:** Average pairwise similarity of 0.2994. Lower values indicate better semantic separation.
442
+ - **Alignment Quality:** Aligned models achieve up to 13.2% R@1 in cross-lingual retrieval.
443
  - **Recommendation:** 128d aligned for best cross-lingual performance
444
 
445
  ---
446
  ## 6. Morphological Analysis (Experimental)
447
 
 
 
448
  This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.
449
 
450
  ### 6.1 Productivity & Complexity
451
 
452
  | Metric | Value | Interpretation | Recommendation |
453
  |--------|-------|----------------|----------------|
454
+ | Productivity Index | **5.000** | High morphological productivity | Reliable analysis |
455
+ | Idiomaticity Gap | **-0.015** | Low formulaic content | - |
456
 
457
  ### 6.2 Affix Inventory (Productive Units)
458
 
 
461
  #### Productive Prefixes
462
  | Prefix | Examples |
463
  |--------|----------|
464
+ | `-ma` | maltadleks, marnatum, marco |
465
 
466
  #### Productive Suffixes
467
  | Suffix | Examples |
468
  |--------|----------|
469
+ | `-a` | teguina, coa, klaba |
470
+ | `-s` | verticalis, mees, tellus |
471
+ | `-us` | tellus, scapanulus, catagonus |
472
+ | `-ra` | tara, aliera, mallanira |
473
+ | `-er` | edobeyer, walzer, palliser |
474
+ | `-is` | verticalis, anhuiensis, quitensis |
475
+ | `-on` | goreston, styron, laizon |
476
+ | `-fa` | kaikifa, isteamerikafa, lopinafa |
477
 
478
  ### 6.3 Bound Stems (Lexical Roots)
479
 
 
481
 
482
  | Stem | Cohesion | Substitutability | Examples |
483
  |------|----------|------------------|----------|
484
+ | `ayar` | 2.06x | 93 contexts | vayar, wayar, iayar |
485
+ | `ensi` | 2.30x | 45 contexts | pensil, owensi, hensies |
486
+ | `anta` | 1.76x | 73 contexts | canta, tanta, xanta |
487
+ | `urus` | 2.30x | 23 contexts | purus, urusí, myurus |
488
+ | `imta` | 2.02x | 22 contexts | pimtas, pimtad, pimtan |
489
+ | `tava` | 1.80x | 25 contexts | stava, kotava, poltava |
490
+ | `atca` | 1.64x | 31 contexts | zatca, datca, catca |
491
+ | `pimt` | 2.34x | 8 contexts | pimtas, pimtad, pimtan |
492
+ | `stes` | 1.71x | 16 contexts | lestes, wastes, restes |
493
+ | `xant` | 1.51x | 19 contexts | xanta, xanto, xantik |
494
+ | `neon` | 2.03x | 8 contexts | deneon, keneon, roneon |
495
+ | `ukol` | 1.51x | 14 contexts | bukol, stukol, moukol |
496
 
497
  ### 6.4 Affix Compatibility (Co-occurrence)
498
 
499
  This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology.
500
 
501
+ | Prefix | Suffix | Frequency | Examples |
502
+ |--------|--------|-----------|----------|
503
+ | `-ma` | `-a` | 34 words | mafia, malaya |
504
+ | `-ma` | `-s` | 29 words | maculicollis, mangas |
505
+ | `-ma` | `-is` | 13 words | maculicollis, managuensis |
506
+ | `-ma` | `-us` | 8 words | macrocephalicus, mastus |
507
+ | `-ma` | `-ra` | 7 words | malyerara, mallapira |
508
+ | `-ma` | `-on` | 5 words | maubuisson, malsaveson |
509
+ | `-ma` | `-er` | 5 words | malgruper, mayasquer |
510
+ | `-ma` | `-es` | 4 words | manzanares, macropodiformes |
511
+ | `-ma` | `-fa` | 4 words | magyarafa, malyoparafa |
512
+ | `-ma` | `-afa` | 4 words | magyarafa, malyoparafa |
513
 
514
  ### 6.5 Recursive Morpheme Segmentation
515
 
 
517
 
518
  | Word | Suggested Split | Confidence | Stem |
519
  |------|-----------------|------------|------|
520
+ | balumarafa | **`balumar-afa`** | 4.5 | `balumar` |
521
+ | vageroneon | **`vagerone-on`** | 4.5 | `vagerone` |
522
+ | koridanikafa | **`koridanik-afa`** | 4.5 | `koridanik` |
523
+ | lidarotifa | **`lidaroti-fa`** | 4.5 | `lidaroti` |
524
+ | pacificus | **`pacific-us`** | 4.5 | `pacific` |
525
+ | yambikafa | **`yambik-afa`** | 4.5 | `yambik` |
526
+ | zimmerius | **`zimmeri-us`** | 4.5 | `zimmeri` |
527
+ | christies | **`christi-es`** | 4.5 | `christi` |
528
+ | bristutuson | **`bristut-us-on`** | 3.0 | `bristut` |
529
+ | aultoveson | **`aultov-es-on`** | 3.0 | `aultov` |
530
+ | promeneuses | **`promene-us-es`** | 3.0 | `promene` |
531
+ | stakseson | **`staks-es-on`** | 3.0 | `staks` |
532
+ | atlantoxerus | **`atlantox-er-us`** | 3.0 | `atlantox` |
533
+ | mantukafa | **`ma-ntuk-afa`** | 3.0 | `ntuk` |
534
+ | ruyatakoler | **`ruyatakol-er`** | 1.5 | `ruyatakol` |
535
 
536
  ### 6.6 Linguistic Interpretation
537
 
538
  > **Automated Insight:**
539
+ The language Kotava shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding.
540
 
541
  ---
542
  ## 7. Summary & Recommendations
 
549
  |-----------|-------------|-----------|
550
  | Tokenizer | **64k BPE** | Best compression (4.69x) |
551
  | N-gram | **2-gram** | Lowest perplexity (284) |
552
+ | Markov | **Context-4** | Highest predictability (89.9%) |
553
  | Embeddings | **100d** | Balanced semantic capture and isotropy |
554
 
555
 
 
763
  ---
764
  *Generated by Wikilangs Models Pipeline*
765
 
766
+ *Report Date: 2026-01-03 17:46:55*
models/embeddings/aligned/avk_128d.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4d5bc2fb68fc16599a7df591a4faa9874fafbac2b4321646c3eb80ee929289b8
3
+ size 1070216041
models/embeddings/aligned/avk_128d.meta.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"lang": "avk", "dim": 128, "max_seq_len": 512, "is_aligned": true}
models/embeddings/aligned/avk_128d.projection.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:046c39f51199072057fb8146454cf806db4867200588a1767bc05ce312ff7760
3
+ size 65664
models/embeddings/aligned/avk_128d_metadata.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "language": "avk",
3
+ "dimension": 128,
4
+ "version": "aligned",
5
+ "hub_language": "en",
6
+ "seed_vocab_size": 10167,
7
+ "vocab_size": 44349
8
+ }
models/embeddings/aligned/avk_32d.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8853f84ade1376f0ea457f44f0519aedf712c23eecc35494f3e963a13c362e51
3
+ size 268156009
models/embeddings/aligned/avk_32d.meta.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"lang": "avk", "dim": 32, "max_seq_len": 512, "is_aligned": true}
models/embeddings/aligned/avk_32d.projection.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eca53a6013e2037c2f47dc5e1949fc0a2b6ece6075e88cf7212d0602dbd8c807
3
+ size 4224
models/embeddings/aligned/avk_32d_metadata.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "language": "avk",
3
+ "dimension": 32,
4
+ "version": "aligned",
5
+ "hub_language": "en",
6
+ "seed_vocab_size": 10167,
7
+ "vocab_size": 44349
8
+ }
models/embeddings/aligned/avk_64d.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ab0343f70502c04d2f85016d1052a4e74696fa24885f3ad8392e25d726279437
3
+ size 535509353
models/embeddings/aligned/avk_64d.meta.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"lang": "avk", "dim": 64, "max_seq_len": 512, "is_aligned": true}
models/embeddings/aligned/avk_64d.projection.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:10505483a833ed429a570df9d39c4f5ab1cd9c736b7ba77d0c81d45ffd168609
3
+ size 16512
models/embeddings/aligned/avk_64d_metadata.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "language": "avk",
3
+ "dimension": 64,
4
+ "version": "aligned",
5
+ "hub_language": "en",
6
+ "seed_vocab_size": 10167,
7
+ "vocab_size": 44349
8
+ }
models/embeddings/monolingual/avk_128d.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:c0357f4c0fa47381c2d92e0415911327b53c389a3d486edc400fcce551ae310d
3
- size 1070325438
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4d5bc2fb68fc16599a7df591a4faa9874fafbac2b4321646c3eb80ee929289b8
3
+ size 1070216041
models/embeddings/monolingual/avk_128d_metadata.json CHANGED
@@ -11,5 +11,5 @@
11
  "encoding_method": "rope",
12
  "dim": 128
13
  },
14
- "vocab_size": 44454
15
  }
 
11
  "encoding_method": "rope",
12
  "dim": 128
13
  },
14
+ "vocab_size": 44349
15
  }
models/embeddings/monolingual/avk_32d.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:829d093f87f92bee34bc2d9b3ee3c6e53006f7208dba8cd714618f0305b957af
3
- size 268184766
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8853f84ade1376f0ea457f44f0519aedf712c23eecc35494f3e963a13c362e51
3
+ size 268156009
models/embeddings/monolingual/avk_32d_metadata.json CHANGED
@@ -11,5 +11,5 @@
11
  "encoding_method": "rope",
12
  "dim": 32
13
  },
14
- "vocab_size": 44454
15
  }
 
11
  "encoding_method": "rope",
12
  "dim": 32
13
  },
14
+ "vocab_size": 44349
15
  }
models/embeddings/monolingual/avk_64d.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:7d210dae793291e501a5a742665aafce5364647858baa5dd956782a0c6d80a70
3
- size 535564990
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ab0343f70502c04d2f85016d1052a4e74696fa24885f3ad8392e25d726279437
3
+ size 535509353
models/embeddings/monolingual/avk_64d_metadata.json CHANGED
@@ -11,5 +11,5 @@
11
  "encoding_method": "rope",
12
  "dim": 64
13
  },
14
- "vocab_size": 44454
15
  }
 
11
  "encoding_method": "rope",
12
  "dim": 64
13
  },
14
+ "vocab_size": 44349
15
  }
models/subword_markov/avk_markov_ctx1_subword.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:21791c83470a53c161c68f122259b7897a3a907d75078d307676c0177d2c36bb
3
- size 63469
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f65687f254c652f69ef9be8131bf19edbff47526c12511f028d24075dae452c9
3
+ size 63478
models/subword_markov/avk_markov_ctx1_subword_metadata.json CHANGED
@@ -3,5 +3,5 @@
3
  "variant": "subword",
4
  "language": "avk",
5
  "unique_contexts": 900,
6
- "total_transitions": 26140715
7
  }
 
3
  "variant": "subword",
4
  "language": "avk",
5
  "unique_contexts": 900,
6
+ "total_transitions": 26104447
7
  }
models/subword_markov/avk_markov_ctx2_subword.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:698bcc0cfe9a7f9b86fa6f44a6777b8a6a41971070d8ab3b73f98b09f24b3b36
3
- size 379498
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:87c2c934c6a6a0e852b7510fffdc0cfa7afde5724d65c615397f5807bb5d2890
3
+ size 374727
models/subword_markov/avk_markov_ctx2_subword_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "context_size": 2,
3
  "variant": "subword",
4
  "language": "avk",
5
- "unique_contexts": 7086,
6
- "total_transitions": 26111423
7
  }
 
2
  "context_size": 2,
3
  "variant": "subword",
4
  "language": "avk",
5
+ "unique_contexts": 7069,
6
+ "total_transitions": 26075153
7
  }
models/subword_markov/avk_markov_ctx3_subword.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e97b0774917adc7e1e8666a420b5a88cece271cf99ea1b5f68cd532f0018a92b
3
- size 1583547
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c8486b2f7957071361dbd00d231776b15d9bd46e7798b78454470549c572886c
3
+ size 1574087
models/subword_markov/avk_markov_ctx3_subword_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "context_size": 3,
3
  "variant": "subword",
4
  "language": "avk",
5
- "unique_contexts": 42171,
6
- "total_transitions": 26082131
7
  }
 
2
  "context_size": 3,
3
  "variant": "subword",
4
  "language": "avk",
5
+ "unique_contexts": 42037,
6
+ "total_transitions": 26045859
7
  }
models/subword_markov/avk_markov_ctx4_subword.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:aecee602f0b44cb0f438169dfcceb1a8a89110470f4c323a12fc42d4af2e25ae
3
- size 4497423
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:09a5d485439f551617d7e6db1b1f5e923031936d395de0d0b6c395dac427ea25
3
+ size 4492959
models/subword_markov/avk_markov_ctx4_subword_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "context_size": 4,
3
  "variant": "subword",
4
  "language": "avk",
5
- "unique_contexts": 181330,
6
- "total_transitions": 26052839
7
  }
 
2
  "context_size": 4,
3
  "variant": "subword",
4
  "language": "avk",
5
+ "unique_contexts": 180930,
6
+ "total_transitions": 26016565
7
  }
models/subword_ngram/avk_2gram_subword.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:542c6d1e24d5e6dfba739d8aa22907d19ad252430bc7d0ccd256a501d0531f72
3
- size 47284
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ed6e7b7ad31ba22fe41824beee6908fc8170fb2f1f76c61addff4e9b04c9932e
3
+ size 47151
models/subword_ngram/avk_2gram_subword_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "n": 2,
3
  "variant": "subword",
4
  "language": "avk",
5
- "unique_ngrams": 3342,
6
- "total_ngrams": 26140715
7
  }
 
2
  "n": 2,
3
  "variant": "subword",
4
  "language": "avk",
5
+ "unique_ngrams": 3324,
6
+ "total_ngrams": 26104447
7
  }
models/subword_ngram/avk_3gram_subword.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:a059662c6d88d086a3fb221455feeb7c778b83b67df81086daea2aa0cddec23c
3
- size 326709
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:223425e4b5985727026ac6e9aa9d270f255e60307dc67feb52135ab124aa71b7
3
+ size 325386
models/subword_ngram/avk_3gram_subword_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "n": 3,
3
  "variant": "subword",
4
  "language": "avk",
5
- "unique_ngrams": 24557,
6
- "total_ngrams": 26111423
7
  }
 
2
  "n": 3,
3
  "variant": "subword",
4
  "language": "avk",
5
+ "unique_ngrams": 24495,
6
+ "total_ngrams": 26075153
7
  }
models/subword_ngram/avk_4gram_subword.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:828f99a99e0050489b41c4a9df2305254560e588c8d8d5ec02dd0d2eb1cd3530
3
- size 1449644
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:46348619ec1f35d5b9b5a791b6e52c986212e910495139645ef401b6c5b19293
3
+ size 1466527
models/subword_ngram/avk_4gram_subword_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "n": 4,
3
  "variant": "subword",
4
  "language": "avk",
5
- "unique_ngrams": 124823,
6
- "total_ngrams": 26082131
7
  }
 
2
  "n": 4,
3
  "variant": "subword",
4
  "language": "avk",
5
+ "unique_ngrams": 124607,
6
+ "total_ngrams": 26045859
7
  }
models/subword_ngram/avk_5gram_subword.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e0eeca6699c9f43d66da4ebc2b55d17aca64e6e1da22891f7c56ba5685a78bf8
3
+ size 3979959
models/subword_ngram/avk_5gram_subword_metadata.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "n": 5,
3
+ "variant": "subword",
4
+ "language": "avk",
5
+ "unique_ngrams": 346727,
6
+ "total_ngrams": 26016565
7
+ }
models/tokenizer/avk_tokenizer_16k.model CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:dc42b2323e7bee7429a820f2ea7e2009b2fb74e192b3fe3a17923335350d22c5
3
- size 510898
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:61aa561358a08bbf10b56396e1e242ff4daf76f48bd3e1430c9a21c6646c8e63
3
+ size 510862
models/tokenizer/avk_tokenizer_16k.vocab CHANGED
The diff for this file is too large to render. See raw diff
 
models/tokenizer/avk_tokenizer_32k.model CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:91bac420b4e318b698464d40a4467873b19d48b58df745bb29a08985b8c357b4
3
- size 793808
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0f3b72a63d1014b526eb5279776802d09220a24034b269459c333a9a664fa6c3
3
+ size 793698
models/tokenizer/avk_tokenizer_32k.vocab CHANGED
The diff for this file is too large to render. See raw diff
 
models/tokenizer/avk_tokenizer_64k.model CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f27f3f01c3515fa7385b2952b4f6df13e378c5cd044085d3bbce4d2ad95a544a
3
- size 1369364
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b2448f2ba279b7033939c7a46d2a2a9dc156e5a3720bd6cfdf679c543a76cae1
3
+ size 1369207
models/tokenizer/avk_tokenizer_64k.vocab CHANGED
The diff for this file is too large to render. See raw diff
 
models/tokenizer/avk_tokenizer_8k.model CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:6cee4ebbae3d1c7add217a4a460590ce0d0dd21f13b527e6db5ed0db19b09351
3
- size 374235
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:65b827ee5b00ced41dcc33bbebdcf83a04cc3e86c492efa730c760a58ceb5ffe
3
+ size 374206
models/tokenizer/avk_tokenizer_8k.vocab CHANGED
The diff for this file is too large to render. See raw diff
 
models/vocabulary/avk_vocabulary.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:3d2f858e168566644dadfc0198deb685658a860427034fac7e9621ba6c6c331f
3
- size 1016629
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:01d722fcf181d81cacc7fc5650bf4964605a556a442201ecc9e3bcf942c24bb0
3
+ size 1019369
models/vocabulary/avk_vocabulary_metadata.json CHANGED
@@ -1,17 +1,17 @@
1
  {
2
  "language": "avk",
3
- "vocabulary_size": 58132,
4
  "variant": "full",
5
  "statistics": {
6
- "type_token_ratio": 0.032232319628378144,
7
  "coverage": {
8
- "top_100": 0.48045109520711343,
9
- "top_1000": 0.7096278884294919,
10
- "top_5000": 0.8476448324833323,
11
- "top_10000": 0.8952395743698449
12
  },
13
- "hapax_count": 57051,
14
- "hapax_ratio": 0.4953074672477709,
15
- "total_documents": 29292
16
  }
17
  }
 
1
  {
2
  "language": "avk",
3
+ "vocabulary_size": 58045,
4
  "variant": "full",
5
  "statistics": {
6
+ "type_token_ratio": 0.032246491062106274,
7
  "coverage": {
8
+ "top_100": 0.48079183221565863,
9
+ "top_1000": 0.7100994345056655,
10
+ "top_5000": 0.8479087921405397,
11
+ "top_10000": 0.8953996650479654
12
  },
13
+ "hapax_count": 57000,
14
+ "hapax_ratio": 0.495458298926507,
15
+ "total_documents": 29294
16
  }
17
  }
models/word_markov/avk_markov_ctx1_word.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:49390c536dd83430c0715d46b765fc2890bf4f4d31c5442852be6a75add7a744
3
- size 5111239
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:555e68cdc2c21bda05bd3d25873880af9c89722f60875a1a12dbc25a7c979c16
3
+ size 5073388
models/word_markov/avk_markov_ctx1_word_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "context_size": 1,
3
  "variant": "word",
4
  "language": "avk",
5
- "unique_contexts": 115135,
6
- "total_transitions": 3544233
7
  }
 
2
  "context_size": 1,
3
  "variant": "word",
4
  "language": "avk",
5
+ "unique_contexts": 115002,
6
+ "total_transitions": 3538381
7
  }
models/word_markov/avk_markov_ctx2_word.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:08a9aef65566043a63c8658765edb2f951063117cc9f1704b722bd3a5d81e0ca
3
- size 11858936
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4c519efe15d5791630fec68525a6c287b347a81e0691dbc26e51750bdee13659
3
+ size 11825183
models/word_markov/avk_markov_ctx2_word_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "context_size": 2,
3
  "variant": "word",
4
  "language": "avk",
5
- "unique_contexts": 635326,
6
- "total_transitions": 3514941
7
  }
 
2
  "context_size": 2,
3
  "variant": "word",
4
  "language": "avk",
5
+ "unique_contexts": 633477,
6
+ "total_transitions": 3509087
7
  }