Upload all models and assets for avk (latest)
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +1 -0
- README.md +188 -142
- models/embeddings/aligned/avk_128d.bin +3 -0
- models/embeddings/aligned/avk_128d.meta.json +1 -0
- models/embeddings/aligned/avk_128d.projection.npy +3 -0
- models/embeddings/aligned/avk_128d_metadata.json +8 -0
- models/embeddings/aligned/avk_32d.bin +3 -0
- models/embeddings/aligned/avk_32d.meta.json +1 -0
- models/embeddings/aligned/avk_32d.projection.npy +3 -0
- models/embeddings/aligned/avk_32d_metadata.json +8 -0
- models/embeddings/aligned/avk_64d.bin +3 -0
- models/embeddings/aligned/avk_64d.meta.json +1 -0
- models/embeddings/aligned/avk_64d.projection.npy +3 -0
- models/embeddings/aligned/avk_64d_metadata.json +8 -0
- models/embeddings/monolingual/avk_128d.bin +2 -2
- models/embeddings/monolingual/avk_128d_metadata.json +1 -1
- models/embeddings/monolingual/avk_32d.bin +2 -2
- models/embeddings/monolingual/avk_32d_metadata.json +1 -1
- models/embeddings/monolingual/avk_64d.bin +2 -2
- models/embeddings/monolingual/avk_64d_metadata.json +1 -1
- models/subword_markov/avk_markov_ctx1_subword.parquet +2 -2
- models/subword_markov/avk_markov_ctx1_subword_metadata.json +1 -1
- models/subword_markov/avk_markov_ctx2_subword.parquet +2 -2
- models/subword_markov/avk_markov_ctx2_subword_metadata.json +2 -2
- models/subword_markov/avk_markov_ctx3_subword.parquet +2 -2
- models/subword_markov/avk_markov_ctx3_subword_metadata.json +2 -2
- models/subword_markov/avk_markov_ctx4_subword.parquet +2 -2
- models/subword_markov/avk_markov_ctx4_subword_metadata.json +2 -2
- models/subword_ngram/avk_2gram_subword.parquet +2 -2
- models/subword_ngram/avk_2gram_subword_metadata.json +2 -2
- models/subword_ngram/avk_3gram_subword.parquet +2 -2
- models/subword_ngram/avk_3gram_subword_metadata.json +2 -2
- models/subword_ngram/avk_4gram_subword.parquet +2 -2
- models/subword_ngram/avk_4gram_subword_metadata.json +2 -2
- models/subword_ngram/avk_5gram_subword.parquet +3 -0
- models/subword_ngram/avk_5gram_subword_metadata.json +7 -0
- models/tokenizer/avk_tokenizer_16k.model +2 -2
- models/tokenizer/avk_tokenizer_16k.vocab +0 -0
- models/tokenizer/avk_tokenizer_32k.model +2 -2
- models/tokenizer/avk_tokenizer_32k.vocab +0 -0
- models/tokenizer/avk_tokenizer_64k.model +2 -2
- models/tokenizer/avk_tokenizer_64k.vocab +0 -0
- models/tokenizer/avk_tokenizer_8k.model +2 -2
- models/tokenizer/avk_tokenizer_8k.vocab +0 -0
- models/vocabulary/avk_vocabulary.parquet +2 -2
- models/vocabulary/avk_vocabulary_metadata.json +9 -9
- models/word_markov/avk_markov_ctx1_word.parquet +2 -2
- models/word_markov/avk_markov_ctx1_word_metadata.json +2 -2
- models/word_markov/avk_markov_ctx2_word.parquet +2 -2
- models/word_markov/avk_markov_ctx2_word_metadata.json +2 -2
.gitattributes
CHANGED
|
@@ -39,3 +39,4 @@ visualizations/position_encoding_comparison.png filter=lfs diff=lfs merge=lfs -t
|
|
| 39 |
visualizations/tsne_sentences.png filter=lfs diff=lfs merge=lfs -text
|
| 40 |
visualizations/tsne_words.png filter=lfs diff=lfs merge=lfs -text
|
| 41 |
visualizations/zipf_law.png filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 39 |
visualizations/tsne_sentences.png filter=lfs diff=lfs merge=lfs -text
|
| 40 |
visualizations/tsne_words.png filter=lfs diff=lfs merge=lfs -text
|
| 41 |
visualizations/zipf_law.png filter=lfs diff=lfs merge=lfs -text
|
| 42 |
+
visualizations/embedding_tsne_multilingual.png filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
---
|
| 2 |
language: avk
|
| 3 |
-
language_name:
|
| 4 |
language_family: constructed_other
|
| 5 |
tags:
|
| 6 |
- wikilangs
|
|
@@ -10,11 +10,21 @@ tags:
|
|
| 10 |
- n-gram
|
| 11 |
- markov
|
| 12 |
- wikipedia
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
- monolingual
|
| 14 |
- family-constructed_other
|
| 15 |
license: mit
|
| 16 |
library_name: wikilangs
|
| 17 |
-
pipeline_tag:
|
| 18 |
datasets:
|
| 19 |
- omarkamali/wikipedia-monthly
|
| 20 |
dataset_info:
|
|
@@ -23,20 +33,20 @@ dataset_info:
|
|
| 23 |
metrics:
|
| 24 |
- name: best_compression_ratio
|
| 25 |
type: compression
|
| 26 |
-
value: 4.
|
| 27 |
- name: best_isotropy
|
| 28 |
type: isotropy
|
| 29 |
-
value: 0.
|
| 30 |
- name: vocabulary_size
|
| 31 |
type: vocab
|
| 32 |
value: 0
|
| 33 |
generated: 2026-01-03
|
| 34 |
---
|
| 35 |
|
| 36 |
-
#
|
| 37 |
## Comprehensive Research Report & Full Ablation Study
|
| 38 |
|
| 39 |
-
This repository contains NLP models trained and evaluated by Wikilangs, specifically on **
|
| 40 |
We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.
|
| 41 |
|
| 42 |
## 📋 Repository Contents
|
|
@@ -60,7 +70,7 @@ We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and
|
|
| 60 |
- [3. Markov Chain Evaluation](#3-markov-chain-evaluation)
|
| 61 |
- [4. Vocabulary Analysis](#4-vocabulary-analysis)
|
| 62 |
- [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation)
|
| 63 |
-
- [6. Morphological Analysis (Experimental)](#6
|
| 64 |
- [7. Summary & Recommendations](#7-summary--recommendations)
|
| 65 |
- [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide)
|
| 66 |
- [Visualizations Index](#visualizations-index)
|
|
@@ -80,23 +90,23 @@ We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and
|
|
| 80 |
|
| 81 |
| Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
|
| 82 |
|------------|-------------|---------------|----------|--------------|
|
| 83 |
-
| **8k** | 3.
|
| 84 |
-
| **16k** | 4.
|
| 85 |
-
| **32k** | 4.380x | 4.
|
| 86 |
-
| **64k** | 4.
|
| 87 |
|
| 88 |
### Tokenization Examples
|
| 89 |
|
| 90 |
Below are sample sentences tokenized with each vocabulary size:
|
| 91 |
|
| 92 |
-
**Sample 1:** `
|
| 93 |
|
| 94 |
| Vocab | Tokens | Count |
|
| 95 |
|-------|--------|-------|
|
| 96 |
-
| 8k | `▁
|
| 97 |
-
| 16k | `▁
|
| 98 |
-
| 32k | `▁
|
| 99 |
-
| 64k | `▁
|
| 100 |
|
| 101 |
**Sample 2:** `Bifa Afrika Amerika Asia Europa Oceania Koblira Awalkera sanda`
|
| 102 |
|
|
@@ -119,7 +129,7 @@ Below are sample sentences tokenized with each vocabulary size:
|
|
| 119 |
|
| 120 |
### Key Findings
|
| 121 |
|
| 122 |
-
- **Best Compression:** 64k achieves 4.
|
| 123 |
- **Lowest UNK Rate:** 8k with 0.2370% unknown tokens
|
| 124 |
- **Trade-off:** Larger vocabularies improve compression but increase model size
|
| 125 |
- **Recommendation:** 32k vocabulary provides optimal balance for production use
|
|
@@ -137,12 +147,14 @@ Below are sample sentences tokenized with each vocabulary size:
|
|
| 137 |
|
| 138 |
| N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
|
| 139 |
|--------|---------|------------|---------|----------------|------------------|-------------------|
|
| 140 |
-
| **2-gram** | Word | 4,
|
| 141 |
-
| **2-gram** | Subword | 284 🏆 | 8.15 | 3,
|
| 142 |
-
| **3-gram** | Word | 9,
|
| 143 |
-
| **3-gram** | Subword | 1,
|
| 144 |
-
| **4-gram** | Word | 16,
|
| 145 |
-
| **4-gram** | Subword | 7,
|
|
|
|
|
|
|
| 146 |
|
| 147 |
### Top 5 N-grams by Size
|
| 148 |
|
|
@@ -154,7 +166,7 @@ Below are sample sentences tokenized with each vocabulary size:
|
|
| 154 |
| 2 | `of life` | 25,896 |
|
| 155 |
| 3 | `of the` | 24,998 |
|
| 156 |
| 4 | `the world` | 24,670 |
|
| 157 |
-
| 5 | `species
|
| 158 |
|
| 159 |
**3-grams (Word):**
|
| 160 |
|
|
@@ -173,45 +185,65 @@ Below are sample sentences tokenized with each vocabulary size:
|
|
| 173 |
| 1 | `species of the world` | 24,652 |
|
| 174 |
| 2 | `mammal species of the` | 24,652 |
|
| 175 |
| 3 | `bak taneon zo pimtayar` | 15,309 |
|
| 176 |
-
| 4 | `zo pimtayar vexala dem` | 15,
|
| 177 |
-
| 5 | `taneon zo pimtayar vexala` | 15,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
|
| 179 |
**2-grams (Subword):**
|
| 180 |
|
| 181 |
| Rank | N-gram | Count |
|
| 182 |
|------|--------|-------|
|
| 183 |
-
| 1 | `a _` |
|
| 184 |
-
| 2 | `s _` | 476,
|
| 185 |
-
| 3 | `_ (` | 458,
|
| 186 |
-
| 4 | `e _` |
|
| 187 |
-
| 5 | `_ v` | 360,
|
| 188 |
|
| 189 |
**3-grams (Subword):**
|
| 190 |
|
| 191 |
| Rank | N-gram | Count |
|
| 192 |
|------|--------|-------|
|
| 193 |
-
| 1 | `_ : _` | 268,
|
| 194 |
-
| 2 | `u s _` | 176,
|
| 195 |
-
| 3 | `e s t` | 175,
|
| 196 |
-
| 4 | `_ v u` | 167,
|
| 197 |
-
| 5 | `u e s` | 166,
|
| 198 |
|
| 199 |
**4-grams (Subword):**
|
| 200 |
|
| 201 |
| Rank | N-gram | Count |
|
| 202 |
|------|--------|-------|
|
| 203 |
-
| 1 | `u e s t` | 164,
|
| 204 |
| 2 | `_ v u e` | 163,879 |
|
| 205 |
| 3 | `v u e s` | 163,702 |
|
| 206 |
| 4 | `) _ v u` | 124,953 |
|
| 207 |
| 5 | `e s t -` | 124,892 |
|
| 208 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 209 |
|
| 210 |
### Key Findings
|
| 211 |
|
| 212 |
- **Best Perplexity:** 2-gram (subword) with 284
|
| 213 |
- **Entropy Trend:** Decreases with larger n-grams (more predictable)
|
| 214 |
-
- **Coverage:** Top-1000 patterns cover ~
|
| 215 |
- **Recommendation:** 4-gram or 5-gram for best predictive performance
|
| 216 |
|
| 217 |
---
|
|
@@ -227,14 +259,14 @@ Below are sample sentences tokenized with each vocabulary size:
|
|
| 227 |
|
| 228 |
| Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
|
| 229 |
|---------|---------|-------------|------------|------------------|-----------------|----------------|
|
| 230 |
-
| **1** | Word | 0.
|
| 231 |
-
| **1** | Subword | 1.
|
| 232 |
-
| **2** | Word | 0.
|
| 233 |
-
| **2** | Subword | 0.
|
| 234 |
-
| **3** | Word | 0.
|
| 235 |
-
| **3** | Subword | 0.
|
| 236 |
-
| **4** | Word | 0.
|
| 237 |
-
| **4** | Subword | 0.
|
| 238 |
|
| 239 |
### Generated Text Samples (Word-based)
|
| 240 |
|
|
@@ -242,27 +274,27 @@ Below are text samples generated from each word-based Markov chain model:
|
|
| 242 |
|
| 243 |
**Context Size 1:**
|
| 244 |
|
| 245 |
-
1. `en
|
| 246 |
-
2. `vuest paleobiology database
|
| 247 |
-
3. `ke
|
| 248 |
|
| 249 |
**Context Size 2:**
|
| 250 |
|
| 251 |
-
1. `en vuest
|
| 252 |
-
2. `of life
|
| 253 |
-
3. `of the world siatos ke
|
| 254 |
|
| 255 |
**Context Size 3:**
|
| 256 |
|
| 257 |
-
1. `of the world
|
| 258 |
-
2. `
|
| 259 |
-
3. `species of the world
|
| 260 |
|
| 261 |
**Context Size 4:**
|
| 262 |
|
| 263 |
-
1. `species of the world siatos ke bata katca tir aptiskafa pulasa vuestexa is xantaza en
|
| 264 |
-
2. `mammal species of the world
|
| 265 |
-
3. `bak taneon zo pimtayar vexala dem
|
| 266 |
|
| 267 |
|
| 268 |
### Generated Text Samples (Subword-based)
|
|
@@ -271,34 +303,34 @@ Below are text samples generated from each subword-based Markov chain model:
|
|
| 271 |
|
| 272 |
**Context Size 1:**
|
| 273 |
|
| 274 |
-
1. `
|
| 275 |
-
2. `
|
| 276 |
-
3. `
|
| 277 |
|
| 278 |
**Context Size 2:**
|
| 279 |
|
| 280 |
-
1. `
|
| 281 |
-
2. `
|
| 282 |
-
3. `_(
|
| 283 |
|
| 284 |
**Context Size 3:**
|
| 285 |
|
| 286 |
-
1. `_:
|
| 287 |
-
2. `
|
| 288 |
-
3. `
|
| 289 |
|
| 290 |
**Context Size 4:**
|
| 291 |
|
| 292 |
-
1. `
|
| 293 |
-
2. `
|
| 294 |
-
3. `
|
| 295 |
|
| 296 |
|
| 297 |
### Key Findings
|
| 298 |
|
| 299 |
-
- **Best Predictability:** Context-4 (word) with
|
| 300 |
- **Branching Factor:** Decreases with context size (more deterministic)
|
| 301 |
-
- **Memory Trade-off:** Larger contexts require more storage (
|
| 302 |
- **Recommendation:** Context-3 or Context-4 for text generation
|
| 303 |
|
| 304 |
---
|
|
@@ -314,26 +346,26 @@ Below are text samples generated from each subword-based Markov chain model:
|
|
| 314 |
|
| 315 |
| Metric | Value |
|
| 316 |
|--------|-------|
|
| 317 |
-
| Vocabulary Size | 58,
|
| 318 |
-
| Total Tokens | 3,
|
| 319 |
-
| Mean Frequency | 60.
|
| 320 |
| Median Frequency | 5 |
|
| 321 |
-
| Frequency Std Dev |
|
| 322 |
|
| 323 |
### Most Common Words
|
| 324 |
|
| 325 |
| Rank | Word | Frequency |
|
| 326 |
|------|------|-----------|
|
| 327 |
-
| 1 | en | 127,
|
| 328 |
| 2 | vuest | 124,885 |
|
| 329 |
-
| 3 | ke | 85,
|
| 330 |
-
| 4 | of | 52,
|
| 331 |
| 5 | tir | 40,501 |
|
| 332 |
-
| 6 | is | 37,
|
| 333 |
-
| 7 | katca | 36,
|
| 334 |
-
| 8 | va | 35,
|
| 335 |
-
| 9 | bak | 28,
|
| 336 |
-
| 10 | koe | 28,
|
| 337 |
|
| 338 |
### Least Common Words (from vocabulary)
|
| 339 |
|
|
@@ -354,24 +386,24 @@ Below are text samples generated from each subword-based Markov chain model:
|
|
| 354 |
|
| 355 |
| Metric | Value |
|
| 356 |
|--------|-------|
|
| 357 |
-
| Zipf Coefficient | 1.
|
| 358 |
-
| R² (Goodness of Fit) | 0.
|
| 359 |
| Adherence Quality | **excellent** |
|
| 360 |
|
| 361 |
### Coverage Analysis
|
| 362 |
|
| 363 |
| Top N Words | Coverage |
|
| 364 |
|-------------|----------|
|
| 365 |
-
| Top 100 | 48.
|
| 366 |
-
| Top 1,000 | 72.
|
| 367 |
-
| Top 5,000 | 86.
|
| 368 |
| Top 10,000 | 91.0% |
|
| 369 |
|
| 370 |
### Key Findings
|
| 371 |
|
| 372 |
- **Zipf Compliance:** R²=0.9969 indicates excellent adherence to Zipf's law
|
| 373 |
-
- **High Frequency Dominance:** Top 100 words cover 48.
|
| 374 |
-
- **Long Tail:** 48,
|
| 375 |
|
| 376 |
---
|
| 377 |
## 5. Word Embeddings Evaluation
|
|
@@ -387,37 +419,40 @@ Below are text samples generated from each subword-based Markov chain model:
|
|
| 387 |
|
| 388 |
### 5.1 Cross-Lingual Alignment
|
| 389 |
|
| 390 |
-
|
|
|
|
|
|
|
| 391 |
|
| 392 |
|
| 393 |
### 5.2 Model Comparison
|
| 394 |
|
| 395 |
| Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 |
|
| 396 |
|-------|-----------|----------|------------------|---------------|----------------|
|
| 397 |
-
| **mono_32d** | 32 | 0.
|
| 398 |
-
| **mono_64d** | 64 | 0.
|
| 399 |
-
| **mono_128d** | 128 | 0.
|
|
|
|
|
|
|
|
|
|
| 400 |
|
| 401 |
### Key Findings
|
| 402 |
|
| 403 |
-
- **Best Isotropy:** mono_32d with 0.
|
| 404 |
-
- **Semantic Density:** Average pairwise similarity of 0.
|
| 405 |
-
- **Alignment Quality:**
|
| 406 |
- **Recommendation:** 128d aligned for best cross-lingual performance
|
| 407 |
|
| 408 |
---
|
| 409 |
## 6. Morphological Analysis (Experimental)
|
| 410 |
|
| 411 |
-
> ⚠️ **Warning:** This language shows low morphological productivity. The statistical signals used for this analysis may be noisy or less reliable than for morphologically rich languages.
|
| 412 |
-
|
| 413 |
This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.
|
| 414 |
|
| 415 |
### 6.1 Productivity & Complexity
|
| 416 |
|
| 417 |
| Metric | Value | Interpretation | Recommendation |
|
| 418 |
|--------|-------|----------------|----------------|
|
| 419 |
-
| Productivity Index | **
|
| 420 |
-
| Idiomaticity Gap | **-
|
| 421 |
|
| 422 |
### 6.2 Affix Inventory (Productive Units)
|
| 423 |
|
|
@@ -426,18 +461,19 @@ These are the most productive prefixes and suffixes identified by sampling the v
|
|
| 426 |
#### Productive Prefixes
|
| 427 |
| Prefix | Examples |
|
| 428 |
|--------|----------|
|
|
|
|
| 429 |
|
| 430 |
#### Productive Suffixes
|
| 431 |
| Suffix | Examples |
|
| 432 |
|--------|----------|
|
| 433 |
-
| `-a` |
|
| 434 |
-
| `-s` |
|
| 435 |
-
| `-us` |
|
| 436 |
-
| `-ra` |
|
| 437 |
-
| `-
|
| 438 |
-
| `-
|
| 439 |
-
| `-
|
| 440 |
-
| `-
|
| 441 |
|
| 442 |
### 6.3 Bound Stems (Lexical Roots)
|
| 443 |
|
|
@@ -445,25 +481,35 @@ Bound stems are high-frequency subword units that are semantically cohesive but
|
|
| 445 |
|
| 446 |
| Stem | Cohesion | Substitutability | Examples |
|
| 447 |
|------|----------|------------------|----------|
|
| 448 |
-
| `
|
| 449 |
-
| `
|
| 450 |
-
| `
|
| 451 |
-
| `
|
| 452 |
-
| `imta` | 2.
|
| 453 |
-
| `tava` | 1.80x | 25 contexts | stava, kotava,
|
| 454 |
-
| `atca` | 1.
|
| 455 |
-
| `pimt` | 2.
|
| 456 |
-
| `stes` | 1.
|
| 457 |
-
| `
|
| 458 |
-
| `
|
| 459 |
-
| `
|
| 460 |
|
| 461 |
### 6.4 Affix Compatibility (Co-occurrence)
|
| 462 |
|
| 463 |
This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology.
|
| 464 |
|
| 465 |
-
|
| 466 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 467 |
|
| 468 |
### 6.5 Recursive Morpheme Segmentation
|
| 469 |
|
|
@@ -471,26 +517,26 @@ Using **Recursive Hierarchical Substitutability**, we decompose complex words in
|
|
| 471 |
|
| 472 |
| Word | Suggested Split | Confidence | Stem |
|
| 473 |
|------|-----------------|------------|------|
|
| 474 |
-
|
|
| 475 |
-
|
|
| 476 |
-
|
|
| 477 |
-
|
|
| 478 |
-
|
|
| 479 |
-
|
|
| 480 |
-
|
|
| 481 |
-
|
|
| 482 |
-
|
|
| 483 |
-
|
|
| 484 |
-
|
|
| 485 |
-
|
|
| 486 |
-
|
|
| 487 |
-
|
|
| 488 |
-
|
|
| 489 |
|
| 490 |
### 6.6 Linguistic Interpretation
|
| 491 |
|
| 492 |
> **Automated Insight:**
|
| 493 |
-
The language
|
| 494 |
|
| 495 |
---
|
| 496 |
## 7. Summary & Recommendations
|
|
@@ -503,7 +549,7 @@ The language AVK appears to be more isolating or has a highly fixed vocabulary.
|
|
| 503 |
|-----------|-------------|-----------|
|
| 504 |
| Tokenizer | **64k BPE** | Best compression (4.69x) |
|
| 505 |
| N-gram | **2-gram** | Lowest perplexity (284) |
|
| 506 |
-
| Markov | **Context-4** | Highest predictability (
|
| 507 |
| Embeddings | **100d** | Balanced semantic capture and isotropy |
|
| 508 |
|
| 509 |
|
|
@@ -717,4 +763,4 @@ MIT License - Free for academic and commercial use.
|
|
| 717 |
---
|
| 718 |
*Generated by Wikilangs Models Pipeline*
|
| 719 |
|
| 720 |
-
*Report Date: 2026-01-03
|
|
|
|
| 1 |
---
|
| 2 |
language: avk
|
| 3 |
+
language_name: Kotava
|
| 4 |
language_family: constructed_other
|
| 5 |
tags:
|
| 6 |
- wikilangs
|
|
|
|
| 10 |
- n-gram
|
| 11 |
- markov
|
| 12 |
- wikipedia
|
| 13 |
+
- feature-extraction
|
| 14 |
+
- sentence-similarity
|
| 15 |
+
- tokenization
|
| 16 |
+
- n-grams
|
| 17 |
+
- markov-chain
|
| 18 |
+
- text-mining
|
| 19 |
+
- fasttext
|
| 20 |
+
- babelvec
|
| 21 |
+
- vocabulous
|
| 22 |
+
- vocabulary
|
| 23 |
- monolingual
|
| 24 |
- family-constructed_other
|
| 25 |
license: mit
|
| 26 |
library_name: wikilangs
|
| 27 |
+
pipeline_tag: text-generation
|
| 28 |
datasets:
|
| 29 |
- omarkamali/wikipedia-monthly
|
| 30 |
dataset_info:
|
|
|
|
| 33 |
metrics:
|
| 34 |
- name: best_compression_ratio
|
| 35 |
type: compression
|
| 36 |
+
value: 4.689
|
| 37 |
- name: best_isotropy
|
| 38 |
type: isotropy
|
| 39 |
+
value: 0.8768
|
| 40 |
- name: vocabulary_size
|
| 41 |
type: vocab
|
| 42 |
value: 0
|
| 43 |
generated: 2026-01-03
|
| 44 |
---
|
| 45 |
|
| 46 |
+
# Kotava - Wikilangs Models
|
| 47 |
## Comprehensive Research Report & Full Ablation Study
|
| 48 |
|
| 49 |
+
This repository contains NLP models trained and evaluated by Wikilangs, specifically on **Kotava** Wikipedia data.
|
| 50 |
We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.
|
| 51 |
|
| 52 |
## 📋 Repository Contents
|
|
|
|
| 70 |
- [3. Markov Chain Evaluation](#3-markov-chain-evaluation)
|
| 71 |
- [4. Vocabulary Analysis](#4-vocabulary-analysis)
|
| 72 |
- [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation)
|
| 73 |
+
- [6. Morphological Analysis (Experimental)](#6--morphological-analysis-experimental)
|
| 74 |
- [7. Summary & Recommendations](#7-summary--recommendations)
|
| 75 |
- [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide)
|
| 76 |
- [Visualizations Index](#visualizations-index)
|
|
|
|
| 90 |
|
| 91 |
| Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
|
| 92 |
|------------|-------------|---------------|----------|--------------|
|
| 93 |
+
| **8k** | 3.689x | 3.69 | 0.2370% | 255,266 |
|
| 94 |
+
| **16k** | 4.051x | 4.06 | 0.2603% | 232,417 |
|
| 95 |
+
| **32k** | 4.380x | 4.39 | 0.2815% | 214,947 |
|
| 96 |
+
| **64k** | 4.689x 🏆 | 4.69 | 0.3013% | 200,817 |
|
| 97 |
|
| 98 |
### Tokenization Examples
|
| 99 |
|
| 100 |
Below are sample sentences tokenized with each vocabulary size:
|
| 101 |
|
| 102 |
+
**Sample 1:** `Victoria tir kelu is lozolonafa widava ke Seycella tigisa valente patecta koe Ma...`
|
| 103 |
|
| 104 |
| Vocab | Tokens | Count |
|
| 105 |
|-------|--------|-------|
|
| 106 |
+
| 8k | `▁victor ia ▁tir ▁kelu ▁is ▁lozolonafa ▁widava ▁ke ▁s ey ... (+13 more)` | 23 |
|
| 107 |
+
| 16k | `▁victoria ▁tir ▁kelu ▁is ▁lozolonafa ▁widava ▁ke ▁sey c ella ... (+10 more)` | 20 |
|
| 108 |
+
| 32k | `▁victoria ▁tir ▁kelu ▁is ▁lozolonafa ▁widava ▁ke ▁sey c ella ... (+10 more)` | 20 |
|
| 109 |
+
| 64k | `▁victoria ▁tir ▁kelu ▁is ▁lozolonafa ▁widava ▁ke ▁seycella ▁tigisa ▁valente ... (+8 more)` | 18 |
|
| 110 |
|
| 111 |
**Sample 2:** `Bifa Afrika Amerika Asia Europa Oceania Koblira Awalkera sanda`
|
| 112 |
|
|
|
|
| 129 |
|
| 130 |
### Key Findings
|
| 131 |
|
| 132 |
+
- **Best Compression:** 64k achieves 4.689x compression
|
| 133 |
- **Lowest UNK Rate:** 8k with 0.2370% unknown tokens
|
| 134 |
- **Trade-off:** Larger vocabularies improve compression but increase model size
|
| 135 |
- **Recommendation:** 32k vocabulary provides optimal balance for production use
|
|
|
|
| 147 |
|
| 148 |
| N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
|
| 149 |
|--------|---------|------------|---------|----------------|------------------|-------------------|
|
| 150 |
+
| **2-gram** | Word | 4,342 | 12.08 | 65,378 | 38.8% | 59.6% |
|
| 151 |
+
| **2-gram** | Subword | 284 🏆 | 8.15 | 3,324 | 63.4% | 99.6% |
|
| 152 |
+
| **3-gram** | Word | 9,058 | 13.14 | 131,536 | 34.4% | 51.5% |
|
| 153 |
+
| **3-gram** | Subword | 1,996 | 10.96 | 24,495 | 26.3% | 74.2% |
|
| 154 |
+
| **4-gram** | Word | 16,918 | 14.05 | 222,038 | 30.4% | 44.4% |
|
| 155 |
+
| **4-gram** | Subword | 7,464 | 12.87 | 124,607 | 17.4% | 50.9% |
|
| 156 |
+
| **5-gram** | Word | 18,754 | 14.19 | 212,819 | 28.7% | 42.2% |
|
| 157 |
+
| **5-gram** | Subword | 17,155 | 14.07 | 346,727 | 14.4% | 42.8% |
|
| 158 |
|
| 159 |
### Top 5 N-grams by Size
|
| 160 |
|
|
|
|
| 166 |
| 2 | `of life` | 25,896 |
|
| 167 |
| 3 | `of the` | 24,998 |
|
| 168 |
| 4 | `the world` | 24,670 |
|
| 169 |
+
| 5 | `mammal species` | 24,652 |
|
| 170 |
|
| 171 |
**3-grams (Word):**
|
| 172 |
|
|
|
|
| 185 |
| 1 | `species of the world` | 24,652 |
|
| 186 |
| 2 | `mammal species of the` | 24,652 |
|
| 187 |
| 3 | `bak taneon zo pimtayar` | 15,309 |
|
| 188 |
+
| 4 | `zo pimtayar vexala dem` | 15,226 |
|
| 189 |
+
| 5 | `taneon zo pimtayar vexala` | 15,225 |
|
| 190 |
+
|
| 191 |
+
**5-grams (Word):**
|
| 192 |
+
|
| 193 |
+
| Rank | N-gram | Count |
|
| 194 |
+
|------|--------|-------|
|
| 195 |
+
| 1 | `mammal species of the world` | 24,652 |
|
| 196 |
+
| 2 | `taneon zo pimtayar vexala dem` | 15,225 |
|
| 197 |
+
| 3 | `bak taneon zo pimtayar vexala` | 14,992 |
|
| 198 |
+
| 4 | `en vuest animal diversity web` | 14,121 |
|
| 199 |
+
| 5 | `en vuest catalogue of life` | 14,116 |
|
| 200 |
|
| 201 |
**2-grams (Subword):**
|
| 202 |
|
| 203 |
| Rank | N-gram | Count |
|
| 204 |
|------|--------|-------|
|
| 205 |
+
| 1 | `a _` | 682,687 |
|
| 206 |
+
| 2 | `s _` | 476,530 |
|
| 207 |
+
| 3 | `_ (` | 458,247 |
|
| 208 |
+
| 4 | `e _` | 386,463 |
|
| 209 |
+
| 5 | `_ v` | 360,083 |
|
| 210 |
|
| 211 |
**3-grams (Subword):**
|
| 212 |
|
| 213 |
| Rank | N-gram | Count |
|
| 214 |
|------|--------|-------|
|
| 215 |
+
| 1 | `_ : _` | 268,658 |
|
| 216 |
+
| 2 | `u s _` | 176,817 |
|
| 217 |
+
| 3 | `e s t` | 175,950 |
|
| 218 |
+
| 4 | `_ v u` | 167,654 |
|
| 219 |
+
| 5 | `u e s` | 166,548 |
|
| 220 |
|
| 221 |
**4-grams (Subword):**
|
| 222 |
|
| 223 |
| Rank | N-gram | Count |
|
| 224 |
|------|--------|-------|
|
| 225 |
+
| 1 | `u e s t` | 164,186 |
|
| 226 |
| 2 | `_ v u e` | 163,879 |
|
| 227 |
| 3 | `v u e s` | 163,702 |
|
| 228 |
| 4 | `) _ v u` | 124,953 |
|
| 229 |
| 5 | `e s t -` | 124,892 |
|
| 230 |
|
| 231 |
+
**5-grams (Subword):**
|
| 232 |
+
|
| 233 |
+
| Rank | N-gram | Count |
|
| 234 |
+
|------|--------|-------|
|
| 235 |
+
| 1 | `_ v u e s` | 163,700 |
|
| 236 |
+
| 2 | `v u e s t` | 163,699 |
|
| 237 |
+
| 3 | `u e s t -` | 124,886 |
|
| 238 |
+
| 4 | `e s t - _` | 124,885 |
|
| 239 |
+
| 5 | `) _ v u e` | 124,841 |
|
| 240 |
+
|
| 241 |
|
| 242 |
### Key Findings
|
| 243 |
|
| 244 |
- **Best Perplexity:** 2-gram (subword) with 284
|
| 245 |
- **Entropy Trend:** Decreases with larger n-grams (more predictable)
|
| 246 |
+
- **Coverage:** Top-1000 patterns cover ~43% of corpus
|
| 247 |
- **Recommendation:** 4-gram or 5-gram for best predictive performance
|
| 248 |
|
| 249 |
---
|
|
|
|
| 259 |
|
| 260 |
| Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
|
| 261 |
|---------|---------|-------------|------------|------------------|-----------------|----------------|
|
| 262 |
+
| **1** | Word | 0.9054 | 1.873 | 5.52 | 115,002 | 9.5% |
|
| 263 |
+
| **1** | Subword | 1.0377 | 2.053 | 7.85 | 900 | 0.0% |
|
| 264 |
+
| **2** | Word | 0.2492 | 1.189 | 1.63 | 633,477 | 75.1% |
|
| 265 |
+
| **2** | Subword | 0.9459 | 1.926 | 5.95 | 7,069 | 5.4% |
|
| 266 |
+
| **3** | Word | 0.1398 | 1.102 | 1.31 | 1,026,801 | 86.0% |
|
| 267 |
+
| **3** | Subword | 0.7949 | 1.735 | 4.30 | 42,037 | 20.5% |
|
| 268 |
+
| **4** | Word | 0.1005 🏆 | 1.072 | 1.21 | 1,342,358 | 89.9% |
|
| 269 |
+
| **4** | Subword | 0.6925 | 1.616 | 3.14 | 180,930 | 30.8% |
|
| 270 |
|
| 271 |
### Generated Text Samples (Word-based)
|
| 272 |
|
|
|
|
| 274 |
|
| 275 |
**Context Size 1:**
|
| 276 |
|
| 277 |
+
1. `en fr vuest paleobiology database dipodomys heermanni heermanni jolonensis grinnell and chiefdom a a...`
|
| 278 |
+
2. `vuest paleobiology database xerus erythropus leucoumbrinus rüppell en vuest paleobiology database bu...`
|
| 279 |
+
3. `ke otomops johnstonei en vuest itis rusa bak taneon zo bendeyer ewava vuestexa is xantaza en`
|
| 280 |
|
| 281 |
**Context Size 2:**
|
| 282 |
|
| 283 |
+
1. `en vuest walvedeyafa zveriopafa aba 2 2 siatos 5 katca oxi phonygammus 1 katca proklano philemon pro...`
|
| 284 |
+
2. `of life dicerorhinus sumatrensis lasiotis en vuest ncbi campicoloides fr en vuest mammal species of ...`
|
| 285 |
+
3. `of the world siatos ke konakara apta dere tid ke mila veyafa katca vesnol nycticeius humeralis humer...`
|
| 286 |
|
| 287 |
**Context Size 3:**
|
| 288 |
|
| 289 |
+
1. `of the world v 3 petrogale purpureicollis le souef en vuest cites ctenomys colburni en vuest uicn ka...`
|
| 290 |
+
2. `species of the world v 3 isolobodon portoricensis j a allen vesnol myotis yumanensis sociabilis h w ...`
|
| 291 |
+
3. `mammal species of the world siatos ke konakara apta dere tid ke mila veyafa katca vesnol lonchorhina...`
|
| 292 |
|
| 293 |
**Context Size 4:**
|
| 294 |
|
| 295 |
+
1. `species of the world siatos ke bata katca tir aptiskafa dere rupel pulasa vuestexa is xantaza en vue...`
|
| 296 |
+
2. `mammal species of the world siatos ke bata katca tir aptiskafa pulasa vuestexa is xantaza en vuest m...`
|
| 297 |
+
3. `bak taneon zo pimtayar vexala dem katceem sedme vuestesa pulara ke walvedeyafa zveriopafa aba 2 2 si...`
|
| 298 |
|
| 299 |
|
| 300 |
### Generated Text Samples (Subword-based)
|
|
|
|
| 303 |
|
| 304 |
**Context Size 1:**
|
| 305 |
|
| 306 |
+
1. `_ves_wirtis_cada`
|
| 307 |
+
2. `aldronururuda_a,`
|
| 308 |
+
3. `e_oe_s_ta_tcimot`
|
| 309 |
|
| 310 |
**Context Size 2:**
|
| 311 |
|
| 312 |
+
1. `a_:_cathirojunafa`
|
| 313 |
+
2. `s_:_le="vey_tazne`
|
| 314 |
+
3. `_(heropanelterifo`
|
| 315 |
|
| 316 |
**Context Size 3:**
|
| 317 |
|
| 318 |
+
1. `_:_burnata_kuksa_(`
|
| 319 |
+
2. `us_paleobiologue_o`
|
| 320 |
+
3. `ested_nudingus_vor`
|
| 321 |
|
| 322 |
**Context Size 4:**
|
| 323 |
|
| 324 |
+
1. `uest-_:_uicn_:_acom`
|
| 325 |
+
2. `_vuestesa_vaticus_p`
|
| 326 |
+
3. `vuest-_:_mephitis_:`
|
| 327 |
|
| 328 |
|
| 329 |
### Key Findings
|
| 330 |
|
| 331 |
+
- **Best Predictability:** Context-4 (word) with 89.9% predictability
|
| 332 |
- **Branching Factor:** Decreases with context size (more deterministic)
|
| 333 |
+
- **Memory Trade-off:** Larger contexts require more storage (180,930 contexts)
|
| 334 |
- **Recommendation:** Context-3 or Context-4 for text generation
|
| 335 |
|
| 336 |
---
|
|
|
|
| 346 |
|
| 347 |
| Metric | Value |
|
| 348 |
|--------|-------|
|
| 349 |
+
| Vocabulary Size | 58,045 |
|
| 350 |
+
| Total Tokens | 3,510,675 |
|
| 351 |
+
| Mean Frequency | 60.48 |
|
| 352 |
| Median Frequency | 5 |
|
| 353 |
+
| Frequency Std Dev | 1080.85 |
|
| 354 |
|
| 355 |
### Most Common Words
|
| 356 |
|
| 357 |
| Rank | Word | Frequency |
|
| 358 |
|------|------|-----------|
|
| 359 |
+
| 1 | en | 127,527 |
|
| 360 |
| 2 | vuest | 124,885 |
|
| 361 |
+
| 3 | ke | 85,172 |
|
| 362 |
+
| 4 | of | 52,509 |
|
| 363 |
| 5 | tir | 40,501 |
|
| 364 |
+
| 6 | is | 37,459 |
|
| 365 |
+
| 7 | katca | 36,160 |
|
| 366 |
+
| 8 | va | 35,241 |
|
| 367 |
+
| 9 | bak | 28,713 |
|
| 368 |
+
| 10 | koe | 28,499 |
|
| 369 |
|
| 370 |
### Least Common Words (from vocabulary)
|
| 371 |
|
|
|
|
| 386 |
|
| 387 |
| Metric | Value |
|
| 388 |
|--------|-------|
|
| 389 |
+
| Zipf Coefficient | 1.1330 |
|
| 390 |
+
| R² (Goodness of Fit) | 0.996896 |
|
| 391 |
| Adherence Quality | **excellent** |
|
| 392 |
|
| 393 |
### Coverage Analysis
|
| 394 |
|
| 395 |
| Top N Words | Coverage |
|
| 396 |
|-------------|----------|
|
| 397 |
+
| Top 100 | 48.9% |
|
| 398 |
+
| Top 1,000 | 72.2% |
|
| 399 |
+
| Top 5,000 | 86.2% |
|
| 400 |
| Top 10,000 | 91.0% |
|
| 401 |
|
| 402 |
### Key Findings
|
| 403 |
|
| 404 |
- **Zipf Compliance:** R²=0.9969 indicates excellent adherence to Zipf's law
|
| 405 |
+
- **High Frequency Dominance:** Top 100 words cover 48.9% of corpus
|
| 406 |
+
- **Long Tail:** 48,045 words needed for remaining 9.0% coverage
|
| 407 |
|
| 408 |
---
|
| 409 |
## 5. Word Embeddings Evaluation
|
|
|
|
| 419 |
|
| 420 |
### 5.1 Cross-Lingual Alignment
|
| 421 |
|
| 422 |
+

|
| 423 |
+
|
| 424 |
+

|
| 425 |
|
| 426 |
|
| 427 |
### 5.2 Model Comparison
|
| 428 |
|
| 429 |
| Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 |
|
| 430 |
|-------|-----------|----------|------------------|---------------|----------------|
|
| 431 |
+
| **mono_32d** | 32 | 0.8768 🏆 | 0.3464 | N/A | N/A |
|
| 432 |
+
| **mono_64d** | 64 | 0.8339 | 0.2956 | N/A | N/A |
|
| 433 |
+
| **mono_128d** | 128 | 0.6767 | 0.2580 | N/A | N/A |
|
| 434 |
+
| **aligned_32d** | 32 | 0.8768 | 0.3495 | 0.0440 | 0.2440 |
|
| 435 |
+
| **aligned_64d** | 64 | 0.8339 | 0.2976 | 0.0760 | 0.3520 |
|
| 436 |
+
| **aligned_128d** | 128 | 0.6767 | 0.2493 | 0.1320 | 0.4720 |
|
| 437 |
|
| 438 |
### Key Findings
|
| 439 |
|
| 440 |
+
- **Best Isotropy:** mono_32d with 0.8768 (more uniform distribution)
|
| 441 |
+
- **Semantic Density:** Average pairwise similarity of 0.2994. Lower values indicate better semantic separation.
|
| 442 |
+
- **Alignment Quality:** Aligned models achieve up to 13.2% R@1 in cross-lingual retrieval.
|
| 443 |
- **Recommendation:** 128d aligned for best cross-lingual performance
|
| 444 |
|
| 445 |
---
|
| 446 |
## 6. Morphological Analysis (Experimental)
|
| 447 |
|
|
|
|
|
|
|
| 448 |
This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.
|
| 449 |
|
| 450 |
### 6.1 Productivity & Complexity
|
| 451 |
|
| 452 |
| Metric | Value | Interpretation | Recommendation |
|
| 453 |
|--------|-------|----------------|----------------|
|
| 454 |
+
| Productivity Index | **5.000** | High morphological productivity | Reliable analysis |
|
| 455 |
+
| Idiomaticity Gap | **-0.015** | Low formulaic content | - |
|
| 456 |
|
| 457 |
### 6.2 Affix Inventory (Productive Units)
|
| 458 |
|
|
|
|
| 461 |
#### Productive Prefixes
|
| 462 |
| Prefix | Examples |
|
| 463 |
|--------|----------|
|
| 464 |
+
| `-ma` | maltadleks, marnatum, marco |
|
| 465 |
|
| 466 |
#### Productive Suffixes
|
| 467 |
| Suffix | Examples |
|
| 468 |
|--------|----------|
|
| 469 |
+
| `-a` | teguina, coa, klaba |
|
| 470 |
+
| `-s` | verticalis, mees, tellus |
|
| 471 |
+
| `-us` | tellus, scapanulus, catagonus |
|
| 472 |
+
| `-ra` | tara, aliera, mallanira |
|
| 473 |
+
| `-er` | edobeyer, walzer, palliser |
|
| 474 |
+
| `-is` | verticalis, anhuiensis, quitensis |
|
| 475 |
+
| `-on` | goreston, styron, laizon |
|
| 476 |
+
| `-fa` | kaikifa, isteamerikafa, lopinafa |
|
| 477 |
|
| 478 |
### 6.3 Bound Stems (Lexical Roots)
|
| 479 |
|
|
|
|
| 481 |
|
| 482 |
| Stem | Cohesion | Substitutability | Examples |
|
| 483 |
|------|----------|------------------|----------|
|
| 484 |
+
| `ayar` | 2.06x | 93 contexts | vayar, wayar, iayar |
|
| 485 |
+
| `ensi` | 2.30x | 45 contexts | pensil, owensi, hensies |
|
| 486 |
+
| `anta` | 1.76x | 73 contexts | canta, tanta, xanta |
|
| 487 |
+
| `urus` | 2.30x | 23 contexts | purus, urusí, myurus |
|
| 488 |
+
| `imta` | 2.02x | 22 contexts | pimtas, pimtad, pimtan |
|
| 489 |
+
| `tava` | 1.80x | 25 contexts | stava, kotava, poltava |
|
| 490 |
+
| `atca` | 1.64x | 31 contexts | zatca, datca, catca |
|
| 491 |
+
| `pimt` | 2.34x | 8 contexts | pimtas, pimtad, pimtan |
|
| 492 |
+
| `stes` | 1.71x | 16 contexts | lestes, wastes, restes |
|
| 493 |
+
| `xant` | 1.51x | 19 contexts | xanta, xanto, xantik |
|
| 494 |
+
| `neon` | 2.03x | 8 contexts | deneon, keneon, roneon |
|
| 495 |
+
| `ukol` | 1.51x | 14 contexts | bukol, stukol, moukol |
|
| 496 |
|
| 497 |
### 6.4 Affix Compatibility (Co-occurrence)
|
| 498 |
|
| 499 |
This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology.
|
| 500 |
|
| 501 |
+
| Prefix | Suffix | Frequency | Examples |
|
| 502 |
+
|--------|--------|-----------|----------|
|
| 503 |
+
| `-ma` | `-a` | 34 words | mafia, malaya |
|
| 504 |
+
| `-ma` | `-s` | 29 words | maculicollis, mangas |
|
| 505 |
+
| `-ma` | `-is` | 13 words | maculicollis, managuensis |
|
| 506 |
+
| `-ma` | `-us` | 8 words | macrocephalicus, mastus |
|
| 507 |
+
| `-ma` | `-ra` | 7 words | malyerara, mallapira |
|
| 508 |
+
| `-ma` | `-on` | 5 words | maubuisson, malsaveson |
|
| 509 |
+
| `-ma` | `-er` | 5 words | malgruper, mayasquer |
|
| 510 |
+
| `-ma` | `-es` | 4 words | manzanares, macropodiformes |
|
| 511 |
+
| `-ma` | `-fa` | 4 words | magyarafa, malyoparafa |
|
| 512 |
+
| `-ma` | `-afa` | 4 words | magyarafa, malyoparafa |
|
| 513 |
|
| 514 |
### 6.5 Recursive Morpheme Segmentation
|
| 515 |
|
|
|
|
| 517 |
|
| 518 |
| Word | Suggested Split | Confidence | Stem |
|
| 519 |
|------|-----------------|------------|------|
|
| 520 |
+
| balumarafa | **`balumar-afa`** | 4.5 | `balumar` |
|
| 521 |
+
| vageroneon | **`vagerone-on`** | 4.5 | `vagerone` |
|
| 522 |
+
| koridanikafa | **`koridanik-afa`** | 4.5 | `koridanik` |
|
| 523 |
+
| lidarotifa | **`lidaroti-fa`** | 4.5 | `lidaroti` |
|
| 524 |
+
| pacificus | **`pacific-us`** | 4.5 | `pacific` |
|
| 525 |
+
| yambikafa | **`yambik-afa`** | 4.5 | `yambik` |
|
| 526 |
+
| zimmerius | **`zimmeri-us`** | 4.5 | `zimmeri` |
|
| 527 |
+
| christies | **`christi-es`** | 4.5 | `christi` |
|
| 528 |
+
| bristutuson | **`bristut-us-on`** | 3.0 | `bristut` |
|
| 529 |
+
| aultoveson | **`aultov-es-on`** | 3.0 | `aultov` |
|
| 530 |
+
| promeneuses | **`promene-us-es`** | 3.0 | `promene` |
|
| 531 |
+
| stakseson | **`staks-es-on`** | 3.0 | `staks` |
|
| 532 |
+
| atlantoxerus | **`atlantox-er-us`** | 3.0 | `atlantox` |
|
| 533 |
+
| mantukafa | **`ma-ntuk-afa`** | 3.0 | `ntuk` |
|
| 534 |
+
| ruyatakoler | **`ruyatakol-er`** | 1.5 | `ruyatakol` |
|
| 535 |
|
| 536 |
### 6.6 Linguistic Interpretation
|
| 537 |
|
| 538 |
> **Automated Insight:**
|
| 539 |
+
The language Kotava shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding.
|
| 540 |
|
| 541 |
---
|
| 542 |
## 7. Summary & Recommendations
|
|
|
|
| 549 |
|-----------|-------------|-----------|
|
| 550 |
| Tokenizer | **64k BPE** | Best compression (4.69x) |
|
| 551 |
| N-gram | **2-gram** | Lowest perplexity (284) |
|
| 552 |
+
| Markov | **Context-4** | Highest predictability (89.9%) |
|
| 553 |
| Embeddings | **100d** | Balanced semantic capture and isotropy |
|
| 554 |
|
| 555 |
|
|
|
|
| 763 |
---
|
| 764 |
*Generated by Wikilangs Models Pipeline*
|
| 765 |
|
| 766 |
+
*Report Date: 2026-01-03 17:46:55*
|
models/embeddings/aligned/avk_128d.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4d5bc2fb68fc16599a7df591a4faa9874fafbac2b4321646c3eb80ee929289b8
|
| 3 |
+
size 1070216041
|
models/embeddings/aligned/avk_128d.meta.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"lang": "avk", "dim": 128, "max_seq_len": 512, "is_aligned": true}
|
models/embeddings/aligned/avk_128d.projection.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:046c39f51199072057fb8146454cf806db4867200588a1767bc05ce312ff7760
|
| 3 |
+
size 65664
|
models/embeddings/aligned/avk_128d_metadata.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"language": "avk",
|
| 3 |
+
"dimension": 128,
|
| 4 |
+
"version": "aligned",
|
| 5 |
+
"hub_language": "en",
|
| 6 |
+
"seed_vocab_size": 10167,
|
| 7 |
+
"vocab_size": 44349
|
| 8 |
+
}
|
models/embeddings/aligned/avk_32d.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8853f84ade1376f0ea457f44f0519aedf712c23eecc35494f3e963a13c362e51
|
| 3 |
+
size 268156009
|
models/embeddings/aligned/avk_32d.meta.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"lang": "avk", "dim": 32, "max_seq_len": 512, "is_aligned": true}
|
models/embeddings/aligned/avk_32d.projection.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:eca53a6013e2037c2f47dc5e1949fc0a2b6ece6075e88cf7212d0602dbd8c807
|
| 3 |
+
size 4224
|
models/embeddings/aligned/avk_32d_metadata.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"language": "avk",
|
| 3 |
+
"dimension": 32,
|
| 4 |
+
"version": "aligned",
|
| 5 |
+
"hub_language": "en",
|
| 6 |
+
"seed_vocab_size": 10167,
|
| 7 |
+
"vocab_size": 44349
|
| 8 |
+
}
|
models/embeddings/aligned/avk_64d.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ab0343f70502c04d2f85016d1052a4e74696fa24885f3ad8392e25d726279437
|
| 3 |
+
size 535509353
|
models/embeddings/aligned/avk_64d.meta.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"lang": "avk", "dim": 64, "max_seq_len": 512, "is_aligned": true}
|
models/embeddings/aligned/avk_64d.projection.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:10505483a833ed429a570df9d39c4f5ab1cd9c736b7ba77d0c81d45ffd168609
|
| 3 |
+
size 16512
|
models/embeddings/aligned/avk_64d_metadata.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"language": "avk",
|
| 3 |
+
"dimension": 64,
|
| 4 |
+
"version": "aligned",
|
| 5 |
+
"hub_language": "en",
|
| 6 |
+
"seed_vocab_size": 10167,
|
| 7 |
+
"vocab_size": 44349
|
| 8 |
+
}
|
models/embeddings/monolingual/avk_128d.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4d5bc2fb68fc16599a7df591a4faa9874fafbac2b4321646c3eb80ee929289b8
|
| 3 |
+
size 1070216041
|
models/embeddings/monolingual/avk_128d_metadata.json
CHANGED
|
@@ -11,5 +11,5 @@
|
|
| 11 |
"encoding_method": "rope",
|
| 12 |
"dim": 128
|
| 13 |
},
|
| 14 |
-
"vocab_size":
|
| 15 |
}
|
|
|
|
| 11 |
"encoding_method": "rope",
|
| 12 |
"dim": 128
|
| 13 |
},
|
| 14 |
+
"vocab_size": 44349
|
| 15 |
}
|
models/embeddings/monolingual/avk_32d.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8853f84ade1376f0ea457f44f0519aedf712c23eecc35494f3e963a13c362e51
|
| 3 |
+
size 268156009
|
models/embeddings/monolingual/avk_32d_metadata.json
CHANGED
|
@@ -11,5 +11,5 @@
|
|
| 11 |
"encoding_method": "rope",
|
| 12 |
"dim": 32
|
| 13 |
},
|
| 14 |
-
"vocab_size":
|
| 15 |
}
|
|
|
|
| 11 |
"encoding_method": "rope",
|
| 12 |
"dim": 32
|
| 13 |
},
|
| 14 |
+
"vocab_size": 44349
|
| 15 |
}
|
models/embeddings/monolingual/avk_64d.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ab0343f70502c04d2f85016d1052a4e74696fa24885f3ad8392e25d726279437
|
| 3 |
+
size 535509353
|
models/embeddings/monolingual/avk_64d_metadata.json
CHANGED
|
@@ -11,5 +11,5 @@
|
|
| 11 |
"encoding_method": "rope",
|
| 12 |
"dim": 64
|
| 13 |
},
|
| 14 |
-
"vocab_size":
|
| 15 |
}
|
|
|
|
| 11 |
"encoding_method": "rope",
|
| 12 |
"dim": 64
|
| 13 |
},
|
| 14 |
+
"vocab_size": 44349
|
| 15 |
}
|
models/subword_markov/avk_markov_ctx1_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f65687f254c652f69ef9be8131bf19edbff47526c12511f028d24075dae452c9
|
| 3 |
+
size 63478
|
models/subword_markov/avk_markov_ctx1_subword_metadata.json
CHANGED
|
@@ -3,5 +3,5 @@
|
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "avk",
|
| 5 |
"unique_contexts": 900,
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "avk",
|
| 5 |
"unique_contexts": 900,
|
| 6 |
+
"total_transitions": 26104447
|
| 7 |
}
|
models/subword_markov/avk_markov_ctx2_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:87c2c934c6a6a0e852b7510fffdc0cfa7afde5724d65c615397f5807bb5d2890
|
| 3 |
+
size 374727
|
models/subword_markov/avk_markov_ctx2_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 2,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "avk",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 2,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "avk",
|
| 5 |
+
"unique_contexts": 7069,
|
| 6 |
+
"total_transitions": 26075153
|
| 7 |
}
|
models/subword_markov/avk_markov_ctx3_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c8486b2f7957071361dbd00d231776b15d9bd46e7798b78454470549c572886c
|
| 3 |
+
size 1574087
|
models/subword_markov/avk_markov_ctx3_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 3,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "avk",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 3,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "avk",
|
| 5 |
+
"unique_contexts": 42037,
|
| 6 |
+
"total_transitions": 26045859
|
| 7 |
}
|
models/subword_markov/avk_markov_ctx4_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:09a5d485439f551617d7e6db1b1f5e923031936d395de0d0b6c395dac427ea25
|
| 3 |
+
size 4492959
|
models/subword_markov/avk_markov_ctx4_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 4,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "avk",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 4,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "avk",
|
| 5 |
+
"unique_contexts": 180930,
|
| 6 |
+
"total_transitions": 26016565
|
| 7 |
}
|
models/subword_ngram/avk_2gram_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ed6e7b7ad31ba22fe41824beee6908fc8170fb2f1f76c61addff4e9b04c9932e
|
| 3 |
+
size 47151
|
models/subword_ngram/avk_2gram_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"n": 2,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "avk",
|
| 5 |
-
"unique_ngrams":
|
| 6 |
-
"total_ngrams":
|
| 7 |
}
|
|
|
|
| 2 |
"n": 2,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "avk",
|
| 5 |
+
"unique_ngrams": 3324,
|
| 6 |
+
"total_ngrams": 26104447
|
| 7 |
}
|
models/subword_ngram/avk_3gram_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:223425e4b5985727026ac6e9aa9d270f255e60307dc67feb52135ab124aa71b7
|
| 3 |
+
size 325386
|
models/subword_ngram/avk_3gram_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"n": 3,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "avk",
|
| 5 |
-
"unique_ngrams":
|
| 6 |
-
"total_ngrams":
|
| 7 |
}
|
|
|
|
| 2 |
"n": 3,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "avk",
|
| 5 |
+
"unique_ngrams": 24495,
|
| 6 |
+
"total_ngrams": 26075153
|
| 7 |
}
|
models/subword_ngram/avk_4gram_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:46348619ec1f35d5b9b5a791b6e52c986212e910495139645ef401b6c5b19293
|
| 3 |
+
size 1466527
|
models/subword_ngram/avk_4gram_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"n": 4,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "avk",
|
| 5 |
-
"unique_ngrams":
|
| 6 |
-
"total_ngrams":
|
| 7 |
}
|
|
|
|
| 2 |
"n": 4,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "avk",
|
| 5 |
+
"unique_ngrams": 124607,
|
| 6 |
+
"total_ngrams": 26045859
|
| 7 |
}
|
models/subword_ngram/avk_5gram_subword.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e0eeca6699c9f43d66da4ebc2b55d17aca64e6e1da22891f7c56ba5685a78bf8
|
| 3 |
+
size 3979959
|
models/subword_ngram/avk_5gram_subword_metadata.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"n": 5,
|
| 3 |
+
"variant": "subword",
|
| 4 |
+
"language": "avk",
|
| 5 |
+
"unique_ngrams": 346727,
|
| 6 |
+
"total_ngrams": 26016565
|
| 7 |
+
}
|
models/tokenizer/avk_tokenizer_16k.model
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:61aa561358a08bbf10b56396e1e242ff4daf76f48bd3e1430c9a21c6646c8e63
|
| 3 |
+
size 510862
|
models/tokenizer/avk_tokenizer_16k.vocab
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/tokenizer/avk_tokenizer_32k.model
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0f3b72a63d1014b526eb5279776802d09220a24034b269459c333a9a664fa6c3
|
| 3 |
+
size 793698
|
models/tokenizer/avk_tokenizer_32k.vocab
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/tokenizer/avk_tokenizer_64k.model
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b2448f2ba279b7033939c7a46d2a2a9dc156e5a3720bd6cfdf679c543a76cae1
|
| 3 |
+
size 1369207
|
models/tokenizer/avk_tokenizer_64k.vocab
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/tokenizer/avk_tokenizer_8k.model
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:65b827ee5b00ced41dcc33bbebdcf83a04cc3e86c492efa730c760a58ceb5ffe
|
| 3 |
+
size 374206
|
models/tokenizer/avk_tokenizer_8k.vocab
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/vocabulary/avk_vocabulary.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:01d722fcf181d81cacc7fc5650bf4964605a556a442201ecc9e3bcf942c24bb0
|
| 3 |
+
size 1019369
|
models/vocabulary/avk_vocabulary_metadata.json
CHANGED
|
@@ -1,17 +1,17 @@
|
|
| 1 |
{
|
| 2 |
"language": "avk",
|
| 3 |
-
"vocabulary_size":
|
| 4 |
"variant": "full",
|
| 5 |
"statistics": {
|
| 6 |
-
"type_token_ratio": 0.
|
| 7 |
"coverage": {
|
| 8 |
-
"top_100": 0.
|
| 9 |
-
"top_1000": 0.
|
| 10 |
-
"top_5000": 0.
|
| 11 |
-
"top_10000": 0.
|
| 12 |
},
|
| 13 |
-
"hapax_count":
|
| 14 |
-
"hapax_ratio": 0.
|
| 15 |
-
"total_documents":
|
| 16 |
}
|
| 17 |
}
|
|
|
|
| 1 |
{
|
| 2 |
"language": "avk",
|
| 3 |
+
"vocabulary_size": 58045,
|
| 4 |
"variant": "full",
|
| 5 |
"statistics": {
|
| 6 |
+
"type_token_ratio": 0.032246491062106274,
|
| 7 |
"coverage": {
|
| 8 |
+
"top_100": 0.48079183221565863,
|
| 9 |
+
"top_1000": 0.7100994345056655,
|
| 10 |
+
"top_5000": 0.8479087921405397,
|
| 11 |
+
"top_10000": 0.8953996650479654
|
| 12 |
},
|
| 13 |
+
"hapax_count": 57000,
|
| 14 |
+
"hapax_ratio": 0.495458298926507,
|
| 15 |
+
"total_documents": 29294
|
| 16 |
}
|
| 17 |
}
|
models/word_markov/avk_markov_ctx1_word.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:555e68cdc2c21bda05bd3d25873880af9c89722f60875a1a12dbc25a7c979c16
|
| 3 |
+
size 5073388
|
models/word_markov/avk_markov_ctx1_word_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 1,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "avk",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 1,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "avk",
|
| 5 |
+
"unique_contexts": 115002,
|
| 6 |
+
"total_transitions": 3538381
|
| 7 |
}
|
models/word_markov/avk_markov_ctx2_word.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4c519efe15d5791630fec68525a6c287b347a81e0691dbc26e51750bdee13659
|
| 3 |
+
size 11825183
|
models/word_markov/avk_markov_ctx2_word_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 2,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "avk",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 2,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "avk",
|
| 5 |
+
"unique_contexts": 633477,
|
| 6 |
+
"total_transitions": 3509087
|
| 7 |
}
|