Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- configs/transformer_1B.json +22 -0
- configs/transformer_7B.json +21 -0
- configs/vanilla_transformer_120M.json +19 -0
- configs/vanilla_transformer_1B.json +23 -0
- configs/vanilla_transformer_7B.json +22 -0
- fla/layers/__pycache__/forgetting_attn.cpython-311.pyc +0 -0
- fla/layers/__pycache__/gated_deltanet.cpython-311.pyc +0 -0
- fla/layers/__pycache__/gated_deltaproduct.cpython-311.pyc +0 -0
- fla/layers/__pycache__/gla.cpython-311.pyc +0 -0
- fla/layers/__pycache__/hgrn.cpython-311.pyc +0 -0
- fla/layers/__pycache__/hgrn2.cpython-311.pyc +0 -0
- fla/layers/__pycache__/lightnet.cpython-311.pyc +0 -0
- fla/layers/__pycache__/monoblock.cpython-311.pyc +0 -0
- fla/layers/__pycache__/multiscale_retention.cpython-311.pyc +0 -0
- fla/layers/__pycache__/nsa.cpython-311.pyc +0 -0
- fla/layers/__pycache__/rwkv7.cpython-311.pyc +0 -0
- fla/layers/__pycache__/utils.cpython-311.pyc +0 -0
- fla/models/delta_net/__pycache__/configuration_delta_net.cpython-311.pyc +0 -0
- fla/models/gated_deltanet/__init__.py +12 -0
- fla/models/gated_deltanet/__pycache__/__init__.cpython-311.pyc +0 -0
- fla/models/gated_deltanet/__pycache__/modeling_gated_deltanet.cpython-311.pyc +0 -0
- fla/models/gated_deltanet/configuration_gated_deltanet.py +83 -0
- fla/models/gated_deltanet/modeling_gated_deltanet.py +412 -0
- fla/models/gated_deltaproduct/__pycache__/__init__.cpython-311.pyc +0 -0
- fla/models/gated_deltaproduct/__pycache__/configuration_gated_deltaproduct.cpython-311.pyc +0 -0
- fla/models/gated_deltaproduct/__pycache__/modeling_gated_deltaproduct.cpython-311.pyc +0 -0
- fla/models/gated_deltaproduct/modeling_gated_deltaproduct.py +520 -0
- fla/models/gla/__init__.py +13 -0
- fla/models/gla/__pycache__/__init__.cpython-311.pyc +0 -0
- fla/models/gla/__pycache__/configuration_gla.cpython-311.pyc +0 -0
- fla/models/gla/__pycache__/modeling_gla.cpython-311.pyc +0 -0
- fla/models/gla/configuration_gla.py +95 -0
- fla/models/gla/modeling_gla.py +417 -0
- fla/models/gsa/__init__.py +13 -0
- fla/models/gsa/__pycache__/__init__.cpython-311.pyc +0 -0
- fla/models/gsa/__pycache__/configuration_gsa.cpython-311.pyc +0 -0
- fla/models/gsa/__pycache__/modeling_gsa.cpython-311.pyc +0 -0
- fla/models/gsa/configuration_gsa.py +97 -0
- fla/models/gsa/modeling_gsa.py +420 -0
- fla/models/hgrn/__pycache__/modeling_hgrn.cpython-311.pyc +0 -0
- fla/models/hgrn/configuration_hgrn.py +81 -0
- fla/models/hgrn/modeling_hgrn.py +420 -0
- fla/models/hgrn2/__init__.py +13 -0
- fla/models/hgrn2/__pycache__/__init__.cpython-311.pyc +0 -0
- fla/models/hgrn2/__pycache__/configuration_hgrn2.cpython-311.pyc +0 -0
- fla/models/hgrn2/__pycache__/modeling_hgrn2.cpython-311.pyc +0 -0
- fla/models/hgrn2/configuration_hgrn2.py +91 -0
- fla/models/hgrn2/modeling_hgrn2.py +421 -0
- fla/models/lightnet/__init__.py +13 -0
- fla/models/lightnet/__pycache__/__init__.cpython-311.pyc +0 -0
configs/transformer_1B.json
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token_id": 1,
|
| 3 |
+
"elementwise_affine": true,
|
| 4 |
+
"eos_token_id": 2,
|
| 5 |
+
"fuse_cross_entropy": true,
|
| 6 |
+
"fuse_norm": true,
|
| 7 |
+
"fuse_swiglu": true,
|
| 8 |
+
"hidden_act": "swish",
|
| 9 |
+
"hidden_ratio": 4,
|
| 10 |
+
"hidden_size": 2048,
|
| 11 |
+
"initializer_range": 0.006,
|
| 12 |
+
"intermediate_size": null,
|
| 13 |
+
"max_position_embeddings": 8192,
|
| 14 |
+
"model_type": "transformer",
|
| 15 |
+
"norm_eps": 1e-06,
|
| 16 |
+
"num_heads": 32,
|
| 17 |
+
"num_hidden_layers": 24,
|
| 18 |
+
"num_kv_heads": null,
|
| 19 |
+
"pad_token_id": 2,
|
| 20 |
+
"rope_theta": 10000.0,
|
| 21 |
+
"tie_word_embeddings": false
|
| 22 |
+
}
|
configs/transformer_7B.json
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"attention_bias": false,
|
| 3 |
+
"bos_token_id": 1,
|
| 4 |
+
"eos_token_id": 2,
|
| 5 |
+
"fuse_cross_entropy": true,
|
| 6 |
+
"fuse_norm": true,
|
| 7 |
+
"hidden_act": "swish",
|
| 8 |
+
"hidden_ratio": 4,
|
| 9 |
+
"hidden_size": 4096,
|
| 10 |
+
"initializer_range": 0.006,
|
| 11 |
+
"intermediate_size": 14336,
|
| 12 |
+
"model_type": "transformer",
|
| 13 |
+
"norm_eps": 1e-06,
|
| 14 |
+
"num_heads": 32,
|
| 15 |
+
"num_hidden_layers": 32,
|
| 16 |
+
"num_kv_heads": 8,
|
| 17 |
+
"rope_theta": 10000.0,
|
| 18 |
+
"tie_word_embeddings": false,
|
| 19 |
+
"use_cache": true,
|
| 20 |
+
"window_size": null
|
| 21 |
+
}
|
configs/vanilla_transformer_120M.json
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"attention_bias": false,
|
| 3 |
+
"bos_token_id": 1,
|
| 4 |
+
"eos_token_id": 2,
|
| 5 |
+
"fuse_cross_entropy": true,
|
| 6 |
+
"fuse_norm": false,
|
| 7 |
+
"hidden_act": "swish",
|
| 8 |
+
"hidden_size": 768,
|
| 9 |
+
"initializer_range": 0.02,
|
| 10 |
+
"max_position_embeddings": 4096,
|
| 11 |
+
"model_type": "transformer",
|
| 12 |
+
"num_heads": 12,
|
| 13 |
+
"num_hidden_layers": 14,
|
| 14 |
+
"norm_eps": 1e-06,
|
| 15 |
+
"tie_word_embeddings": true,
|
| 16 |
+
"use_cache": true,
|
| 17 |
+
"vocab_size": 32000,
|
| 18 |
+
"attn_impl": "naive_attn"
|
| 19 |
+
}
|
configs/vanilla_transformer_1B.json
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token_id": 1,
|
| 3 |
+
"elementwise_affine": true,
|
| 4 |
+
"eos_token_id": 2,
|
| 5 |
+
"fuse_cross_entropy": true,
|
| 6 |
+
"fuse_norm": true,
|
| 7 |
+
"fuse_swiglu": true,
|
| 8 |
+
"hidden_act": "swish",
|
| 9 |
+
"hidden_ratio": 4,
|
| 10 |
+
"hidden_size": 2048,
|
| 11 |
+
"initializer_range": 0.006,
|
| 12 |
+
"intermediate_size": null,
|
| 13 |
+
"max_position_embeddings": 8192,
|
| 14 |
+
"model_type": "transformer",
|
| 15 |
+
"norm_eps": 1e-06,
|
| 16 |
+
"num_heads": 32,
|
| 17 |
+
"num_hidden_layers": 32,
|
| 18 |
+
"num_kv_heads": null,
|
| 19 |
+
"pad_token_id": 2,
|
| 20 |
+
"rope_theta": 10000.0,
|
| 21 |
+
"tie_word_embeddings": false,
|
| 22 |
+
"attn_impl": "parallel_attn"
|
| 23 |
+
}
|
configs/vanilla_transformer_7B.json
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"attention_bias": false,
|
| 3 |
+
"bos_token_id": 1,
|
| 4 |
+
"eos_token_id": 2,
|
| 5 |
+
"fuse_cross_entropy": true,
|
| 6 |
+
"fuse_norm": true,
|
| 7 |
+
"hidden_act": "swish",
|
| 8 |
+
"hidden_ratio": 4,
|
| 9 |
+
"hidden_size": 4096,
|
| 10 |
+
"initializer_range": 0.006,
|
| 11 |
+
"intermediate_size": 14336,
|
| 12 |
+
"model_type": "transformer",
|
| 13 |
+
"norm_eps": 1e-06,
|
| 14 |
+
"num_heads": 32,
|
| 15 |
+
"num_hidden_layers": 32,
|
| 16 |
+
"num_kv_heads": 8,
|
| 17 |
+
"rope_theta": 10000.0,
|
| 18 |
+
"tie_word_embeddings": false,
|
| 19 |
+
"use_cache": true,
|
| 20 |
+
"window_size": null,
|
| 21 |
+
"attn_impl": "parallel_attn"
|
| 22 |
+
}
|
fla/layers/__pycache__/forgetting_attn.cpython-311.pyc
ADDED
|
Binary file (5.49 kB). View file
|
|
|
fla/layers/__pycache__/gated_deltanet.cpython-311.pyc
ADDED
|
Binary file (13.9 kB). View file
|
|
|
fla/layers/__pycache__/gated_deltaproduct.cpython-311.pyc
ADDED
|
Binary file (16.3 kB). View file
|
|
|
fla/layers/__pycache__/gla.cpython-311.pyc
ADDED
|
Binary file (13.7 kB). View file
|
|
|
fla/layers/__pycache__/hgrn.cpython-311.pyc
ADDED
|
Binary file (7.25 kB). View file
|
|
|
fla/layers/__pycache__/hgrn2.cpython-311.pyc
ADDED
|
Binary file (9.11 kB). View file
|
|
|
fla/layers/__pycache__/lightnet.cpython-311.pyc
ADDED
|
Binary file (9.35 kB). View file
|
|
|
fla/layers/__pycache__/monoblock.cpython-311.pyc
ADDED
|
Binary file (9.98 kB). View file
|
|
|
fla/layers/__pycache__/multiscale_retention.cpython-311.pyc
ADDED
|
Binary file (13 kB). View file
|
|
|
fla/layers/__pycache__/nsa.cpython-311.pyc
ADDED
|
Binary file (6.75 kB). View file
|
|
|
fla/layers/__pycache__/rwkv7.cpython-311.pyc
ADDED
|
Binary file (11 kB). View file
|
|
|
fla/layers/__pycache__/utils.cpython-311.pyc
ADDED
|
Binary file (9.92 kB). View file
|
|
|
fla/models/delta_net/__pycache__/configuration_delta_net.cpython-311.pyc
ADDED
|
Binary file (4.01 kB). View file
|
|
|
fla/models/gated_deltanet/__init__.py
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
|
| 3 |
+
from transformers import AutoConfig, AutoModel, AutoModelForCausalLM
|
| 4 |
+
|
| 5 |
+
from fla.models.gated_deltanet.configuration_gated_deltanet import GatedDeltaNetConfig
|
| 6 |
+
from fla.models.gated_deltanet.modeling_gated_deltanet import GatedDeltaNetForCausalLM, GatedDeltaNetModel
|
| 7 |
+
|
| 8 |
+
AutoConfig.register(GatedDeltaNetConfig.model_type, GatedDeltaNetConfig)
|
| 9 |
+
AutoModel.register(GatedDeltaNetConfig, GatedDeltaNetModel)
|
| 10 |
+
AutoModelForCausalLM.register(GatedDeltaNetConfig, GatedDeltaNetForCausalLM)
|
| 11 |
+
|
| 12 |
+
__all__ = ['GatedDeltaNetConfig', 'GatedDeltaNetForCausalLM', 'GatedDeltaNetModel']
|
fla/models/gated_deltanet/__pycache__/__init__.cpython-311.pyc
ADDED
|
Binary file (825 Bytes). View file
|
|
|
fla/models/gated_deltanet/__pycache__/modeling_gated_deltanet.cpython-311.pyc
ADDED
|
Binary file (19.4 kB). View file
|
|
|
fla/models/gated_deltanet/configuration_gated_deltanet.py
ADDED
|
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
|
| 3 |
+
from typing import Dict, Optional
|
| 4 |
+
|
| 5 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class GatedDeltaNetConfig(PretrainedConfig):
|
| 9 |
+
model_type = 'gated_deltanet'
|
| 10 |
+
keys_to_ignore_at_inference = ['past_key_values']
|
| 11 |
+
|
| 12 |
+
def __init__(
|
| 13 |
+
self,
|
| 14 |
+
attn_mode: str = "chunk",
|
| 15 |
+
hidden_size: int = 2048,
|
| 16 |
+
expand_v: int = 2,
|
| 17 |
+
use_gate: bool = True,
|
| 18 |
+
use_short_conv: bool = True,
|
| 19 |
+
conv_size: int = 4,
|
| 20 |
+
head_dim: int = 256,
|
| 21 |
+
num_heads: int = 6,
|
| 22 |
+
max_position_embeddings: int = 2048,
|
| 23 |
+
hidden_ratio: Optional[int] = 4,
|
| 24 |
+
intermediate_size: Optional[int] = None,
|
| 25 |
+
hidden_act: str = "swish",
|
| 26 |
+
num_hidden_layers: int = 21,
|
| 27 |
+
norm_eps: float = 1e-6,
|
| 28 |
+
attn: Optional[Dict] = None,
|
| 29 |
+
use_cache: bool = True,
|
| 30 |
+
pad_token_id: int = None,
|
| 31 |
+
bos_token_id: int = 1,
|
| 32 |
+
eos_token_id: int = 2,
|
| 33 |
+
tie_word_embeddings: bool = False,
|
| 34 |
+
initializer_range: float = 0.006,
|
| 35 |
+
fuse_norm: bool = True,
|
| 36 |
+
fuse_swiglu: bool = True,
|
| 37 |
+
fuse_cross_entropy: bool = True,
|
| 38 |
+
vocab_size: int = 32000,
|
| 39 |
+
**kwargs
|
| 40 |
+
):
|
| 41 |
+
self.attn_mode = attn_mode
|
| 42 |
+
self.hidden_size = hidden_size
|
| 43 |
+
self.expand_v = expand_v
|
| 44 |
+
self.use_gate = use_gate
|
| 45 |
+
self.use_short_conv = use_short_conv
|
| 46 |
+
self.conv_size = conv_size
|
| 47 |
+
self.head_dim = head_dim
|
| 48 |
+
self.num_heads = num_heads
|
| 49 |
+
self.max_position_embeddings = max_position_embeddings
|
| 50 |
+
|
| 51 |
+
self.hidden_ratio = hidden_ratio
|
| 52 |
+
self.intermediate_size = intermediate_size
|
| 53 |
+
self.hidden_act = hidden_act
|
| 54 |
+
self.num_hidden_layers = num_hidden_layers
|
| 55 |
+
self.norm_eps = norm_eps
|
| 56 |
+
self.attn = attn
|
| 57 |
+
self.use_cache = use_cache
|
| 58 |
+
self.initializer_range = initializer_range
|
| 59 |
+
|
| 60 |
+
self.fuse_norm = fuse_norm
|
| 61 |
+
self.fuse_swiglu = fuse_swiglu
|
| 62 |
+
self.fuse_cross_entropy = fuse_cross_entropy
|
| 63 |
+
self.vocab_size = vocab_size
|
| 64 |
+
|
| 65 |
+
if attn is not None:
|
| 66 |
+
if not isinstance(attn, Dict):
|
| 67 |
+
raise ValueError("attn must be a dictionary")
|
| 68 |
+
if 'layers' not in attn:
|
| 69 |
+
raise ValueError("Layer indices must be provided to initialize hybrid attention layers")
|
| 70 |
+
if 'num_heads' not in attn:
|
| 71 |
+
raise ValueError("Number of heads must be provided to initialize hybrid attention layers")
|
| 72 |
+
attn['num_kv_heads'] = attn.get('num_kv_heads', attn['num_heads'])
|
| 73 |
+
attn['qkv_bias'] = attn.get('qkv_bias', False)
|
| 74 |
+
attn['window_size'] = attn.get('window_size', None)
|
| 75 |
+
attn['rope_theta'] = attn.get('rope_theta', 10000.)
|
| 76 |
+
|
| 77 |
+
super().__init__(
|
| 78 |
+
pad_token_id=pad_token_id,
|
| 79 |
+
bos_token_id=bos_token_id,
|
| 80 |
+
eos_token_id=eos_token_id,
|
| 81 |
+
tie_word_embeddings=tie_word_embeddings,
|
| 82 |
+
**kwargs,
|
| 83 |
+
)
|
fla/models/gated_deltanet/modeling_gated_deltanet.py
ADDED
|
@@ -0,0 +1,412 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
|
| 3 |
+
from __future__ import annotations
|
| 4 |
+
|
| 5 |
+
import math
|
| 6 |
+
import warnings
|
| 7 |
+
from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union
|
| 8 |
+
|
| 9 |
+
import torch
|
| 10 |
+
import torch.nn as nn
|
| 11 |
+
import torch.utils.checkpoint
|
| 12 |
+
from transformers.generation import GenerationMixin
|
| 13 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
| 14 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 15 |
+
from transformers.utils import logging
|
| 16 |
+
from transformers.utils.deprecation import deprecate_kwarg
|
| 17 |
+
|
| 18 |
+
from fla.layers.attn import Attention
|
| 19 |
+
from fla.layers.gated_deltanet import GatedDeltaNet
|
| 20 |
+
from fla.models.gated_deltanet.configuration_gated_deltanet import GatedDeltaNetConfig
|
| 21 |
+
from fla.models.utils import Cache
|
| 22 |
+
from fla.modules import FusedCrossEntropyLoss, FusedLinearCrossEntropyLoss
|
| 23 |
+
from fla.modules import GatedMLP as GatedDeltaNetMLP
|
| 24 |
+
from fla.modules import RMSNorm
|
| 25 |
+
|
| 26 |
+
if TYPE_CHECKING:
|
| 27 |
+
from transformers.processing_utils import Unpack
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
logger = logging.get_logger(__name__)
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
class GatedDeltaNetBlock(nn.Module):
|
| 34 |
+
def __init__(self, config: GatedDeltaNetConfig, layer_idx: int):
|
| 35 |
+
super().__init__()
|
| 36 |
+
|
| 37 |
+
self.config = config
|
| 38 |
+
self.layer_idx = layer_idx
|
| 39 |
+
|
| 40 |
+
self.attn_norm = (RMSNorm if config.fuse_norm else nn.RMSNorm)(config.hidden_size, eps=config.norm_eps)
|
| 41 |
+
if config.attn is not None and layer_idx in config.attn['layers']:
|
| 42 |
+
self.attn = Attention(
|
| 43 |
+
hidden_size=config.hidden_size,
|
| 44 |
+
num_heads=config.attn['num_heads'],
|
| 45 |
+
num_kv_heads=config.attn['num_kv_heads'],
|
| 46 |
+
qkv_bias=config.attn['qkv_bias'],
|
| 47 |
+
window_size=config.attn['window_size'],
|
| 48 |
+
rope_theta=config.attn['rope_theta'],
|
| 49 |
+
max_position_embeddings=config.max_position_embeddings,
|
| 50 |
+
layer_idx=layer_idx
|
| 51 |
+
)
|
| 52 |
+
else:
|
| 53 |
+
self.attn = GatedDeltaNet(
|
| 54 |
+
mode=config.attn_mode,
|
| 55 |
+
hidden_size=config.hidden_size,
|
| 56 |
+
expand_v=config.expand_v,
|
| 57 |
+
head_dim=config.head_dim,
|
| 58 |
+
num_heads=config.num_heads,
|
| 59 |
+
use_gate=config.use_gate,
|
| 60 |
+
use_short_conv=config.use_short_conv,
|
| 61 |
+
conv_size=config.conv_size,
|
| 62 |
+
norm_eps=config.norm_eps,
|
| 63 |
+
layer_idx=layer_idx
|
| 64 |
+
)
|
| 65 |
+
self.mlp_norm = (RMSNorm if config.fuse_norm else nn.RMSNorm)(config.hidden_size, eps=config.norm_eps)
|
| 66 |
+
self.mlp = GatedDeltaNetMLP(
|
| 67 |
+
hidden_size=config.hidden_size,
|
| 68 |
+
hidden_ratio=config.hidden_ratio,
|
| 69 |
+
intermediate_size=config.intermediate_size,
|
| 70 |
+
hidden_act=config.hidden_act,
|
| 71 |
+
fuse_swiglu=config.fuse_swiglu
|
| 72 |
+
)
|
| 73 |
+
|
| 74 |
+
def forward(
|
| 75 |
+
self,
|
| 76 |
+
hidden_states: torch.Tensor,
|
| 77 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 78 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
| 79 |
+
use_cache: Optional[bool] = False,
|
| 80 |
+
output_attentions: Optional[bool] = False,
|
| 81 |
+
**kwargs: Unpack[Dict]
|
| 82 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
| 83 |
+
residual = hidden_states
|
| 84 |
+
hidden_states = self.attn_norm(hidden_states)
|
| 85 |
+
hidden_states, attentions, past_key_values = self.attn(
|
| 86 |
+
hidden_states=hidden_states,
|
| 87 |
+
attention_mask=attention_mask,
|
| 88 |
+
past_key_values=past_key_values,
|
| 89 |
+
use_cache=use_cache,
|
| 90 |
+
output_attentions=output_attentions,
|
| 91 |
+
**kwargs
|
| 92 |
+
)
|
| 93 |
+
if self.config.fuse_norm:
|
| 94 |
+
hidden_states, residual = self.mlp_norm(hidden_states, residual, True)
|
| 95 |
+
else:
|
| 96 |
+
hidden_states = residual + hidden_states
|
| 97 |
+
residual = hidden_states
|
| 98 |
+
hidden_states = self.mlp_norm(hidden_states)
|
| 99 |
+
hidden_states = self.mlp(hidden_states, **kwargs)
|
| 100 |
+
hidden_states = residual + hidden_states
|
| 101 |
+
|
| 102 |
+
outputs = (hidden_states, attentions, past_key_values)
|
| 103 |
+
|
| 104 |
+
return outputs
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
class GatedDeltaNetPreTrainedModel(PreTrainedModel):
|
| 108 |
+
|
| 109 |
+
config_class = GatedDeltaNetConfig
|
| 110 |
+
base_model_prefix = 'model'
|
| 111 |
+
supports_gradient_checkpointing = True
|
| 112 |
+
_no_split_modules = ['GatedDeltaNetBlock']
|
| 113 |
+
_supports_cache_class = True
|
| 114 |
+
|
| 115 |
+
def __init__(self, *inputs, **kwargs):
|
| 116 |
+
super().__init__(*inputs, **kwargs)
|
| 117 |
+
|
| 118 |
+
def _init_weights(
|
| 119 |
+
self,
|
| 120 |
+
module: nn.Module,
|
| 121 |
+
prenorm_residual_strategy: Optional[str] = 'rescale',
|
| 122 |
+
num_residuals_per_layer: int = 2,
|
| 123 |
+
):
|
| 124 |
+
if isinstance(module, (nn.Linear, nn.Conv1d)):
|
| 125 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
| 126 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
| 127 |
+
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
|
| 128 |
+
if module.bias is not None:
|
| 129 |
+
nn.init.zeros_(module.bias)
|
| 130 |
+
elif isinstance(module, nn.Embedding):
|
| 131 |
+
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
|
| 132 |
+
elif hasattr(module, 'reset_parameters'):
|
| 133 |
+
module.reset_parameters()
|
| 134 |
+
|
| 135 |
+
if prenorm_residual_strategy is not None:
|
| 136 |
+
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
|
| 137 |
+
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
|
| 138 |
+
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
|
| 139 |
+
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
|
| 140 |
+
#
|
| 141 |
+
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
|
| 142 |
+
p = None
|
| 143 |
+
if hasattr(module, 'o_proj'):
|
| 144 |
+
p = module.o_proj.weight
|
| 145 |
+
elif hasattr(module, 'down_proj'):
|
| 146 |
+
p = module.down_proj.weight
|
| 147 |
+
if p is not None:
|
| 148 |
+
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
|
| 149 |
+
# Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
|
| 150 |
+
# We need to reinit p since this code could be called multiple times
|
| 151 |
+
# Having just p *= scale would repeatedly scale it down
|
| 152 |
+
if prenorm_residual_strategy == 'rescale':
|
| 153 |
+
nn.init.kaiming_uniform_(p, a=math.sqrt(5))
|
| 154 |
+
with torch.no_grad():
|
| 155 |
+
p /= math.sqrt(num_residuals_per_layer * self.config.num_hidden_layers)
|
| 156 |
+
elif prenorm_residual_strategy == 'zero':
|
| 157 |
+
nn.init.zeros_(p)
|
| 158 |
+
else:
|
| 159 |
+
raise ValueError(f"Invalid prenorm_residual_strategy: {prenorm_residual_strategy}")
|
| 160 |
+
|
| 161 |
+
|
| 162 |
+
class GatedDeltaNetModel(GatedDeltaNetPreTrainedModel):
|
| 163 |
+
|
| 164 |
+
def __init__(self, config: GatedDeltaNetConfig):
|
| 165 |
+
super().__init__(config)
|
| 166 |
+
self.padding_idx = config.pad_token_id
|
| 167 |
+
self.vocab_size = config.vocab_size
|
| 168 |
+
|
| 169 |
+
self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
| 170 |
+
self.layers = nn.ModuleList([GatedDeltaNetBlock(config, layer_idx) for layer_idx in range(config.num_hidden_layers)])
|
| 171 |
+
self.norm = (RMSNorm if config.fuse_norm else nn.RMSNorm)(config.hidden_size, eps=config.norm_eps)
|
| 172 |
+
|
| 173 |
+
self.gradient_checkpointing = False
|
| 174 |
+
|
| 175 |
+
self.post_init()
|
| 176 |
+
|
| 177 |
+
def get_input_embeddings(self):
|
| 178 |
+
return self.embeddings
|
| 179 |
+
|
| 180 |
+
def set_input_embeddings(self, value):
|
| 181 |
+
self.embeddings = value
|
| 182 |
+
|
| 183 |
+
def forward(
|
| 184 |
+
self,
|
| 185 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 186 |
+
attention_mask: Optional[torch.Tensor] = None, # noqa
|
| 187 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 188 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
| 189 |
+
use_cache: Optional[bool] = None,
|
| 190 |
+
output_attentions: Optional[bool] = None,
|
| 191 |
+
output_hidden_states: Optional[bool] = None,
|
| 192 |
+
return_dict: Optional[bool] = None,
|
| 193 |
+
**kwargs: Unpack[Dict]
|
| 194 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
| 195 |
+
if output_attentions:
|
| 196 |
+
warnings.warn("`GatedDeltaNetModel` does not `output_attentions` now, setting it to `False`.")
|
| 197 |
+
output_attentions = False
|
| 198 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 199 |
+
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 200 |
+
use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False)
|
| 201 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 202 |
+
|
| 203 |
+
# retrieve input_ids and inputs_embeds
|
| 204 |
+
if input_ids is not None and inputs_embeds is not None:
|
| 205 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
| 206 |
+
if input_ids is None and inputs_embeds is None:
|
| 207 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
| 208 |
+
|
| 209 |
+
if inputs_embeds is None:
|
| 210 |
+
inputs_embeds = self.embeddings(input_ids)
|
| 211 |
+
hidden_states = inputs_embeds
|
| 212 |
+
|
| 213 |
+
if use_cache and not isinstance(past_key_values, Cache):
|
| 214 |
+
past_key_values = Cache.from_legacy_cache(past_key_values)
|
| 215 |
+
|
| 216 |
+
if self.gradient_checkpointing and self.training and use_cache:
|
| 217 |
+
logger.warning_once("`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...")
|
| 218 |
+
use_cache = False
|
| 219 |
+
|
| 220 |
+
all_hidden_states = () if output_hidden_states else None
|
| 221 |
+
all_attns = () if output_attentions else None
|
| 222 |
+
for layer in self.layers:
|
| 223 |
+
if output_hidden_states:
|
| 224 |
+
all_hidden_states += (hidden_states,)
|
| 225 |
+
|
| 226 |
+
if self.gradient_checkpointing and self.training:
|
| 227 |
+
hidden_states, attentions, past_key_values = self._gradient_checkpointing_func(
|
| 228 |
+
layer.__call__,
|
| 229 |
+
hidden_states,
|
| 230 |
+
attention_mask,
|
| 231 |
+
past_key_values,
|
| 232 |
+
use_cache,
|
| 233 |
+
output_attentions,
|
| 234 |
+
**kwargs
|
| 235 |
+
)
|
| 236 |
+
else:
|
| 237 |
+
hidden_states, attentions, past_key_values = layer(
|
| 238 |
+
hidden_states,
|
| 239 |
+
attention_mask=attention_mask,
|
| 240 |
+
past_key_values=past_key_values,
|
| 241 |
+
use_cache=use_cache,
|
| 242 |
+
output_attentions=output_attentions,
|
| 243 |
+
**kwargs
|
| 244 |
+
)
|
| 245 |
+
|
| 246 |
+
if output_attentions:
|
| 247 |
+
all_attns += (attentions,)
|
| 248 |
+
|
| 249 |
+
hidden_states = self.norm(hidden_states)
|
| 250 |
+
|
| 251 |
+
# add hidden states from the last decoder layer
|
| 252 |
+
if output_hidden_states:
|
| 253 |
+
all_hidden_states += (hidden_states,)
|
| 254 |
+
|
| 255 |
+
if not return_dict:
|
| 256 |
+
return tuple(i for i in [hidden_states, past_key_values, all_hidden_states, all_attns] if i is not None)
|
| 257 |
+
return BaseModelOutputWithPast(
|
| 258 |
+
last_hidden_state=hidden_states,
|
| 259 |
+
past_key_values=past_key_values,
|
| 260 |
+
hidden_states=all_hidden_states,
|
| 261 |
+
attentions=all_attns
|
| 262 |
+
)
|
| 263 |
+
|
| 264 |
+
|
| 265 |
+
class GatedDeltaNetForCausalLM(GatedDeltaNetPreTrainedModel, GenerationMixin):
|
| 266 |
+
|
| 267 |
+
_tied_weights_keys = ["lm_head.weight"]
|
| 268 |
+
|
| 269 |
+
def __init__(self, config):
|
| 270 |
+
super().__init__(config)
|
| 271 |
+
self.model = GatedDeltaNetModel(config)
|
| 272 |
+
self.vocab_size = config.vocab_size
|
| 273 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
| 274 |
+
self.criterion = None
|
| 275 |
+
|
| 276 |
+
# Initialize weights and apply final processing
|
| 277 |
+
self.post_init()
|
| 278 |
+
|
| 279 |
+
def get_input_embeddings(self):
|
| 280 |
+
return self.model.embeddings
|
| 281 |
+
|
| 282 |
+
def set_input_embeddings(self, value):
|
| 283 |
+
self.model.embeddings = value
|
| 284 |
+
|
| 285 |
+
def get_output_embeddings(self):
|
| 286 |
+
return self.lm_head
|
| 287 |
+
|
| 288 |
+
def set_output_embeddings(self, new_embeddings):
|
| 289 |
+
self.lm_head = new_embeddings
|
| 290 |
+
|
| 291 |
+
def set_decoder(self, decoder):
|
| 292 |
+
self.model = decoder
|
| 293 |
+
|
| 294 |
+
def get_decoder(self):
|
| 295 |
+
return self.model
|
| 296 |
+
|
| 297 |
+
def generate(self, *args, **kwargs):
|
| 298 |
+
try:
|
| 299 |
+
return super().generate(*args, **kwargs)
|
| 300 |
+
except AttributeError as exception:
|
| 301 |
+
if 'past_key_values' in str(exception):
|
| 302 |
+
raise AttributeError(
|
| 303 |
+
f"You tried to call `generate` with a decoding strategy that manipulates `past_key_values`, "
|
| 304 |
+
f"which is not supported for {self.__class__.__name__}. "
|
| 305 |
+
f"Try another generation strategy instead. "
|
| 306 |
+
f"For the available generation strategies, check this doc: "
|
| 307 |
+
f"https://huggingface.co/docs/transformers/en/generation_strategies#decoding-strategies"
|
| 308 |
+
)
|
| 309 |
+
else:
|
| 310 |
+
raise exception
|
| 311 |
+
|
| 312 |
+
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
|
| 313 |
+
def prepare_inputs_for_generation(
|
| 314 |
+
self,
|
| 315 |
+
input_ids: torch.LongTensor = None,
|
| 316 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
| 317 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 318 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 319 |
+
use_cache: bool = True,
|
| 320 |
+
logits_to_keep: Optional[int] = None,
|
| 321 |
+
**kwargs
|
| 322 |
+
):
|
| 323 |
+
# only last token for `inputs_ids` if the `past_key_values` is not empty.
|
| 324 |
+
if past_key_values is not None and len(past_key_values) > 0:
|
| 325 |
+
input_ids = input_ids[:, -1:]
|
| 326 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
| 327 |
+
if inputs_embeds is not None and len(past_key_values) == 0:
|
| 328 |
+
model_inputs = {'inputs_embeds': inputs_embeds}
|
| 329 |
+
else:
|
| 330 |
+
# The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
|
| 331 |
+
# recompiles graphs as the stride of the inputs is a guard.
|
| 332 |
+
# Ref: https://github.com/huggingface/transformers/pull/29114
|
| 333 |
+
# TODO: use `next_tokens` directly instead.
|
| 334 |
+
model_inputs = {'input_ids': input_ids.contiguous()}
|
| 335 |
+
|
| 336 |
+
if logits_to_keep is not None:
|
| 337 |
+
model_inputs['logits_to_keep'] = logits_to_keep
|
| 338 |
+
|
| 339 |
+
model_inputs.update({
|
| 340 |
+
'past_key_values': past_key_values,
|
| 341 |
+
'use_cache': use_cache,
|
| 342 |
+
'attention_mask': attention_mask,
|
| 343 |
+
})
|
| 344 |
+
return model_inputs
|
| 345 |
+
|
| 346 |
+
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
|
| 347 |
+
def forward(
|
| 348 |
+
self,
|
| 349 |
+
input_ids: torch.LongTensor = None,
|
| 350 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 351 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 352 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
| 353 |
+
labels: Optional[torch.LongTensor] = None,
|
| 354 |
+
use_cache: Optional[bool] = None,
|
| 355 |
+
output_attentions: Optional[bool] = None,
|
| 356 |
+
output_hidden_states: Optional[bool] = None,
|
| 357 |
+
return_dict: Optional[bool] = None,
|
| 358 |
+
logits_to_keep: Optional[int] = 0,
|
| 359 |
+
**kwargs: Unpack[Dict]
|
| 360 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
| 361 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 362 |
+
output_hidden_states = (
|
| 363 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 364 |
+
)
|
| 365 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 366 |
+
|
| 367 |
+
outputs = self.model(
|
| 368 |
+
input_ids=input_ids,
|
| 369 |
+
attention_mask=attention_mask,
|
| 370 |
+
inputs_embeds=inputs_embeds,
|
| 371 |
+
past_key_values=past_key_values,
|
| 372 |
+
use_cache=use_cache,
|
| 373 |
+
output_attentions=output_attentions,
|
| 374 |
+
output_hidden_states=output_hidden_states,
|
| 375 |
+
return_dict=return_dict,
|
| 376 |
+
**kwargs
|
| 377 |
+
)
|
| 378 |
+
|
| 379 |
+
hidden_states = outputs[0]
|
| 380 |
+
fuse_linear_and_cross_entropy = self.config.fuse_cross_entropy and self.training
|
| 381 |
+
|
| 382 |
+
loss, logits = None, None
|
| 383 |
+
if not fuse_linear_and_cross_entropy or labels is None:
|
| 384 |
+
logits = self.lm_head(hidden_states if logits_to_keep is None else hidden_states[:, -logits_to_keep:])
|
| 385 |
+
if labels is not None:
|
| 386 |
+
if getattr(self, 'criterion', None) is None:
|
| 387 |
+
if fuse_linear_and_cross_entropy:
|
| 388 |
+
criterion = FusedLinearCrossEntropyLoss()
|
| 389 |
+
elif self.config.fuse_cross_entropy:
|
| 390 |
+
criterion = FusedCrossEntropyLoss(inplace_backward=True)
|
| 391 |
+
else:
|
| 392 |
+
criterion = nn.CrossEntropyLoss()
|
| 393 |
+
else:
|
| 394 |
+
criterion = self.criterion
|
| 395 |
+
labels = labels.to(hidden_states.device)
|
| 396 |
+
labels = torch.cat((labels[..., 1:], torch.full_like(labels[:, :1], criterion.ignore_index)), 1)
|
| 397 |
+
if fuse_linear_and_cross_entropy:
|
| 398 |
+
loss = criterion(hidden_states, labels, self.lm_head.weight, self.lm_head.bias)
|
| 399 |
+
else:
|
| 400 |
+
loss = criterion(logits.view(labels.numel(), -1), labels.view(-1))
|
| 401 |
+
|
| 402 |
+
if not return_dict:
|
| 403 |
+
output = (logits,) + outputs[1:]
|
| 404 |
+
return (loss,) + output if loss is not None else output
|
| 405 |
+
|
| 406 |
+
return CausalLMOutputWithPast(
|
| 407 |
+
loss=loss,
|
| 408 |
+
logits=logits,
|
| 409 |
+
past_key_values=outputs.past_key_values,
|
| 410 |
+
hidden_states=outputs.hidden_states,
|
| 411 |
+
attentions=outputs.attentions,
|
| 412 |
+
)
|
fla/models/gated_deltaproduct/__pycache__/__init__.cpython-311.pyc
ADDED
|
Binary file (860 Bytes). View file
|
|
|
fla/models/gated_deltaproduct/__pycache__/configuration_gated_deltaproduct.cpython-311.pyc
ADDED
|
Binary file (3.77 kB). View file
|
|
|
fla/models/gated_deltaproduct/__pycache__/modeling_gated_deltaproduct.cpython-311.pyc
ADDED
|
Binary file (21.5 kB). View file
|
|
|
fla/models/gated_deltaproduct/modeling_gated_deltaproduct.py
ADDED
|
@@ -0,0 +1,520 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
|
| 3 |
+
from __future__ import annotations
|
| 4 |
+
|
| 5 |
+
import math
|
| 6 |
+
import warnings
|
| 7 |
+
from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union
|
| 8 |
+
|
| 9 |
+
import torch
|
| 10 |
+
import torch.nn as nn
|
| 11 |
+
import torch.utils.checkpoint
|
| 12 |
+
from transformers.activations import ACT2FN
|
| 13 |
+
from transformers.generation import GenerationMixin
|
| 14 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
| 15 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 16 |
+
from transformers.utils import logging
|
| 17 |
+
from transformers.utils.deprecation import deprecate_kwarg
|
| 18 |
+
|
| 19 |
+
from fla.layers.attn import Attention
|
| 20 |
+
from fla.layers.gated_deltaproduct import GatedDeltaProduct
|
| 21 |
+
from fla.models.gated_deltaproduct.configuration_gated_deltaproduct import GatedDeltaProductConfig
|
| 22 |
+
from fla.models.utils import Cache
|
| 23 |
+
from fla.modules import FusedCrossEntropyLoss, FusedLinearCrossEntropyLoss, RMSNorm
|
| 24 |
+
from fla.modules.activations import swiglu_linear
|
| 25 |
+
from fla.modules.layernorm import rms_norm_linear
|
| 26 |
+
|
| 27 |
+
if TYPE_CHECKING:
|
| 28 |
+
from transformers.processing_utils import Unpack
|
| 29 |
+
|
| 30 |
+
logger = logging.get_logger(__name__)
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
class GatedDeltaNetMLP(nn.Module):
|
| 34 |
+
def __init__(
|
| 35 |
+
self,
|
| 36 |
+
hidden_size: int,
|
| 37 |
+
hidden_ratio: Optional[int] = None,
|
| 38 |
+
intermediate_size: Optional[int] = None,
|
| 39 |
+
hidden_act: str = "swish",
|
| 40 |
+
norm_first: bool = True,
|
| 41 |
+
norm_eps: float = 1e-5,
|
| 42 |
+
) -> GatedDeltaNetMLP:
|
| 43 |
+
super().__init__()
|
| 44 |
+
|
| 45 |
+
self.hidden_size = hidden_size
|
| 46 |
+
# the final number of params is `hidden_ratio * hidden_size^2`
|
| 47 |
+
# `intermediate_size` is chosen to be a multiple of 256 closest to `2/3 * hidden_size * hidden_ratio`
|
| 48 |
+
if hidden_ratio is None:
|
| 49 |
+
hidden_ratio = 4
|
| 50 |
+
if intermediate_size is None:
|
| 51 |
+
intermediate_size = int(hidden_size * hidden_ratio * 2 / 3)
|
| 52 |
+
intermediate_size = 256 * ((intermediate_size + 256 - 1) // 256)
|
| 53 |
+
self.hidden_ratio = hidden_ratio
|
| 54 |
+
self.intermediate_size = intermediate_size
|
| 55 |
+
self.norm_first = norm_first
|
| 56 |
+
|
| 57 |
+
if norm_first:
|
| 58 |
+
self.norm = RMSNorm(hidden_size=hidden_size, eps=norm_eps)
|
| 59 |
+
|
| 60 |
+
self.gate_proj = nn.Linear(
|
| 61 |
+
self.hidden_size, self.intermediate_size * 2, bias=False
|
| 62 |
+
)
|
| 63 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
| 64 |
+
self.act_fn = ACT2FN[hidden_act]
|
| 65 |
+
|
| 66 |
+
def forward(
|
| 67 |
+
self,
|
| 68 |
+
x: torch.Tensor,
|
| 69 |
+
**kwargs: Unpack[Dict],
|
| 70 |
+
) -> torch.Tensor:
|
| 71 |
+
if self.norm_first:
|
| 72 |
+
x = rms_norm_linear(
|
| 73 |
+
x,
|
| 74 |
+
self.norm.weight,
|
| 75 |
+
self.norm.bias,
|
| 76 |
+
self.gate_proj.weight,
|
| 77 |
+
self.gate_proj.bias,
|
| 78 |
+
)
|
| 79 |
+
else:
|
| 80 |
+
x = self.gate_proj(x)
|
| 81 |
+
gate, y = x.chunk(2, -1)
|
| 82 |
+
return swiglu_linear(gate, y, self.down_proj.weight, self.down_proj.bias)
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
class GatedDeltaProductBlock(nn.Module):
|
| 86 |
+
def __init__(self, config: GatedDeltaProductConfig, layer_idx: int):
|
| 87 |
+
super().__init__()
|
| 88 |
+
self.hidden_size = config.hidden_size
|
| 89 |
+
|
| 90 |
+
if not config.norm_first:
|
| 91 |
+
self.attn_norm = RMSNorm(
|
| 92 |
+
hidden_size=config.hidden_size, eps=config.norm_eps
|
| 93 |
+
)
|
| 94 |
+
if config.attn is not None and layer_idx in config.attn["layers"]:
|
| 95 |
+
self.attn = Attention(
|
| 96 |
+
hidden_size=config.hidden_size,
|
| 97 |
+
num_heads=config.attn["num_heads"],
|
| 98 |
+
num_kv_heads=config.attn["num_kv_heads"],
|
| 99 |
+
window_size=config.attn["window_size"],
|
| 100 |
+
max_position_embeddings=config.max_position_embeddings,
|
| 101 |
+
layer_idx=layer_idx,
|
| 102 |
+
)
|
| 103 |
+
else:
|
| 104 |
+
self.attn = GatedDeltaProduct(
|
| 105 |
+
mode=config.attn_mode,
|
| 106 |
+
hidden_size=config.hidden_size,
|
| 107 |
+
expand_v=config.expand_v,
|
| 108 |
+
head_dim=config.head_dim,
|
| 109 |
+
num_heads=config.num_heads,
|
| 110 |
+
use_gate=config.use_gate,
|
| 111 |
+
use_forget_gate=config.use_forget_gate,
|
| 112 |
+
use_short_conv=config.use_short_conv,
|
| 113 |
+
conv_size=config.conv_size,
|
| 114 |
+
norm_first=config.norm_first,
|
| 115 |
+
norm_eps=config.norm_eps,
|
| 116 |
+
allow_neg_eigval=config.allow_neg_eigval,
|
| 117 |
+
num_householder=config.num_householder,
|
| 118 |
+
layer_idx=layer_idx,
|
| 119 |
+
use_beta_conv=config.use_beta_conv
|
| 120 |
+
)
|
| 121 |
+
if not config.norm_first:
|
| 122 |
+
self.mlp_norm = RMSNorm(hidden_size=config.hidden_size, eps=config.norm_eps)
|
| 123 |
+
self.mlp = GatedDeltaNetMLP(
|
| 124 |
+
hidden_size=config.hidden_size,
|
| 125 |
+
hidden_ratio=config.hidden_ratio,
|
| 126 |
+
intermediate_size=config.intermediate_size,
|
| 127 |
+
hidden_act=config.hidden_act,
|
| 128 |
+
norm_first=config.norm_first,
|
| 129 |
+
norm_eps=config.norm_eps,
|
| 130 |
+
)
|
| 131 |
+
|
| 132 |
+
def forward(
|
| 133 |
+
self,
|
| 134 |
+
hidden_states: torch.Tensor,
|
| 135 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 136 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
| 137 |
+
use_cache: Optional[bool] = False,
|
| 138 |
+
output_attentions: Optional[bool] = False,
|
| 139 |
+
**kwargs: Unpack[Dict],
|
| 140 |
+
) -> Tuple[
|
| 141 |
+
torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]
|
| 142 |
+
]:
|
| 143 |
+
residual = hidden_states
|
| 144 |
+
if hasattr(self, "attn_norm"):
|
| 145 |
+
hidden_states = self.attn_norm(hidden_states)
|
| 146 |
+
hidden_states, attentions, past_key_values = self.attn(
|
| 147 |
+
hidden_states=hidden_states,
|
| 148 |
+
attention_mask=attention_mask,
|
| 149 |
+
past_key_values=past_key_values,
|
| 150 |
+
use_cache=use_cache,
|
| 151 |
+
output_attentions=output_attentions,
|
| 152 |
+
**kwargs,
|
| 153 |
+
)
|
| 154 |
+
if hasattr(self, "mlp_norm"):
|
| 155 |
+
hidden_states, residual = self.mlp_norm(hidden_states, residual, True)
|
| 156 |
+
else:
|
| 157 |
+
hidden_states = residual + hidden_states
|
| 158 |
+
residual = hidden_states
|
| 159 |
+
hidden_states = self.mlp(hidden_states, **kwargs)
|
| 160 |
+
hidden_states = residual + hidden_states
|
| 161 |
+
|
| 162 |
+
outputs = (hidden_states, attentions, past_key_values)
|
| 163 |
+
|
| 164 |
+
return outputs
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
class GatedDeltaProductPreTrainedModel(PreTrainedModel):
|
| 168 |
+
config_class = GatedDeltaProductConfig
|
| 169 |
+
supports_gradient_checkpointing = True
|
| 170 |
+
_no_split_modules = ["GatedDeltaNetBlock"]
|
| 171 |
+
|
| 172 |
+
def __init__(self, *inputs, **kwargs):
|
| 173 |
+
super().__init__(*inputs, **kwargs)
|
| 174 |
+
|
| 175 |
+
def _init_weights(
|
| 176 |
+
self,
|
| 177 |
+
module: nn.Module,
|
| 178 |
+
rescale_prenorm_residual: bool = True,
|
| 179 |
+
num_residuals_per_layer: int = 2,
|
| 180 |
+
):
|
| 181 |
+
if isinstance(module, (nn.Linear, nn.Conv1d)):
|
| 182 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
| 183 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
| 184 |
+
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
|
| 185 |
+
if module.bias is not None:
|
| 186 |
+
nn.init.zeros_(module.bias)
|
| 187 |
+
elif isinstance(module, nn.Embedding):
|
| 188 |
+
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
|
| 189 |
+
if module.padding_idx is not None:
|
| 190 |
+
module.weight.data[module.padding_idx].zero_()
|
| 191 |
+
|
| 192 |
+
if rescale_prenorm_residual:
|
| 193 |
+
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
|
| 194 |
+
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
|
| 195 |
+
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
|
| 196 |
+
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
|
| 197 |
+
#
|
| 198 |
+
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
|
| 199 |
+
for name, p in module.named_parameters():
|
| 200 |
+
if name in ["o_proj.weight", "down_proj.weight"]:
|
| 201 |
+
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
|
| 202 |
+
# Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
|
| 203 |
+
# We need to reinit p since this code could be called multiple times
|
| 204 |
+
# Having just p *= scale would repeatedly scale it down
|
| 205 |
+
with torch.no_grad():
|
| 206 |
+
p /= math.sqrt(
|
| 207 |
+
num_residuals_per_layer * self.config.num_hidden_layers
|
| 208 |
+
)
|
| 209 |
+
|
| 210 |
+
|
| 211 |
+
class GatedDeltaProductModel(GatedDeltaProductPreTrainedModel):
|
| 212 |
+
def __init__(self, config: GatedDeltaProductConfig):
|
| 213 |
+
super().__init__(config)
|
| 214 |
+
self.padding_idx = config.pad_token_id
|
| 215 |
+
self.vocab_size = config.vocab_size
|
| 216 |
+
|
| 217 |
+
self.embeddings = nn.Embedding(
|
| 218 |
+
config.vocab_size, config.hidden_size, self.padding_idx
|
| 219 |
+
)
|
| 220 |
+
self.layers = nn.ModuleList(
|
| 221 |
+
[
|
| 222 |
+
GatedDeltaProductBlock(config, layer_idx)
|
| 223 |
+
for layer_idx in range(config.num_hidden_layers)
|
| 224 |
+
]
|
| 225 |
+
)
|
| 226 |
+
self.norm = RMSNorm(config.hidden_size, eps=config.norm_eps)
|
| 227 |
+
|
| 228 |
+
self.gradient_checkpointing = False
|
| 229 |
+
|
| 230 |
+
self.post_init()
|
| 231 |
+
|
| 232 |
+
def get_input_embeddings(self):
|
| 233 |
+
return self.embeddings
|
| 234 |
+
|
| 235 |
+
def set_input_embeddings(self, value):
|
| 236 |
+
self.embeddings = value
|
| 237 |
+
|
| 238 |
+
def forward(
|
| 239 |
+
self,
|
| 240 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 241 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 242 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 243 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
| 244 |
+
use_cache: Optional[bool] = None,
|
| 245 |
+
output_attentions: Optional[bool] = None,
|
| 246 |
+
output_hidden_states: Optional[bool] = None,
|
| 247 |
+
return_dict: Optional[bool] = None,
|
| 248 |
+
**kwargs: Unpack[Dict],
|
| 249 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
| 250 |
+
if output_attentions:
|
| 251 |
+
warnings.warn(
|
| 252 |
+
"`GatedDeltaNetModel` does not `output_attentions` now, setting it to `False`.",
|
| 253 |
+
stacklevel=2,
|
| 254 |
+
)
|
| 255 |
+
output_attentions = False
|
| 256 |
+
output_attentions = (
|
| 257 |
+
output_attentions
|
| 258 |
+
if output_attentions is not None
|
| 259 |
+
else self.config.output_attentions
|
| 260 |
+
)
|
| 261 |
+
output_hidden_states = (
|
| 262 |
+
output_hidden_states
|
| 263 |
+
if output_hidden_states is not None
|
| 264 |
+
else self.config.output_hidden_states
|
| 265 |
+
)
|
| 266 |
+
use_cache = (
|
| 267 |
+
use_cache
|
| 268 |
+
if use_cache is not None
|
| 269 |
+
else (self.config.use_cache if not self.training else False)
|
| 270 |
+
)
|
| 271 |
+
return_dict = (
|
| 272 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
| 273 |
+
)
|
| 274 |
+
|
| 275 |
+
# retrieve input_ids and inputs_embeds
|
| 276 |
+
if input_ids is not None and inputs_embeds is not None:
|
| 277 |
+
raise ValueError(
|
| 278 |
+
"You cannot specify both input_ids and inputs_embeds at the same time"
|
| 279 |
+
)
|
| 280 |
+
if input_ids is None and inputs_embeds is None:
|
| 281 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
| 282 |
+
|
| 283 |
+
if inputs_embeds is None:
|
| 284 |
+
inputs_embeds = self.embeddings(input_ids)
|
| 285 |
+
hidden_states = inputs_embeds
|
| 286 |
+
|
| 287 |
+
if use_cache and not isinstance(past_key_values, Cache):
|
| 288 |
+
past_key_values = Cache.from_legacy_cache(past_key_values)
|
| 289 |
+
|
| 290 |
+
if self.gradient_checkpointing and self.training and use_cache:
|
| 291 |
+
logger.warning_once(
|
| 292 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
| 293 |
+
)
|
| 294 |
+
use_cache = False
|
| 295 |
+
|
| 296 |
+
all_hidden_states = () if output_hidden_states else None
|
| 297 |
+
all_attns = () if output_attentions else None
|
| 298 |
+
for layer in self.layers:
|
| 299 |
+
if output_hidden_states:
|
| 300 |
+
all_hidden_states += (hidden_states,)
|
| 301 |
+
|
| 302 |
+
if self.gradient_checkpointing and self.training:
|
| 303 |
+
hidden_states, attentions, past_key_values = (
|
| 304 |
+
self._gradient_checkpointing_func(
|
| 305 |
+
layer.__call__,
|
| 306 |
+
hidden_states,
|
| 307 |
+
attention_mask,
|
| 308 |
+
past_key_values,
|
| 309 |
+
use_cache,
|
| 310 |
+
output_attentions,
|
| 311 |
+
**kwargs,
|
| 312 |
+
)
|
| 313 |
+
)
|
| 314 |
+
else:
|
| 315 |
+
hidden_states, attentions, past_key_values = layer(
|
| 316 |
+
hidden_states,
|
| 317 |
+
attention_mask=attention_mask,
|
| 318 |
+
past_key_values=past_key_values,
|
| 319 |
+
use_cache=use_cache,
|
| 320 |
+
output_attentions=output_attentions,
|
| 321 |
+
**kwargs,
|
| 322 |
+
)
|
| 323 |
+
|
| 324 |
+
if output_attentions:
|
| 325 |
+
all_attns += (attentions,)
|
| 326 |
+
|
| 327 |
+
hidden_states = self.norm(hidden_states)
|
| 328 |
+
# add hidden states from the last decoder layer
|
| 329 |
+
if output_hidden_states:
|
| 330 |
+
all_hidden_states += (hidden_states,)
|
| 331 |
+
|
| 332 |
+
if not return_dict:
|
| 333 |
+
return tuple(
|
| 334 |
+
i
|
| 335 |
+
for i in [
|
| 336 |
+
hidden_states,
|
| 337 |
+
past_key_values,
|
| 338 |
+
all_hidden_states,
|
| 339 |
+
all_attns,
|
| 340 |
+
]
|
| 341 |
+
if i is not None
|
| 342 |
+
)
|
| 343 |
+
return BaseModelOutputWithPast(
|
| 344 |
+
last_hidden_state=hidden_states,
|
| 345 |
+
past_key_values=past_key_values,
|
| 346 |
+
hidden_states=all_hidden_states,
|
| 347 |
+
attentions=all_attns,
|
| 348 |
+
)
|
| 349 |
+
|
| 350 |
+
|
| 351 |
+
class GatedDeltaProductForCausalLM(GatedDeltaProductPreTrainedModel, GenerationMixin):
|
| 352 |
+
_tied_weights_keys = ["lm_head.weight"]
|
| 353 |
+
|
| 354 |
+
def __init__(self, config):
|
| 355 |
+
super().__init__(config)
|
| 356 |
+
self.model = GatedDeltaProductModel(config)
|
| 357 |
+
self.vocab_size = config.vocab_size
|
| 358 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
| 359 |
+
|
| 360 |
+
# Initialize weights and apply final processing
|
| 361 |
+
self.post_init()
|
| 362 |
+
|
| 363 |
+
def get_input_embeddings(self):
|
| 364 |
+
return self.model.embeddings
|
| 365 |
+
|
| 366 |
+
def set_input_embeddings(self, value):
|
| 367 |
+
self.model.embeddings = value
|
| 368 |
+
|
| 369 |
+
def get_output_embeddings(self):
|
| 370 |
+
return self.lm_head
|
| 371 |
+
|
| 372 |
+
def set_output_embeddings(self, new_embeddings):
|
| 373 |
+
self.lm_head = new_embeddings
|
| 374 |
+
|
| 375 |
+
def set_decoder(self, decoder):
|
| 376 |
+
self.model = decoder
|
| 377 |
+
|
| 378 |
+
def get_decoder(self):
|
| 379 |
+
return self.model
|
| 380 |
+
|
| 381 |
+
def generate(self, *args, **kwargs):
|
| 382 |
+
try:
|
| 383 |
+
return super().generate(*args, **kwargs)
|
| 384 |
+
except AttributeError as exception:
|
| 385 |
+
if "past_key_values" in str(exception):
|
| 386 |
+
raise AttributeError(
|
| 387 |
+
f"You tried to call `generate` with a decoding strategy that manipulates `past_key_values`, "
|
| 388 |
+
f"which is not supported for {self.__class__.__name__}. "
|
| 389 |
+
f"Try another generation strategy instead. "
|
| 390 |
+
f"For the available generation strategies, check this doc: "
|
| 391 |
+
f"https://huggingface.co/docs/transformers/en/generation_strategies#decoding-strategies"
|
| 392 |
+
)
|
| 393 |
+
else:
|
| 394 |
+
raise exception
|
| 395 |
+
|
| 396 |
+
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
|
| 397 |
+
def prepare_inputs_for_generation(
|
| 398 |
+
self,
|
| 399 |
+
input_ids: torch.LongTensor = None,
|
| 400 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
| 401 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 402 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 403 |
+
use_cache: bool = True,
|
| 404 |
+
num_logits_to_keep: Optional[int] = None,
|
| 405 |
+
logits_to_keep: Optional[int] = None,
|
| 406 |
+
**kwargs,
|
| 407 |
+
):
|
| 408 |
+
# only last token for `inputs_ids` if the `past_key_values` is passed along is not empty.
|
| 409 |
+
if past_key_values is not None and len(past_key_values) > 0:
|
| 410 |
+
input_ids = input_ids[:, -1:]
|
| 411 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
| 412 |
+
if inputs_embeds is not None and past_key_values is None:
|
| 413 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
| 414 |
+
else:
|
| 415 |
+
# The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
|
| 416 |
+
# recompiles graphs as the stride of the inputs is a guard.
|
| 417 |
+
# Ref: https://github.com/huggingface/transformers/pull/29114
|
| 418 |
+
# TODO: use `next_tokens` directly instead.
|
| 419 |
+
model_inputs = {"input_ids": input_ids.contiguous()}
|
| 420 |
+
|
| 421 |
+
if logits_to_keep is not None:
|
| 422 |
+
model_inputs['logits_to_keep'] = logits_to_keep
|
| 423 |
+
|
| 424 |
+
model_inputs.update(
|
| 425 |
+
{
|
| 426 |
+
"past_key_values": past_key_values,
|
| 427 |
+
"use_cache": use_cache,
|
| 428 |
+
"attention_mask": attention_mask,
|
| 429 |
+
"num_logits_to_keep": num_logits_to_keep,
|
| 430 |
+
}
|
| 431 |
+
)
|
| 432 |
+
return model_inputs
|
| 433 |
+
|
| 434 |
+
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
|
| 435 |
+
def forward(
|
| 436 |
+
self,
|
| 437 |
+
input_ids: torch.LongTensor = None,
|
| 438 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 439 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 440 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
| 441 |
+
labels: Optional[torch.LongTensor] = None,
|
| 442 |
+
use_cache: Optional[bool] = None,
|
| 443 |
+
output_attentions: Optional[bool] = None,
|
| 444 |
+
output_hidden_states: Optional[bool] = None,
|
| 445 |
+
return_dict: Optional[bool] = None,
|
| 446 |
+
num_logits_to_keep: Optional[int] = 0,
|
| 447 |
+
logits_to_keep: Optional[int] = 0,
|
| 448 |
+
**kwargs: Unpack[Dict],
|
| 449 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
| 450 |
+
num_logits_to_keep = 0 if num_logits_to_keep is None else num_logits_to_keep
|
| 451 |
+
output_attentions = (
|
| 452 |
+
output_attentions
|
| 453 |
+
if output_attentions is not None
|
| 454 |
+
else self.config.output_attentions
|
| 455 |
+
)
|
| 456 |
+
output_hidden_states = (
|
| 457 |
+
output_hidden_states
|
| 458 |
+
if output_hidden_states is not None
|
| 459 |
+
else self.config.output_hidden_states
|
| 460 |
+
)
|
| 461 |
+
return_dict = (
|
| 462 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
| 463 |
+
)
|
| 464 |
+
kwargs.pop("num_items_in_batch", None)
|
| 465 |
+
outputs = self.model(
|
| 466 |
+
input_ids=input_ids,
|
| 467 |
+
attention_mask=attention_mask,
|
| 468 |
+
inputs_embeds=inputs_embeds,
|
| 469 |
+
past_key_values=past_key_values,
|
| 470 |
+
use_cache=use_cache,
|
| 471 |
+
output_attentions=output_attentions,
|
| 472 |
+
output_hidden_states=output_hidden_states,
|
| 473 |
+
return_dict=return_dict,
|
| 474 |
+
**kwargs,
|
| 475 |
+
)
|
| 476 |
+
hidden_states = outputs[0]
|
| 477 |
+
fuse_linear_and_cross_entropy = self.config.fuse_cross_entropy and self.training
|
| 478 |
+
|
| 479 |
+
loss, logits = None, None
|
| 480 |
+
if not fuse_linear_and_cross_entropy or labels is None:
|
| 481 |
+
logits = self.lm_head(hidden_states if logits_to_keep is None else hidden_states[:, -logits_to_keep:])
|
| 482 |
+
if labels is not None:
|
| 483 |
+
if self.config.fuse_cross_entropy:
|
| 484 |
+
if fuse_linear_and_cross_entropy:
|
| 485 |
+
loss_fct = FusedLinearCrossEntropyLoss()
|
| 486 |
+
else:
|
| 487 |
+
loss_fct = FusedCrossEntropyLoss(inplace_backward=True)
|
| 488 |
+
else:
|
| 489 |
+
loss_fct = nn.CrossEntropyLoss()
|
| 490 |
+
# Enable model parallelism
|
| 491 |
+
labels = labels.to(hidden_states.device)
|
| 492 |
+
labels = torch.cat(
|
| 493 |
+
(
|
| 494 |
+
labels[..., 1:],
|
| 495 |
+
torch.full_like(labels[:, :1], loss_fct.ignore_index),
|
| 496 |
+
),
|
| 497 |
+
1,
|
| 498 |
+
)
|
| 499 |
+
if fuse_linear_and_cross_entropy:
|
| 500 |
+
loss = loss_fct(
|
| 501 |
+
hidden_states.view(-1, self.config.hidden_size),
|
| 502 |
+
labels.view(-1),
|
| 503 |
+
self.lm_head.weight,
|
| 504 |
+
self.lm_head.bias,
|
| 505 |
+
)
|
| 506 |
+
else:
|
| 507 |
+
loss = loss_fct(
|
| 508 |
+
logits.view(-1, self.config.vocab_size), labels.view(-1)
|
| 509 |
+
)
|
| 510 |
+
|
| 511 |
+
if not return_dict:
|
| 512 |
+
output = (logits,) + outputs[1:]
|
| 513 |
+
return (loss, *output) if loss is not None else output
|
| 514 |
+
return CausalLMOutputWithPast(
|
| 515 |
+
loss=loss,
|
| 516 |
+
logits=logits,
|
| 517 |
+
past_key_values=outputs.past_key_values,
|
| 518 |
+
hidden_states=outputs.hidden_states,
|
| 519 |
+
attentions=outputs.attentions,
|
| 520 |
+
)
|
fla/models/gla/__init__.py
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
|
| 3 |
+
from transformers import AutoConfig, AutoModel, AutoModelForCausalLM
|
| 4 |
+
|
| 5 |
+
from fla.models.gla.configuration_gla import GLAConfig
|
| 6 |
+
from fla.models.gla.modeling_gla import GLAForCausalLM, GLAModel
|
| 7 |
+
|
| 8 |
+
AutoConfig.register(GLAConfig.model_type, GLAConfig)
|
| 9 |
+
AutoModel.register(GLAConfig, GLAModel)
|
| 10 |
+
AutoModelForCausalLM.register(GLAConfig, GLAForCausalLM)
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
__all__ = ['GLAConfig', 'GLAForCausalLM', 'GLAModel']
|
fla/models/gla/__pycache__/__init__.cpython-311.pyc
ADDED
|
Binary file (736 Bytes). View file
|
|
|
fla/models/gla/__pycache__/configuration_gla.cpython-311.pyc
ADDED
|
Binary file (4.16 kB). View file
|
|
|
fla/models/gla/__pycache__/modeling_gla.cpython-311.pyc
ADDED
|
Binary file (19.5 kB). View file
|
|
|
fla/models/gla/configuration_gla.py
ADDED
|
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
|
| 3 |
+
from typing import Dict, Optional
|
| 4 |
+
|
| 5 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class GLAConfig(PretrainedConfig):
|
| 9 |
+
|
| 10 |
+
model_type = 'gla'
|
| 11 |
+
keys_to_ignore_at_inference = ['past_key_values']
|
| 12 |
+
|
| 13 |
+
def __init__(
|
| 14 |
+
self,
|
| 15 |
+
hidden_size: int = 2048,
|
| 16 |
+
expand_k: int = 0.5,
|
| 17 |
+
expand_v: int = 1,
|
| 18 |
+
hidden_ratio: Optional[int] = 4,
|
| 19 |
+
intermediate_size: Optional[int] = None,
|
| 20 |
+
num_hidden_layers: int = 24,
|
| 21 |
+
num_heads: int = 4,
|
| 22 |
+
num_kv_heads: Optional[int] = None,
|
| 23 |
+
feature_map: Optional[str] = None,
|
| 24 |
+
attn_mode: str = "chunk",
|
| 25 |
+
use_short_conv: bool = False,
|
| 26 |
+
conv_size: int = 4,
|
| 27 |
+
use_output_gate: bool = True,
|
| 28 |
+
clamp_min: Optional[float] = None,
|
| 29 |
+
hidden_act: str = "swish",
|
| 30 |
+
max_position_embeddings: int = 2048,
|
| 31 |
+
elementwise_affine: Optional[bool] = True,
|
| 32 |
+
norm_eps: float = 1e-6,
|
| 33 |
+
use_gk: bool = True,
|
| 34 |
+
use_gv: bool = False,
|
| 35 |
+
attn: Optional[Dict] = None,
|
| 36 |
+
use_cache: bool = True,
|
| 37 |
+
pad_token_id: int = None,
|
| 38 |
+
bos_token_id: int = 1,
|
| 39 |
+
eos_token_id: int = 2,
|
| 40 |
+
tie_word_embeddings: bool = False,
|
| 41 |
+
initializer_range: float = 0.006,
|
| 42 |
+
fuse_norm: bool = True,
|
| 43 |
+
fuse_swiglu: bool = True,
|
| 44 |
+
fuse_cross_entropy: bool = True,
|
| 45 |
+
vocab_size: int = 32000,
|
| 46 |
+
**kwargs
|
| 47 |
+
):
|
| 48 |
+
self.hidden_size = hidden_size
|
| 49 |
+
self.expand_k = expand_k
|
| 50 |
+
self.expand_v = expand_v
|
| 51 |
+
self.hidden_ratio = hidden_ratio
|
| 52 |
+
self.intermediate_size = intermediate_size
|
| 53 |
+
self.num_hidden_layers = num_hidden_layers
|
| 54 |
+
self.num_heads = num_heads
|
| 55 |
+
self.num_kv_heads = num_kv_heads
|
| 56 |
+
self.feature_map = feature_map
|
| 57 |
+
self.attn_mode = attn_mode
|
| 58 |
+
self.use_short_conv = use_short_conv
|
| 59 |
+
self.conv_size = conv_size
|
| 60 |
+
self.use_output_gate = use_output_gate
|
| 61 |
+
self.clamp_min = clamp_min
|
| 62 |
+
self.hidden_act = hidden_act
|
| 63 |
+
self.max_position_embeddings = max_position_embeddings
|
| 64 |
+
self.elementwise_affine = elementwise_affine
|
| 65 |
+
self.norm_eps = norm_eps
|
| 66 |
+
self.use_gk = use_gk
|
| 67 |
+
self.use_gv = use_gv
|
| 68 |
+
self.attn = attn
|
| 69 |
+
self.use_cache = use_cache
|
| 70 |
+
self.initializer_range = initializer_range
|
| 71 |
+
|
| 72 |
+
self.fuse_norm = fuse_norm
|
| 73 |
+
self.fuse_swiglu = fuse_swiglu
|
| 74 |
+
self.fuse_cross_entropy = fuse_cross_entropy
|
| 75 |
+
self.vocab_size = vocab_size
|
| 76 |
+
|
| 77 |
+
if attn is not None:
|
| 78 |
+
if not isinstance(attn, Dict):
|
| 79 |
+
raise ValueError("attn must be a dictionary")
|
| 80 |
+
if 'layers' not in attn:
|
| 81 |
+
raise ValueError("Layer indices must be provided to initialize hybrid attention layers")
|
| 82 |
+
if 'num_heads' not in attn:
|
| 83 |
+
raise ValueError("Number of heads must be provided to initialize hybrid attention layers")
|
| 84 |
+
attn['num_kv_heads'] = attn.get('num_kv_heads', attn['num_heads'])
|
| 85 |
+
attn['qkv_bias'] = attn.get('qkv_bias', False)
|
| 86 |
+
attn['window_size'] = attn.get('window_size', None)
|
| 87 |
+
attn['rope_theta'] = attn.get('rope_theta', 10000.)
|
| 88 |
+
|
| 89 |
+
super().__init__(
|
| 90 |
+
pad_token_id=pad_token_id,
|
| 91 |
+
bos_token_id=bos_token_id,
|
| 92 |
+
eos_token_id=eos_token_id,
|
| 93 |
+
tie_word_embeddings=tie_word_embeddings,
|
| 94 |
+
**kwargs,
|
| 95 |
+
)
|
fla/models/gla/modeling_gla.py
ADDED
|
@@ -0,0 +1,417 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
|
| 3 |
+
from __future__ import annotations
|
| 4 |
+
|
| 5 |
+
import math
|
| 6 |
+
import warnings
|
| 7 |
+
from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union
|
| 8 |
+
|
| 9 |
+
import torch
|
| 10 |
+
import torch.nn as nn
|
| 11 |
+
import torch.utils.checkpoint
|
| 12 |
+
from transformers.generation import GenerationMixin
|
| 13 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
| 14 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 15 |
+
from transformers.utils import logging
|
| 16 |
+
from transformers.utils.deprecation import deprecate_kwarg
|
| 17 |
+
|
| 18 |
+
from fla.layers.attn import Attention
|
| 19 |
+
from fla.layers.gla import GatedLinearAttention
|
| 20 |
+
from fla.models.gla.configuration_gla import GLAConfig
|
| 21 |
+
from fla.models.utils import Cache
|
| 22 |
+
from fla.modules import FusedCrossEntropyLoss, FusedLinearCrossEntropyLoss
|
| 23 |
+
from fla.modules import GatedMLP as GLAMLP
|
| 24 |
+
from fla.modules import RMSNorm
|
| 25 |
+
|
| 26 |
+
if TYPE_CHECKING:
|
| 27 |
+
from transformers.processing_utils import Unpack
|
| 28 |
+
|
| 29 |
+
logger = logging.get_logger(__name__)
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
class GLABlock(nn.Module):
|
| 33 |
+
def __init__(self, config: GLAConfig, layer_idx: int):
|
| 34 |
+
super().__init__()
|
| 35 |
+
|
| 36 |
+
self.config = config
|
| 37 |
+
self.layer_idx = layer_idx
|
| 38 |
+
|
| 39 |
+
self.attn_norm = (RMSNorm if config.fuse_norm else nn.RMSNorm)(config.hidden_size, eps=config.norm_eps)
|
| 40 |
+
if config.attn is not None and layer_idx in config.attn['layers']:
|
| 41 |
+
self.attn = Attention(
|
| 42 |
+
hidden_size=config.hidden_size,
|
| 43 |
+
num_heads=config.attn['num_heads'],
|
| 44 |
+
num_kv_heads=config.attn['num_kv_heads'],
|
| 45 |
+
qkv_bias=config.attn['qkv_bias'],
|
| 46 |
+
window_size=config.attn['window_size'],
|
| 47 |
+
rope_theta=config.attn['rope_theta'],
|
| 48 |
+
max_position_embeddings=config.max_position_embeddings,
|
| 49 |
+
layer_idx=layer_idx
|
| 50 |
+
)
|
| 51 |
+
else:
|
| 52 |
+
self.attn = GatedLinearAttention(
|
| 53 |
+
mode=config.attn_mode,
|
| 54 |
+
hidden_size=config.hidden_size,
|
| 55 |
+
expand_k=config.expand_k,
|
| 56 |
+
expand_v=config.expand_v,
|
| 57 |
+
num_heads=config.num_heads,
|
| 58 |
+
num_kv_heads=config.num_kv_heads,
|
| 59 |
+
feature_map=config.feature_map,
|
| 60 |
+
use_short_conv=config.use_short_conv,
|
| 61 |
+
conv_size=config.conv_size,
|
| 62 |
+
use_output_gate=config.use_output_gate,
|
| 63 |
+
gate_fn=config.hidden_act,
|
| 64 |
+
elementwise_affine=config.elementwise_affine,
|
| 65 |
+
norm_eps=config.norm_eps,
|
| 66 |
+
clamp_min=config.clamp_min,
|
| 67 |
+
fuse_norm=config.fuse_norm,
|
| 68 |
+
layer_idx=layer_idx
|
| 69 |
+
)
|
| 70 |
+
self.mlp_norm = (RMSNorm if config.fuse_norm else nn.RMSNorm)(config.hidden_size, eps=config.norm_eps)
|
| 71 |
+
self.mlp = GLAMLP(
|
| 72 |
+
hidden_size=config.hidden_size,
|
| 73 |
+
hidden_ratio=config.hidden_ratio,
|
| 74 |
+
intermediate_size=config.intermediate_size,
|
| 75 |
+
hidden_act=config.hidden_act,
|
| 76 |
+
fuse_swiglu=config.fuse_swiglu
|
| 77 |
+
)
|
| 78 |
+
|
| 79 |
+
def forward(
|
| 80 |
+
self,
|
| 81 |
+
hidden_states: torch.Tensor,
|
| 82 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 83 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
| 84 |
+
use_cache: Optional[bool] = False,
|
| 85 |
+
output_attentions: Optional[bool] = False,
|
| 86 |
+
**kwargs: Unpack[Dict]
|
| 87 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
| 88 |
+
residual = hidden_states
|
| 89 |
+
hidden_states = self.attn_norm(hidden_states)
|
| 90 |
+
hidden_states, attentions, past_key_values = self.attn(
|
| 91 |
+
hidden_states=hidden_states,
|
| 92 |
+
attention_mask=attention_mask,
|
| 93 |
+
past_key_values=past_key_values,
|
| 94 |
+
use_cache=use_cache,
|
| 95 |
+
output_attentions=output_attentions,
|
| 96 |
+
**kwargs
|
| 97 |
+
)
|
| 98 |
+
if self.config.fuse_norm:
|
| 99 |
+
hidden_states, residual = self.mlp_norm(hidden_states, residual, True)
|
| 100 |
+
else:
|
| 101 |
+
hidden_states = residual + hidden_states
|
| 102 |
+
residual = hidden_states
|
| 103 |
+
hidden_states = self.mlp_norm(hidden_states)
|
| 104 |
+
hidden_states = self.mlp(hidden_states, **kwargs)
|
| 105 |
+
hidden_states = residual + hidden_states
|
| 106 |
+
|
| 107 |
+
outputs = (hidden_states, attentions, past_key_values)
|
| 108 |
+
|
| 109 |
+
return outputs
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
class GLAPreTrainedModel(PreTrainedModel):
|
| 113 |
+
|
| 114 |
+
config_class = GLAConfig
|
| 115 |
+
base_model_prefix = 'model'
|
| 116 |
+
supports_gradient_checkpointing = True
|
| 117 |
+
_no_split_modules = ['GLABlock']
|
| 118 |
+
_supports_cache_class = True
|
| 119 |
+
|
| 120 |
+
def __init__(self, *inputs, **kwargs):
|
| 121 |
+
super().__init__(*inputs, **kwargs)
|
| 122 |
+
|
| 123 |
+
def _init_weights(
|
| 124 |
+
self,
|
| 125 |
+
module: nn.Module,
|
| 126 |
+
prenorm_residual_strategy: Optional[str] = 'rescale',
|
| 127 |
+
num_residuals_per_layer: int = 2,
|
| 128 |
+
):
|
| 129 |
+
if isinstance(module, (nn.Linear, nn.Conv1d)):
|
| 130 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
| 131 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
| 132 |
+
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
|
| 133 |
+
if module.bias is not None:
|
| 134 |
+
nn.init.zeros_(module.bias)
|
| 135 |
+
elif isinstance(module, nn.Embedding):
|
| 136 |
+
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
|
| 137 |
+
elif hasattr(module, 'reset_parameters'):
|
| 138 |
+
module.reset_parameters()
|
| 139 |
+
|
| 140 |
+
if prenorm_residual_strategy is not None:
|
| 141 |
+
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
|
| 142 |
+
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
|
| 143 |
+
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
|
| 144 |
+
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
|
| 145 |
+
#
|
| 146 |
+
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
|
| 147 |
+
p = None
|
| 148 |
+
if hasattr(module, 'o_proj'):
|
| 149 |
+
p = module.o_proj.weight
|
| 150 |
+
elif hasattr(module, 'down_proj'):
|
| 151 |
+
p = module.down_proj.weight
|
| 152 |
+
if p is not None:
|
| 153 |
+
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
|
| 154 |
+
# Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
|
| 155 |
+
# We need to reinit p since this code could be called multiple times
|
| 156 |
+
# Having just p *= scale would repeatedly scale it down
|
| 157 |
+
if prenorm_residual_strategy == 'rescale':
|
| 158 |
+
nn.init.kaiming_uniform_(p, a=math.sqrt(5))
|
| 159 |
+
with torch.no_grad():
|
| 160 |
+
p /= math.sqrt(num_residuals_per_layer * self.config.num_hidden_layers)
|
| 161 |
+
elif prenorm_residual_strategy == 'zero':
|
| 162 |
+
nn.init.zeros_(p)
|
| 163 |
+
else:
|
| 164 |
+
raise ValueError(f"Invalid prenorm_residual_strategy: {prenorm_residual_strategy}")
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
class GLAModel(GLAPreTrainedModel):
|
| 168 |
+
|
| 169 |
+
def __init__(self, config: GLAConfig):
|
| 170 |
+
super().__init__(config)
|
| 171 |
+
self.padding_idx = config.pad_token_id
|
| 172 |
+
self.vocab_size = config.vocab_size
|
| 173 |
+
|
| 174 |
+
self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
| 175 |
+
self.layers = nn.ModuleList([GLABlock(config, layer_idx) for layer_idx in range(config.num_hidden_layers)])
|
| 176 |
+
self.norm = (RMSNorm if config.fuse_norm else nn.RMSNorm)(config.hidden_size, eps=config.norm_eps)
|
| 177 |
+
|
| 178 |
+
self.gradient_checkpointing = False
|
| 179 |
+
|
| 180 |
+
self.post_init()
|
| 181 |
+
|
| 182 |
+
def get_input_embeddings(self):
|
| 183 |
+
return self.embeddings
|
| 184 |
+
|
| 185 |
+
def set_input_embeddings(self, value):
|
| 186 |
+
self.embeddings = value
|
| 187 |
+
|
| 188 |
+
def forward(
|
| 189 |
+
self,
|
| 190 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 191 |
+
attention_mask: Optional[torch.Tensor] = None, # noqa
|
| 192 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 193 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
| 194 |
+
use_cache: Optional[bool] = None,
|
| 195 |
+
output_attentions: Optional[bool] = None,
|
| 196 |
+
output_hidden_states: Optional[bool] = None,
|
| 197 |
+
return_dict: Optional[bool] = None,
|
| 198 |
+
**kwargs: Unpack[Dict]
|
| 199 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
| 200 |
+
if output_attentions:
|
| 201 |
+
warnings.warn("`GLAModel` does not `output_attentions` now, setting it to `False`.")
|
| 202 |
+
output_attentions = False
|
| 203 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 204 |
+
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 205 |
+
use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False)
|
| 206 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 207 |
+
|
| 208 |
+
# retrieve input_ids and inputs_embeds
|
| 209 |
+
if input_ids is not None and inputs_embeds is not None:
|
| 210 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
| 211 |
+
if input_ids is None and inputs_embeds is None:
|
| 212 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
| 213 |
+
|
| 214 |
+
if inputs_embeds is None:
|
| 215 |
+
inputs_embeds = self.embeddings(input_ids)
|
| 216 |
+
hidden_states = inputs_embeds
|
| 217 |
+
|
| 218 |
+
if use_cache and not isinstance(past_key_values, Cache):
|
| 219 |
+
past_key_values = Cache.from_legacy_cache(past_key_values)
|
| 220 |
+
|
| 221 |
+
if self.gradient_checkpointing and self.training and use_cache:
|
| 222 |
+
logger.warning_once("`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...")
|
| 223 |
+
use_cache = False
|
| 224 |
+
|
| 225 |
+
all_hidden_states = () if output_hidden_states else None
|
| 226 |
+
all_attns = () if output_attentions else None
|
| 227 |
+
for layer in self.layers:
|
| 228 |
+
if output_hidden_states:
|
| 229 |
+
all_hidden_states += (hidden_states,)
|
| 230 |
+
|
| 231 |
+
if self.gradient_checkpointing and self.training:
|
| 232 |
+
hidden_states, attentions, past_key_values = self._gradient_checkpointing_func(
|
| 233 |
+
layer.__call__,
|
| 234 |
+
hidden_states,
|
| 235 |
+
attention_mask,
|
| 236 |
+
past_key_values,
|
| 237 |
+
use_cache,
|
| 238 |
+
output_attentions,
|
| 239 |
+
**kwargs
|
| 240 |
+
)
|
| 241 |
+
else:
|
| 242 |
+
hidden_states, attentions, past_key_values = layer(
|
| 243 |
+
hidden_states,
|
| 244 |
+
attention_mask=attention_mask,
|
| 245 |
+
past_key_values=past_key_values,
|
| 246 |
+
use_cache=use_cache,
|
| 247 |
+
output_attentions=output_attentions,
|
| 248 |
+
**kwargs
|
| 249 |
+
)
|
| 250 |
+
|
| 251 |
+
if output_attentions:
|
| 252 |
+
all_attns += (attentions,)
|
| 253 |
+
|
| 254 |
+
hidden_states = self.norm(hidden_states)
|
| 255 |
+
|
| 256 |
+
# add hidden states from the last decoder layer
|
| 257 |
+
if output_hidden_states:
|
| 258 |
+
all_hidden_states += (hidden_states,)
|
| 259 |
+
|
| 260 |
+
if not return_dict:
|
| 261 |
+
return tuple(i for i in [hidden_states, past_key_values, all_hidden_states, all_attns] if i is not None)
|
| 262 |
+
return BaseModelOutputWithPast(
|
| 263 |
+
last_hidden_state=hidden_states,
|
| 264 |
+
past_key_values=past_key_values,
|
| 265 |
+
hidden_states=all_hidden_states,
|
| 266 |
+
attentions=all_attns
|
| 267 |
+
)
|
| 268 |
+
|
| 269 |
+
|
| 270 |
+
class GLAForCausalLM(GLAPreTrainedModel, GenerationMixin):
|
| 271 |
+
|
| 272 |
+
_tied_weights_keys = ["lm_head.weight"]
|
| 273 |
+
|
| 274 |
+
def __init__(self, config):
|
| 275 |
+
super().__init__(config)
|
| 276 |
+
self.model = GLAModel(config)
|
| 277 |
+
self.vocab_size = config.vocab_size
|
| 278 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
| 279 |
+
self.criterion = None
|
| 280 |
+
|
| 281 |
+
# Initialize weights and apply final processing
|
| 282 |
+
self.post_init()
|
| 283 |
+
|
| 284 |
+
def get_input_embeddings(self):
|
| 285 |
+
return self.model.embeddings
|
| 286 |
+
|
| 287 |
+
def set_input_embeddings(self, value):
|
| 288 |
+
self.model.embeddings = value
|
| 289 |
+
|
| 290 |
+
def get_output_embeddings(self):
|
| 291 |
+
return self.lm_head
|
| 292 |
+
|
| 293 |
+
def set_output_embeddings(self, new_embeddings):
|
| 294 |
+
self.lm_head = new_embeddings
|
| 295 |
+
|
| 296 |
+
def set_decoder(self, decoder):
|
| 297 |
+
self.model = decoder
|
| 298 |
+
|
| 299 |
+
def get_decoder(self):
|
| 300 |
+
return self.model
|
| 301 |
+
|
| 302 |
+
def generate(self, *args, **kwargs):
|
| 303 |
+
try:
|
| 304 |
+
return super().generate(*args, **kwargs)
|
| 305 |
+
except AttributeError as exception:
|
| 306 |
+
if 'past_key_values' in str(exception):
|
| 307 |
+
raise AttributeError(
|
| 308 |
+
f"You tried to call `generate` with a decoding strategy that manipulates `past_key_values`, "
|
| 309 |
+
f"which is not supported for {self.__class__.__name__}. "
|
| 310 |
+
f"Try another generation strategy instead. "
|
| 311 |
+
f"For the available generation strategies, check this doc: "
|
| 312 |
+
f"https://huggingface.co/docs/transformers/en/generation_strategies#decoding-strategies"
|
| 313 |
+
)
|
| 314 |
+
else:
|
| 315 |
+
raise exception
|
| 316 |
+
|
| 317 |
+
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
|
| 318 |
+
def prepare_inputs_for_generation(
|
| 319 |
+
self,
|
| 320 |
+
input_ids: torch.LongTensor = None,
|
| 321 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
| 322 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 323 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 324 |
+
use_cache: bool = True,
|
| 325 |
+
logits_to_keep: Optional[int] = None,
|
| 326 |
+
**kwargs
|
| 327 |
+
):
|
| 328 |
+
# only last token for `inputs_ids` if the `past_key_values` is not empty.
|
| 329 |
+
if past_key_values is not None and len(past_key_values) > 0:
|
| 330 |
+
input_ids = input_ids[:, -1:]
|
| 331 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
| 332 |
+
if inputs_embeds is not None and len(past_key_values) == 0:
|
| 333 |
+
model_inputs = {'inputs_embeds': inputs_embeds}
|
| 334 |
+
else:
|
| 335 |
+
# The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
|
| 336 |
+
# recompiles graphs as the stride of the inputs is a guard.
|
| 337 |
+
# Ref: https://github.com/huggingface/transformers/pull/29114
|
| 338 |
+
# TODO: use `next_tokens` directly instead.
|
| 339 |
+
model_inputs = {'input_ids': input_ids.contiguous()}
|
| 340 |
+
|
| 341 |
+
if logits_to_keep is not None:
|
| 342 |
+
model_inputs['logits_to_keep'] = logits_to_keep
|
| 343 |
+
|
| 344 |
+
model_inputs.update({
|
| 345 |
+
'past_key_values': past_key_values,
|
| 346 |
+
'use_cache': use_cache,
|
| 347 |
+
'attention_mask': attention_mask,
|
| 348 |
+
})
|
| 349 |
+
return model_inputs
|
| 350 |
+
|
| 351 |
+
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
|
| 352 |
+
def forward(
|
| 353 |
+
self,
|
| 354 |
+
input_ids: torch.LongTensor = None,
|
| 355 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 356 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 357 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
| 358 |
+
labels: Optional[torch.LongTensor] = None,
|
| 359 |
+
use_cache: Optional[bool] = None,
|
| 360 |
+
output_attentions: Optional[bool] = None,
|
| 361 |
+
output_hidden_states: Optional[bool] = None,
|
| 362 |
+
return_dict: Optional[bool] = None,
|
| 363 |
+
logits_to_keep: Optional[int] = 0,
|
| 364 |
+
**kwargs: Unpack[Dict]
|
| 365 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
| 366 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 367 |
+
output_hidden_states = (
|
| 368 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 369 |
+
)
|
| 370 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 371 |
+
|
| 372 |
+
outputs = self.model(
|
| 373 |
+
input_ids=input_ids,
|
| 374 |
+
attention_mask=attention_mask,
|
| 375 |
+
inputs_embeds=inputs_embeds,
|
| 376 |
+
past_key_values=past_key_values,
|
| 377 |
+
use_cache=use_cache,
|
| 378 |
+
output_attentions=output_attentions,
|
| 379 |
+
output_hidden_states=output_hidden_states,
|
| 380 |
+
return_dict=return_dict,
|
| 381 |
+
**kwargs
|
| 382 |
+
)
|
| 383 |
+
|
| 384 |
+
hidden_states = outputs[0]
|
| 385 |
+
fuse_linear_and_cross_entropy = self.config.fuse_cross_entropy and self.training
|
| 386 |
+
|
| 387 |
+
loss, logits = None, None
|
| 388 |
+
if not fuse_linear_and_cross_entropy or labels is None:
|
| 389 |
+
logits = self.lm_head(hidden_states if logits_to_keep is None else hidden_states[:, -logits_to_keep:])
|
| 390 |
+
if labels is not None:
|
| 391 |
+
if getattr(self, 'criterion', None) is None:
|
| 392 |
+
if fuse_linear_and_cross_entropy:
|
| 393 |
+
criterion = FusedLinearCrossEntropyLoss()
|
| 394 |
+
elif self.config.fuse_cross_entropy:
|
| 395 |
+
criterion = FusedCrossEntropyLoss(inplace_backward=True)
|
| 396 |
+
else:
|
| 397 |
+
criterion = nn.CrossEntropyLoss()
|
| 398 |
+
else:
|
| 399 |
+
criterion = self.criterion
|
| 400 |
+
labels = labels.to(hidden_states.device)
|
| 401 |
+
labels = torch.cat((labels[..., 1:], torch.full_like(labels[:, :1], criterion.ignore_index)), 1)
|
| 402 |
+
if fuse_linear_and_cross_entropy:
|
| 403 |
+
loss = criterion(hidden_states, labels, self.lm_head.weight, self.lm_head.bias)
|
| 404 |
+
else:
|
| 405 |
+
loss = criterion(logits.view(labels.numel(), -1), labels.view(-1))
|
| 406 |
+
|
| 407 |
+
if not return_dict:
|
| 408 |
+
output = (logits,) + outputs[1:]
|
| 409 |
+
return (loss,) + output if loss is not None else output
|
| 410 |
+
|
| 411 |
+
return CausalLMOutputWithPast(
|
| 412 |
+
loss=loss,
|
| 413 |
+
logits=logits,
|
| 414 |
+
past_key_values=outputs.past_key_values,
|
| 415 |
+
hidden_states=outputs.hidden_states,
|
| 416 |
+
attentions=outputs.attentions,
|
| 417 |
+
)
|
fla/models/gsa/__init__.py
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
|
| 3 |
+
from transformers import AutoConfig, AutoModel, AutoModelForCausalLM
|
| 4 |
+
|
| 5 |
+
from fla.models.gsa.configuration_gsa import GSAConfig
|
| 6 |
+
from fla.models.gsa.modeling_gsa import GSAForCausalLM, GSAModel
|
| 7 |
+
|
| 8 |
+
AutoConfig.register(GSAConfig.model_type, GSAConfig)
|
| 9 |
+
AutoModel.register(GSAConfig, GSAModel)
|
| 10 |
+
AutoModelForCausalLM.register(GSAConfig, GSAForCausalLM)
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
__all__ = ['GSAConfig', 'GSAForCausalLM', 'GSAModel']
|
fla/models/gsa/__pycache__/__init__.cpython-311.pyc
ADDED
|
Binary file (736 Bytes). View file
|
|
|
fla/models/gsa/__pycache__/configuration_gsa.cpython-311.pyc
ADDED
|
Binary file (4.29 kB). View file
|
|
|
fla/models/gsa/__pycache__/modeling_gsa.cpython-311.pyc
ADDED
|
Binary file (19.5 kB). View file
|
|
|
fla/models/gsa/configuration_gsa.py
ADDED
|
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
|
| 3 |
+
from typing import Dict, Optional
|
| 4 |
+
|
| 5 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class GSAConfig(PretrainedConfig):
|
| 9 |
+
|
| 10 |
+
model_type = 'gsa'
|
| 11 |
+
keys_to_ignore_at_inference = ['past_key_values']
|
| 12 |
+
|
| 13 |
+
def __init__(
|
| 14 |
+
self,
|
| 15 |
+
hidden_size: int = 2048,
|
| 16 |
+
gate_logit_normalizer: Optional[int] = 8,
|
| 17 |
+
clamp_min: Optional[float] = None,
|
| 18 |
+
clamp_max: Optional[float] = None,
|
| 19 |
+
hidden_ratio: Optional[int] = 4,
|
| 20 |
+
intermediate_size: Optional[int] = None,
|
| 21 |
+
num_hidden_layers: int = 24,
|
| 22 |
+
num_heads: int = 4,
|
| 23 |
+
num_kv_heads: Optional[int] = None,
|
| 24 |
+
num_slots: Optional[int] = 64,
|
| 25 |
+
use_short_conv: bool = False,
|
| 26 |
+
conv_size: int = 4,
|
| 27 |
+
exapnd_k: float = 1,
|
| 28 |
+
exapnd_v: float = 1,
|
| 29 |
+
feature_map: str = 'swish',
|
| 30 |
+
use_output_gate: bool = False,
|
| 31 |
+
use_norm: bool = True,
|
| 32 |
+
max_position_embeddings: int = 2048,
|
| 33 |
+
hidden_act: str = "swish",
|
| 34 |
+
elementwise_affine: Optional[bool] = True,
|
| 35 |
+
norm_eps: float = 1e-6,
|
| 36 |
+
attn: Optional[Dict] = None,
|
| 37 |
+
use_cache: bool = True,
|
| 38 |
+
pad_token_id: int = None,
|
| 39 |
+
bos_token_id: int = 1,
|
| 40 |
+
eos_token_id: int = 2,
|
| 41 |
+
initializer_range: float = 0.006,
|
| 42 |
+
tie_word_embeddings: bool = False,
|
| 43 |
+
fuse_norm: bool = True,
|
| 44 |
+
fuse_swiglu: bool = True,
|
| 45 |
+
fuse_cross_entropy: bool = True,
|
| 46 |
+
vocab_size: int = 32000,
|
| 47 |
+
**kwargs
|
| 48 |
+
):
|
| 49 |
+
self.hidden_size = hidden_size
|
| 50 |
+
self.gate_logit_normalizer = gate_logit_normalizer
|
| 51 |
+
self.clamp_min = clamp_min
|
| 52 |
+
self.clamp_max = clamp_max
|
| 53 |
+
self.hidden_ratio = hidden_ratio
|
| 54 |
+
self.intermediate_size = intermediate_size
|
| 55 |
+
self.num_hidden_layers = num_hidden_layers
|
| 56 |
+
self.num_heads = num_heads
|
| 57 |
+
self.num_kv_heads = num_kv_heads
|
| 58 |
+
self.num_slots = num_slots
|
| 59 |
+
self.use_short_conv = use_short_conv
|
| 60 |
+
self.conv_size = conv_size
|
| 61 |
+
self.expand_k = exapnd_k
|
| 62 |
+
self.expand_v = exapnd_v
|
| 63 |
+
self.feature_map = feature_map
|
| 64 |
+
self.use_output_gate = use_output_gate
|
| 65 |
+
self.use_norm = use_norm
|
| 66 |
+
self.max_position_embeddings = max_position_embeddings
|
| 67 |
+
self.hidden_act = hidden_act
|
| 68 |
+
self.elementwise_affine = elementwise_affine
|
| 69 |
+
self.norm_eps = norm_eps
|
| 70 |
+
self.attn = attn
|
| 71 |
+
self.use_cache = use_cache
|
| 72 |
+
self.initializer_range = initializer_range
|
| 73 |
+
|
| 74 |
+
self.fuse_norm = fuse_norm
|
| 75 |
+
self.fuse_swiglu = fuse_swiglu
|
| 76 |
+
self.fuse_cross_entropy = fuse_cross_entropy
|
| 77 |
+
self.vocab_size = vocab_size
|
| 78 |
+
|
| 79 |
+
if attn is not None:
|
| 80 |
+
if not isinstance(attn, Dict):
|
| 81 |
+
raise ValueError("attn must be a dictionary")
|
| 82 |
+
if 'layers' not in attn:
|
| 83 |
+
raise ValueError("Layer indices must be provided to initialize hybrid attention layers")
|
| 84 |
+
if 'num_heads' not in attn:
|
| 85 |
+
raise ValueError("Number of heads must be provided to initialize hybrid attention layers")
|
| 86 |
+
attn['num_kv_heads'] = attn.get('num_kv_heads', attn['num_heads'])
|
| 87 |
+
attn['qkv_bias'] = attn.get('qkv_bias', False)
|
| 88 |
+
attn['window_size'] = attn.get('window_size', None)
|
| 89 |
+
attn['rope_theta'] = attn.get('rope_theta', 10000.)
|
| 90 |
+
|
| 91 |
+
super().__init__(
|
| 92 |
+
pad_token_id=pad_token_id,
|
| 93 |
+
bos_token_id=bos_token_id,
|
| 94 |
+
eos_token_id=eos_token_id,
|
| 95 |
+
tie_word_embeddings=tie_word_embeddings,
|
| 96 |
+
**kwargs,
|
| 97 |
+
)
|
fla/models/gsa/modeling_gsa.py
ADDED
|
@@ -0,0 +1,420 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
|
| 3 |
+
from __future__ import annotations
|
| 4 |
+
|
| 5 |
+
import math
|
| 6 |
+
import warnings
|
| 7 |
+
from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union
|
| 8 |
+
|
| 9 |
+
import torch
|
| 10 |
+
import torch.nn as nn
|
| 11 |
+
import torch.utils.checkpoint
|
| 12 |
+
from transformers.generation import GenerationMixin
|
| 13 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
| 14 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 15 |
+
from transformers.utils import logging
|
| 16 |
+
from transformers.utils.deprecation import deprecate_kwarg
|
| 17 |
+
|
| 18 |
+
from fla.layers.attn import Attention
|
| 19 |
+
from fla.layers.gsa import GatedSlotAttention
|
| 20 |
+
from fla.models.gsa.configuration_gsa import GSAConfig
|
| 21 |
+
from fla.models.utils import Cache
|
| 22 |
+
from fla.modules import FusedCrossEntropyLoss, FusedLinearCrossEntropyLoss
|
| 23 |
+
from fla.modules import GatedMLP as GSAMLP
|
| 24 |
+
from fla.modules import RMSNorm
|
| 25 |
+
|
| 26 |
+
if TYPE_CHECKING:
|
| 27 |
+
from transformers.processing_utils import Unpack
|
| 28 |
+
|
| 29 |
+
logger = logging.get_logger(__name__)
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
class GSABlock(nn.Module):
|
| 33 |
+
def __init__(self, config: GSAConfig, layer_idx: int):
|
| 34 |
+
super().__init__()
|
| 35 |
+
|
| 36 |
+
self.config = config
|
| 37 |
+
self.layer_idx = layer_idx
|
| 38 |
+
|
| 39 |
+
self.attn_norm = (RMSNorm if config.fuse_norm else nn.RMSNorm)(config.hidden_size, eps=config.norm_eps)
|
| 40 |
+
if config.attn is not None and layer_idx in config.attn['layers']:
|
| 41 |
+
self.attn = Attention(
|
| 42 |
+
hidden_size=config.hidden_size,
|
| 43 |
+
num_heads=config.attn['num_heads'],
|
| 44 |
+
num_kv_heads=config.attn['num_kv_heads'],
|
| 45 |
+
qkv_bias=config.attn['qkv_bias'],
|
| 46 |
+
window_size=config.attn['window_size'],
|
| 47 |
+
rope_theta=config.attn['rope_theta'],
|
| 48 |
+
max_position_embeddings=config.max_position_embeddings,
|
| 49 |
+
layer_idx=layer_idx
|
| 50 |
+
)
|
| 51 |
+
else:
|
| 52 |
+
self.attn = GatedSlotAttention(
|
| 53 |
+
hidden_size=config.hidden_size,
|
| 54 |
+
expand_k=config.expand_k,
|
| 55 |
+
expand_v=config.expand_v,
|
| 56 |
+
num_heads=config.num_heads,
|
| 57 |
+
num_kv_heads=config.num_kv_heads,
|
| 58 |
+
num_slots=config.num_slots,
|
| 59 |
+
use_short_conv=config.use_short_conv,
|
| 60 |
+
conv_size=config.conv_size,
|
| 61 |
+
feature_map=config.feature_map,
|
| 62 |
+
use_output_gate=config.use_output_gate,
|
| 63 |
+
use_norm=config.use_norm,
|
| 64 |
+
gate_fn=config.hidden_act,
|
| 65 |
+
gate_logit_normalizer=config.gate_logit_normalizer,
|
| 66 |
+
elementwise_affine=config.elementwise_affine,
|
| 67 |
+
norm_eps=config.norm_eps,
|
| 68 |
+
fuse_norm=config.fuse_norm,
|
| 69 |
+
layer_idx=layer_idx
|
| 70 |
+
)
|
| 71 |
+
self.mlp_norm = (RMSNorm if config.fuse_norm else nn.RMSNorm)(config.hidden_size, eps=config.norm_eps)
|
| 72 |
+
self.mlp = GSAMLP(
|
| 73 |
+
hidden_size=config.hidden_size,
|
| 74 |
+
hidden_ratio=config.hidden_ratio,
|
| 75 |
+
intermediate_size=config.intermediate_size,
|
| 76 |
+
hidden_act=config.hidden_act,
|
| 77 |
+
fuse_swiglu=config.fuse_swiglu
|
| 78 |
+
)
|
| 79 |
+
|
| 80 |
+
def forward(
|
| 81 |
+
self,
|
| 82 |
+
hidden_states: torch.Tensor,
|
| 83 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 84 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
| 85 |
+
use_cache: Optional[bool] = False,
|
| 86 |
+
output_attentions: Optional[bool] = False,
|
| 87 |
+
**kwargs: Unpack[Dict]
|
| 88 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
| 89 |
+
residual = hidden_states
|
| 90 |
+
hidden_states = self.attn_norm(hidden_states)
|
| 91 |
+
hidden_states, attentions, past_key_values = self.attn(
|
| 92 |
+
hidden_states=hidden_states,
|
| 93 |
+
attention_mask=attention_mask,
|
| 94 |
+
past_key_values=past_key_values,
|
| 95 |
+
use_cache=use_cache,
|
| 96 |
+
output_attentions=output_attentions,
|
| 97 |
+
**kwargs
|
| 98 |
+
)
|
| 99 |
+
if self.config.fuse_norm:
|
| 100 |
+
hidden_states, residual = self.mlp_norm(hidden_states, residual, True)
|
| 101 |
+
else:
|
| 102 |
+
hidden_states = residual + hidden_states
|
| 103 |
+
residual = hidden_states
|
| 104 |
+
hidden_states = self.mlp_norm(hidden_states)
|
| 105 |
+
hidden_states = self.mlp(hidden_states, **kwargs)
|
| 106 |
+
hidden_states = residual + hidden_states
|
| 107 |
+
|
| 108 |
+
outputs = (hidden_states, attentions, past_key_values)
|
| 109 |
+
|
| 110 |
+
return outputs
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
class GSAPreTrainedModel(PreTrainedModel):
|
| 114 |
+
|
| 115 |
+
config_class = GSAConfig
|
| 116 |
+
base_model_prefix = 'model'
|
| 117 |
+
supports_gradient_checkpointing = True
|
| 118 |
+
_no_split_modules = ['GSABlock']
|
| 119 |
+
_supports_cache_class = True
|
| 120 |
+
|
| 121 |
+
def __init__(self, *inputs, **kwargs):
|
| 122 |
+
super().__init__(*inputs, **kwargs)
|
| 123 |
+
|
| 124 |
+
def _init_weights(
|
| 125 |
+
self,
|
| 126 |
+
module: nn.Module,
|
| 127 |
+
prenorm_residual_strategy: Optional[str] = 'rescale',
|
| 128 |
+
num_residuals_per_layer: int = 2,
|
| 129 |
+
):
|
| 130 |
+
if isinstance(module, (nn.Linear, nn.Conv1d)):
|
| 131 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
| 132 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
| 133 |
+
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
|
| 134 |
+
if module.bias is not None:
|
| 135 |
+
nn.init.zeros_(module.bias)
|
| 136 |
+
elif isinstance(module, nn.Embedding):
|
| 137 |
+
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
|
| 138 |
+
elif hasattr(module, 'reset_parameters'):
|
| 139 |
+
module.reset_parameters()
|
| 140 |
+
|
| 141 |
+
if prenorm_residual_strategy is not None:
|
| 142 |
+
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
|
| 143 |
+
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
|
| 144 |
+
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
|
| 145 |
+
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
|
| 146 |
+
#
|
| 147 |
+
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
|
| 148 |
+
p = None
|
| 149 |
+
if hasattr(module, 'o_proj'):
|
| 150 |
+
p = module.o_proj.weight
|
| 151 |
+
elif hasattr(module, 'down_proj'):
|
| 152 |
+
p = module.down_proj.weight
|
| 153 |
+
if p is not None:
|
| 154 |
+
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
|
| 155 |
+
# Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
|
| 156 |
+
# We need to reinit p since this code could be called multiple times
|
| 157 |
+
# Having just p *= scale would repeatedly scale it down
|
| 158 |
+
if prenorm_residual_strategy == 'rescale':
|
| 159 |
+
nn.init.kaiming_uniform_(p, a=math.sqrt(5))
|
| 160 |
+
with torch.no_grad():
|
| 161 |
+
p /= math.sqrt(num_residuals_per_layer * self.config.num_hidden_layers)
|
| 162 |
+
elif prenorm_residual_strategy == 'zero':
|
| 163 |
+
nn.init.zeros_(p)
|
| 164 |
+
else:
|
| 165 |
+
raise ValueError(f"Invalid prenorm_residual_strategy: {prenorm_residual_strategy}")
|
| 166 |
+
|
| 167 |
+
|
| 168 |
+
class GSAModel(GSAPreTrainedModel):
|
| 169 |
+
|
| 170 |
+
def __init__(self, config: GSAConfig):
|
| 171 |
+
super().__init__(config)
|
| 172 |
+
self.padding_idx = config.pad_token_id
|
| 173 |
+
self.vocab_size = config.vocab_size
|
| 174 |
+
|
| 175 |
+
self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
| 176 |
+
self.layers = nn.ModuleList([GSABlock(config, layer_idx) for layer_idx in range(config.num_hidden_layers)])
|
| 177 |
+
self.norm = (RMSNorm if config.fuse_norm else nn.RMSNorm)(config.hidden_size, eps=config.norm_eps)
|
| 178 |
+
|
| 179 |
+
self.gradient_checkpointing = False
|
| 180 |
+
|
| 181 |
+
self.post_init()
|
| 182 |
+
|
| 183 |
+
def get_input_embeddings(self):
|
| 184 |
+
return self.embeddings
|
| 185 |
+
|
| 186 |
+
def set_input_embeddings(self, value):
|
| 187 |
+
self.embeddings = value
|
| 188 |
+
|
| 189 |
+
def forward(
|
| 190 |
+
self,
|
| 191 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 192 |
+
attention_mask: Optional[torch.Tensor] = None, # noqa
|
| 193 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 194 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
| 195 |
+
use_cache: Optional[bool] = None,
|
| 196 |
+
output_attentions: Optional[bool] = None,
|
| 197 |
+
output_hidden_states: Optional[bool] = None,
|
| 198 |
+
return_dict: Optional[bool] = None,
|
| 199 |
+
**kwargs: Unpack[Dict]
|
| 200 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
| 201 |
+
if output_attentions:
|
| 202 |
+
warnings.warn("`GSAModel` does not `output_attentions` now, setting it to `False`.")
|
| 203 |
+
output_attentions = False
|
| 204 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 205 |
+
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 206 |
+
use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False)
|
| 207 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 208 |
+
|
| 209 |
+
# retrieve input_ids and inputs_embeds
|
| 210 |
+
if input_ids is not None and inputs_embeds is not None:
|
| 211 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
| 212 |
+
if input_ids is None and inputs_embeds is None:
|
| 213 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
| 214 |
+
|
| 215 |
+
if inputs_embeds is None:
|
| 216 |
+
inputs_embeds = self.embeddings(input_ids)
|
| 217 |
+
hidden_states = inputs_embeds
|
| 218 |
+
|
| 219 |
+
if use_cache and not isinstance(past_key_values, Cache):
|
| 220 |
+
past_key_values = Cache.from_legacy_cache(past_key_values)
|
| 221 |
+
|
| 222 |
+
if self.gradient_checkpointing and self.training and use_cache:
|
| 223 |
+
logger.warning_once("`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...")
|
| 224 |
+
use_cache = False
|
| 225 |
+
|
| 226 |
+
all_hidden_states = () if output_hidden_states else None
|
| 227 |
+
all_attns = () if output_attentions else None
|
| 228 |
+
for layer in self.layers:
|
| 229 |
+
if output_hidden_states:
|
| 230 |
+
all_hidden_states += (hidden_states,)
|
| 231 |
+
|
| 232 |
+
if self.gradient_checkpointing and self.training:
|
| 233 |
+
hidden_states, attentions, past_key_values = self._gradient_checkpointing_func(
|
| 234 |
+
layer.__call__,
|
| 235 |
+
hidden_states,
|
| 236 |
+
attention_mask,
|
| 237 |
+
past_key_values,
|
| 238 |
+
use_cache,
|
| 239 |
+
output_attentions,
|
| 240 |
+
**kwargs
|
| 241 |
+
)
|
| 242 |
+
else:
|
| 243 |
+
hidden_states, attentions, past_key_values = layer(
|
| 244 |
+
hidden_states,
|
| 245 |
+
attention_mask=attention_mask,
|
| 246 |
+
past_key_values=past_key_values,
|
| 247 |
+
use_cache=use_cache,
|
| 248 |
+
output_attentions=output_attentions,
|
| 249 |
+
**kwargs
|
| 250 |
+
)
|
| 251 |
+
|
| 252 |
+
if output_attentions:
|
| 253 |
+
all_attns += (attentions,)
|
| 254 |
+
|
| 255 |
+
hidden_states = self.norm(hidden_states)
|
| 256 |
+
|
| 257 |
+
# add hidden states from the last decoder layer
|
| 258 |
+
if output_hidden_states:
|
| 259 |
+
all_hidden_states += (hidden_states,)
|
| 260 |
+
|
| 261 |
+
if not return_dict:
|
| 262 |
+
return tuple(i for i in [hidden_states, past_key_values, all_hidden_states, all_attns] if i is not None)
|
| 263 |
+
return BaseModelOutputWithPast(
|
| 264 |
+
last_hidden_state=hidden_states,
|
| 265 |
+
past_key_values=past_key_values,
|
| 266 |
+
hidden_states=all_hidden_states,
|
| 267 |
+
attentions=all_attns
|
| 268 |
+
)
|
| 269 |
+
|
| 270 |
+
|
| 271 |
+
class GSAForCausalLM(GSAPreTrainedModel, GenerationMixin):
|
| 272 |
+
|
| 273 |
+
_tied_weights_keys = ["lm_head.weight"]
|
| 274 |
+
|
| 275 |
+
def __init__(self, config):
|
| 276 |
+
|
| 277 |
+
super().__init__(config)
|
| 278 |
+
self.model = GSAModel(config)
|
| 279 |
+
self.vocab_size = config.vocab_size
|
| 280 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
| 281 |
+
self.criterion = None
|
| 282 |
+
|
| 283 |
+
# Initialize weights and apply final processing
|
| 284 |
+
self.post_init()
|
| 285 |
+
|
| 286 |
+
def get_input_embeddings(self):
|
| 287 |
+
return self.model.embeddings
|
| 288 |
+
|
| 289 |
+
def set_input_embeddings(self, value):
|
| 290 |
+
self.model.embeddings = value
|
| 291 |
+
|
| 292 |
+
def get_output_embeddings(self):
|
| 293 |
+
return self.lm_head
|
| 294 |
+
|
| 295 |
+
def set_output_embeddings(self, new_embeddings):
|
| 296 |
+
self.lm_head = new_embeddings
|
| 297 |
+
|
| 298 |
+
def set_decoder(self, decoder):
|
| 299 |
+
self.model = decoder
|
| 300 |
+
|
| 301 |
+
def get_decoder(self):
|
| 302 |
+
return self.model
|
| 303 |
+
|
| 304 |
+
def generate(self, *args, **kwargs):
|
| 305 |
+
try:
|
| 306 |
+
return super().generate(*args, **kwargs)
|
| 307 |
+
except AttributeError as exception:
|
| 308 |
+
if 'past_key_values' in str(exception):
|
| 309 |
+
raise AttributeError(
|
| 310 |
+
f"You tried to call `generate` with a decoding strategy that manipulates `past_key_values`, "
|
| 311 |
+
f"which is not supported for {self.__class__.__name__}. "
|
| 312 |
+
f"Try another generation strategy instead. "
|
| 313 |
+
f"For the available generation strategies, check this doc: "
|
| 314 |
+
f"https://huggingface.co/docs/transformers/en/generation_strategies#decoding-strategies"
|
| 315 |
+
)
|
| 316 |
+
else:
|
| 317 |
+
raise exception
|
| 318 |
+
|
| 319 |
+
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
|
| 320 |
+
def prepare_inputs_for_generation(
|
| 321 |
+
self,
|
| 322 |
+
input_ids: torch.LongTensor = None,
|
| 323 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
| 324 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 325 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 326 |
+
use_cache: bool = True,
|
| 327 |
+
logits_to_keep: Optional[int] = None,
|
| 328 |
+
**kwargs
|
| 329 |
+
):
|
| 330 |
+
# only last token for `inputs_ids` if the `past_key_values` is not empty.
|
| 331 |
+
if past_key_values is not None and len(past_key_values) > 0:
|
| 332 |
+
input_ids = input_ids[:, -1:]
|
| 333 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
| 334 |
+
if inputs_embeds is not None and len(past_key_values) == 0:
|
| 335 |
+
model_inputs = {'inputs_embeds': inputs_embeds}
|
| 336 |
+
else:
|
| 337 |
+
# The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
|
| 338 |
+
# recompiles graphs as the stride of the inputs is a guard.
|
| 339 |
+
# Ref: https://github.com/huggingface/transformers/pull/29114
|
| 340 |
+
# TODO: use `next_tokens` directly instead.
|
| 341 |
+
model_inputs = {'input_ids': input_ids.contiguous()}
|
| 342 |
+
|
| 343 |
+
if logits_to_keep is not None:
|
| 344 |
+
model_inputs['logits_to_keep'] = logits_to_keep
|
| 345 |
+
|
| 346 |
+
model_inputs.update({
|
| 347 |
+
'past_key_values': past_key_values,
|
| 348 |
+
'use_cache': use_cache,
|
| 349 |
+
'attention_mask': attention_mask,
|
| 350 |
+
})
|
| 351 |
+
return model_inputs
|
| 352 |
+
|
| 353 |
+
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
|
| 354 |
+
def forward(
|
| 355 |
+
self,
|
| 356 |
+
input_ids: torch.LongTensor = None,
|
| 357 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 358 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 359 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
| 360 |
+
labels: Optional[torch.LongTensor] = None,
|
| 361 |
+
use_cache: Optional[bool] = None,
|
| 362 |
+
output_attentions: Optional[bool] = None,
|
| 363 |
+
output_hidden_states: Optional[bool] = None,
|
| 364 |
+
return_dict: Optional[bool] = None,
|
| 365 |
+
logits_to_keep: Optional[int] = 0,
|
| 366 |
+
**kwargs: Unpack[Dict]
|
| 367 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
| 368 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 369 |
+
output_hidden_states = (
|
| 370 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 371 |
+
)
|
| 372 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 373 |
+
|
| 374 |
+
outputs = self.model(
|
| 375 |
+
input_ids=input_ids,
|
| 376 |
+
attention_mask=attention_mask,
|
| 377 |
+
inputs_embeds=inputs_embeds,
|
| 378 |
+
past_key_values=past_key_values,
|
| 379 |
+
use_cache=use_cache,
|
| 380 |
+
output_attentions=output_attentions,
|
| 381 |
+
output_hidden_states=output_hidden_states,
|
| 382 |
+
return_dict=return_dict,
|
| 383 |
+
**kwargs
|
| 384 |
+
)
|
| 385 |
+
|
| 386 |
+
hidden_states = outputs[0]
|
| 387 |
+
fuse_linear_and_cross_entropy = self.config.fuse_cross_entropy and self.training
|
| 388 |
+
|
| 389 |
+
loss, logits = None, None
|
| 390 |
+
if not fuse_linear_and_cross_entropy or labels is None:
|
| 391 |
+
logits = self.lm_head(hidden_states if logits_to_keep is None else hidden_states[:, -logits_to_keep:])
|
| 392 |
+
if labels is not None:
|
| 393 |
+
if getattr(self, 'criterion', None) is None:
|
| 394 |
+
if fuse_linear_and_cross_entropy:
|
| 395 |
+
criterion = FusedLinearCrossEntropyLoss()
|
| 396 |
+
elif self.config.fuse_cross_entropy:
|
| 397 |
+
criterion = FusedCrossEntropyLoss(inplace_backward=True)
|
| 398 |
+
else:
|
| 399 |
+
criterion = nn.CrossEntropyLoss()
|
| 400 |
+
else:
|
| 401 |
+
criterion = self.criterion
|
| 402 |
+
# Enable model parallelism
|
| 403 |
+
labels = labels.to(hidden_states.device)
|
| 404 |
+
labels = torch.cat((labels[..., 1:], torch.full_like(labels[:, :1], criterion.ignore_index)), 1)
|
| 405 |
+
if fuse_linear_and_cross_entropy:
|
| 406 |
+
loss = criterion(hidden_states, labels, self.lm_head.weight, self.lm_head.bias)
|
| 407 |
+
else:
|
| 408 |
+
loss = criterion(logits.view(labels.numel(), -1), labels.view(-1))
|
| 409 |
+
|
| 410 |
+
if not return_dict:
|
| 411 |
+
output = (logits,) + outputs[1:]
|
| 412 |
+
return (loss,) + output if loss is not None else output
|
| 413 |
+
|
| 414 |
+
return CausalLMOutputWithPast(
|
| 415 |
+
loss=loss,
|
| 416 |
+
logits=logits,
|
| 417 |
+
past_key_values=outputs.past_key_values,
|
| 418 |
+
hidden_states=outputs.hidden_states,
|
| 419 |
+
attentions=outputs.attentions,
|
| 420 |
+
)
|
fla/models/hgrn/__pycache__/modeling_hgrn.cpython-311.pyc
ADDED
|
Binary file (19.7 kB). View file
|
|
|
fla/models/hgrn/configuration_hgrn.py
ADDED
|
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
|
| 3 |
+
from typing import Dict, Optional
|
| 4 |
+
|
| 5 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class HGRNConfig(PretrainedConfig):
|
| 9 |
+
|
| 10 |
+
model_type = 'hgrn'
|
| 11 |
+
keys_to_ignore_at_inference = ['past_key_values']
|
| 12 |
+
|
| 13 |
+
def __init__(
|
| 14 |
+
self,
|
| 15 |
+
attn_mode: str = "fused_recurrent",
|
| 16 |
+
hidden_size: int = 2048,
|
| 17 |
+
num_hidden_layers: int = 24,
|
| 18 |
+
expand_ratio: Optional[int] = 1,
|
| 19 |
+
use_short_conv: bool = False,
|
| 20 |
+
conv_size: int = 4,
|
| 21 |
+
use_lower_bound: bool = True,
|
| 22 |
+
max_position_embeddings: int = 2048,
|
| 23 |
+
hidden_ratio: Optional[int] = 4,
|
| 24 |
+
intermediate_size: Optional[int] = None,
|
| 25 |
+
hidden_act: str = "swish",
|
| 26 |
+
elementwise_affine: Optional[bool] = True,
|
| 27 |
+
norm_eps: float = 1e-6,
|
| 28 |
+
attn: Optional[Dict] = None,
|
| 29 |
+
use_cache: bool = True,
|
| 30 |
+
pad_token_id: int = None,
|
| 31 |
+
bos_token_id: int = 1,
|
| 32 |
+
eos_token_id: int = 2,
|
| 33 |
+
tie_word_embeddings: bool = False,
|
| 34 |
+
initializer_range: float = 0.006,
|
| 35 |
+
fuse_norm: bool = True,
|
| 36 |
+
fuse_swiglu: bool = True,
|
| 37 |
+
fuse_cross_entropy: bool = True,
|
| 38 |
+
vocab_size: int = 32000,
|
| 39 |
+
**kwargs
|
| 40 |
+
):
|
| 41 |
+
self.attn_mode = attn_mode
|
| 42 |
+
self.hidden_size = hidden_size
|
| 43 |
+
self.num_hidden_layers = num_hidden_layers
|
| 44 |
+
self.expand_ratio = expand_ratio
|
| 45 |
+
self.use_short_conv = use_short_conv
|
| 46 |
+
self.conv_size = conv_size
|
| 47 |
+
self.use_lower_bound = use_lower_bound
|
| 48 |
+
self.max_position_embeddings = max_position_embeddings
|
| 49 |
+
self.hidden_ratio = hidden_ratio
|
| 50 |
+
self.intermediate_size = intermediate_size
|
| 51 |
+
self.elementwise_affine = elementwise_affine
|
| 52 |
+
self.attn = attn
|
| 53 |
+
self.norm_eps = norm_eps
|
| 54 |
+
self.hidden_act = hidden_act
|
| 55 |
+
self.use_cache = use_cache
|
| 56 |
+
self.initializer_range = initializer_range
|
| 57 |
+
|
| 58 |
+
self.fuse_norm = fuse_norm
|
| 59 |
+
self.fuse_swiglu = fuse_swiglu
|
| 60 |
+
self.fuse_cross_entropy = fuse_cross_entropy
|
| 61 |
+
self.vocab_size = vocab_size
|
| 62 |
+
|
| 63 |
+
if attn is not None:
|
| 64 |
+
if not isinstance(attn, Dict):
|
| 65 |
+
raise ValueError("attn must be a dictionary")
|
| 66 |
+
if 'layers' not in attn:
|
| 67 |
+
raise ValueError("Layer indices must be provided to initialize hybrid attention layers")
|
| 68 |
+
if 'num_heads' not in attn:
|
| 69 |
+
raise ValueError("Number of heads must be provided to initialize hybrid attention layers")
|
| 70 |
+
attn['num_kv_heads'] = attn.get('num_kv_heads', attn['num_heads'])
|
| 71 |
+
attn['qkv_bias'] = attn.get('qkv_bias', False)
|
| 72 |
+
attn['window_size'] = attn.get('window_size', None)
|
| 73 |
+
attn['rope_theta'] = attn.get('rope_theta', 10000.)
|
| 74 |
+
|
| 75 |
+
super().__init__(
|
| 76 |
+
pad_token_id=pad_token_id,
|
| 77 |
+
bos_token_id=bos_token_id,
|
| 78 |
+
eos_token_id=eos_token_id,
|
| 79 |
+
tie_word_embeddings=tie_word_embeddings,
|
| 80 |
+
**kwargs,
|
| 81 |
+
)
|
fla/models/hgrn/modeling_hgrn.py
ADDED
|
@@ -0,0 +1,420 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
|
| 3 |
+
from __future__ import annotations
|
| 4 |
+
|
| 5 |
+
import math
|
| 6 |
+
import warnings
|
| 7 |
+
from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union
|
| 8 |
+
|
| 9 |
+
import torch
|
| 10 |
+
import torch.nn as nn
|
| 11 |
+
import torch.utils.checkpoint
|
| 12 |
+
from transformers.generation import GenerationMixin
|
| 13 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
| 14 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 15 |
+
from transformers.utils import logging
|
| 16 |
+
from transformers.utils.deprecation import deprecate_kwarg
|
| 17 |
+
|
| 18 |
+
from fla.layers.attn import Attention
|
| 19 |
+
from fla.layers.hgrn import HGRNAttention
|
| 20 |
+
from fla.models.hgrn.configuration_hgrn import HGRNConfig
|
| 21 |
+
from fla.models.utils import Cache
|
| 22 |
+
from fla.modules import FusedCrossEntropyLoss, FusedLinearCrossEntropyLoss
|
| 23 |
+
from fla.modules import GatedMLP as HGRNMLP
|
| 24 |
+
from fla.modules import RMSNorm
|
| 25 |
+
|
| 26 |
+
if TYPE_CHECKING:
|
| 27 |
+
from transformers.processing_utils import Unpack
|
| 28 |
+
|
| 29 |
+
logger = logging.get_logger(__name__)
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
class HGRNBlock(nn.Module):
|
| 33 |
+
def __init__(self, config: HGRNConfig, layer_idx: int):
|
| 34 |
+
super().__init__()
|
| 35 |
+
|
| 36 |
+
self.config = config
|
| 37 |
+
self.layer_idx = layer_idx
|
| 38 |
+
|
| 39 |
+
self.attn_norm = (RMSNorm if config.fuse_norm else nn.RMSNorm)(config.hidden_size, eps=config.norm_eps)
|
| 40 |
+
if config.attn is not None and layer_idx in config.attn['layers']:
|
| 41 |
+
self.attn = Attention(
|
| 42 |
+
hidden_size=config.hidden_size,
|
| 43 |
+
num_heads=config.attn['num_heads'],
|
| 44 |
+
num_kv_heads=config.attn['num_kv_heads'],
|
| 45 |
+
qkv_bias=config.attn['qkv_bias'],
|
| 46 |
+
window_size=config.attn['window_size'],
|
| 47 |
+
rope_theta=config.attn['rope_theta'],
|
| 48 |
+
max_position_embeddings=config.max_position_embeddings,
|
| 49 |
+
layer_idx=layer_idx
|
| 50 |
+
)
|
| 51 |
+
else:
|
| 52 |
+
self.attn = HGRNAttention(
|
| 53 |
+
mode=config.attn_mode,
|
| 54 |
+
hidden_size=config.hidden_size,
|
| 55 |
+
expand_ratio=config.expand_ratio,
|
| 56 |
+
use_short_conv=config.use_short_conv,
|
| 57 |
+
conv_size=config.conv_size,
|
| 58 |
+
elementwise_affine=config.elementwise_affine,
|
| 59 |
+
norm_eps=config.norm_eps,
|
| 60 |
+
layer_idx=layer_idx
|
| 61 |
+
)
|
| 62 |
+
self.mlp_norm = (RMSNorm if config.fuse_norm else nn.RMSNorm)(config.hidden_size, eps=config.norm_eps)
|
| 63 |
+
self.mlp = HGRNMLP(
|
| 64 |
+
hidden_size=config.hidden_size,
|
| 65 |
+
hidden_ratio=config.hidden_ratio,
|
| 66 |
+
intermediate_size=config.intermediate_size,
|
| 67 |
+
hidden_act=config.hidden_act,
|
| 68 |
+
fuse_swiglu=config.fuse_swiglu
|
| 69 |
+
)
|
| 70 |
+
|
| 71 |
+
def forward(
|
| 72 |
+
self,
|
| 73 |
+
hidden_states: torch.Tensor,
|
| 74 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 75 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
| 76 |
+
use_cache: Optional[bool] = False,
|
| 77 |
+
output_attentions: Optional[bool] = False,
|
| 78 |
+
lower_bound: Optional[torch.Tensor] = False,
|
| 79 |
+
**kwargs: Unpack[Dict]
|
| 80 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
| 81 |
+
residual = hidden_states
|
| 82 |
+
hidden_states = self.attn_norm(hidden_states)
|
| 83 |
+
hidden_states, attentions, past_key_values = self.attn(
|
| 84 |
+
hidden_states=hidden_states,
|
| 85 |
+
attention_mask=attention_mask,
|
| 86 |
+
past_key_values=past_key_values,
|
| 87 |
+
use_cache=use_cache,
|
| 88 |
+
output_attentions=output_attentions,
|
| 89 |
+
lower_bound=lower_bound,
|
| 90 |
+
**kwargs
|
| 91 |
+
)
|
| 92 |
+
if self.config.fuse_norm:
|
| 93 |
+
hidden_states, residual = self.mlp_norm(hidden_states, residual, True)
|
| 94 |
+
else:
|
| 95 |
+
hidden_states = residual + hidden_states
|
| 96 |
+
residual = hidden_states
|
| 97 |
+
hidden_states = self.mlp_norm(hidden_states)
|
| 98 |
+
hidden_states = self.mlp(hidden_states, **kwargs)
|
| 99 |
+
hidden_states = residual + hidden_states
|
| 100 |
+
|
| 101 |
+
outputs = (hidden_states, attentions, past_key_values)
|
| 102 |
+
|
| 103 |
+
return outputs
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
class HGRNPreTrainedModel(PreTrainedModel):
|
| 107 |
+
|
| 108 |
+
config_class = HGRNConfig
|
| 109 |
+
base_model_prefix = 'model'
|
| 110 |
+
supports_gradient_checkpointing = True
|
| 111 |
+
_no_split_modules = ['HGRNBlock']
|
| 112 |
+
_supports_cache_class = True
|
| 113 |
+
|
| 114 |
+
def __init__(self, *inputs, **kwargs):
|
| 115 |
+
super().__init__(*inputs, **kwargs)
|
| 116 |
+
|
| 117 |
+
def _init_weights(
|
| 118 |
+
self,
|
| 119 |
+
module: nn.Module,
|
| 120 |
+
prenorm_residual_strategy: Optional[str] = 'rescale',
|
| 121 |
+
num_residuals_per_layer: int = 2,
|
| 122 |
+
):
|
| 123 |
+
if isinstance(module, (nn.Linear, nn.Conv1d)):
|
| 124 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
| 125 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
| 126 |
+
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
|
| 127 |
+
if module.bias is not None:
|
| 128 |
+
nn.init.zeros_(module.bias)
|
| 129 |
+
elif isinstance(module, nn.Embedding):
|
| 130 |
+
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
|
| 131 |
+
elif hasattr(module, 'reset_parameters'):
|
| 132 |
+
module.reset_parameters()
|
| 133 |
+
|
| 134 |
+
if prenorm_residual_strategy is not None:
|
| 135 |
+
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
|
| 136 |
+
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
|
| 137 |
+
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
|
| 138 |
+
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
|
| 139 |
+
#
|
| 140 |
+
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
|
| 141 |
+
p = None
|
| 142 |
+
if hasattr(module, 'o_proj'):
|
| 143 |
+
p = module.o_proj.weight
|
| 144 |
+
elif hasattr(module, 'down_proj'):
|
| 145 |
+
p = module.down_proj.weight
|
| 146 |
+
if p is not None:
|
| 147 |
+
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
|
| 148 |
+
# Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
|
| 149 |
+
# We need to reinit p since this code could be called multiple times
|
| 150 |
+
# Having just p *= scale would repeatedly scale it down
|
| 151 |
+
if prenorm_residual_strategy == 'rescale':
|
| 152 |
+
nn.init.kaiming_uniform_(p, a=math.sqrt(5))
|
| 153 |
+
with torch.no_grad():
|
| 154 |
+
p /= math.sqrt(num_residuals_per_layer * self.config.num_hidden_layers)
|
| 155 |
+
elif prenorm_residual_strategy == 'zero':
|
| 156 |
+
nn.init.zeros_(p)
|
| 157 |
+
else:
|
| 158 |
+
raise ValueError(f"Invalid prenorm_residual_strategy: {prenorm_residual_strategy}")
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
class HGRNModel(HGRNPreTrainedModel):
|
| 162 |
+
|
| 163 |
+
def __init__(self, config: HGRNConfig):
|
| 164 |
+
super().__init__(config)
|
| 165 |
+
self.padding_idx = config.pad_token_id
|
| 166 |
+
self.vocab_size = config.vocab_size
|
| 167 |
+
|
| 168 |
+
self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
| 169 |
+
if config.use_lower_bound:
|
| 170 |
+
self.lower_bounds = nn.Parameter(torch.zeros(config.num_hidden_layers, config.hidden_size))
|
| 171 |
+
self.layers = nn.ModuleList([HGRNBlock(config, layer_idx) for layer_idx in range(config.num_hidden_layers)])
|
| 172 |
+
self.norm = (RMSNorm if config.fuse_norm else nn.RMSNorm)(config.hidden_size, eps=config.norm_eps)
|
| 173 |
+
|
| 174 |
+
self.gradient_checkpointing = False
|
| 175 |
+
|
| 176 |
+
self.post_init()
|
| 177 |
+
|
| 178 |
+
def get_input_embeddings(self):
|
| 179 |
+
return self.embeddings
|
| 180 |
+
|
| 181 |
+
def set_input_embeddings(self, value):
|
| 182 |
+
self.embeddings = value
|
| 183 |
+
|
| 184 |
+
def forward(
|
| 185 |
+
self,
|
| 186 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 187 |
+
attention_mask: Optional[torch.Tensor] = None, # noqa
|
| 188 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 189 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
| 190 |
+
use_cache: Optional[bool] = None,
|
| 191 |
+
output_attentions: Optional[bool] = None,
|
| 192 |
+
output_hidden_states: Optional[bool] = None,
|
| 193 |
+
return_dict: Optional[bool] = None,
|
| 194 |
+
**kwargs: Unpack[Dict]
|
| 195 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
| 196 |
+
if output_attentions:
|
| 197 |
+
warnings.warn("`HGRNModel` does not `output_attentions` now, setting it to `False`.")
|
| 198 |
+
output_attentions = False
|
| 199 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 200 |
+
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 201 |
+
use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False)
|
| 202 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 203 |
+
|
| 204 |
+
# retrieve input_ids and inputs_embeds
|
| 205 |
+
if input_ids is not None and inputs_embeds is not None:
|
| 206 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
| 207 |
+
if input_ids is None and inputs_embeds is None:
|
| 208 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
| 209 |
+
|
| 210 |
+
if inputs_embeds is None:
|
| 211 |
+
inputs_embeds = self.embeddings(input_ids)
|
| 212 |
+
hidden_states = inputs_embeds
|
| 213 |
+
|
| 214 |
+
if use_cache and not isinstance(past_key_values, Cache):
|
| 215 |
+
past_key_values = Cache.from_legacy_cache(past_key_values)
|
| 216 |
+
|
| 217 |
+
if self.gradient_checkpointing and self.training and use_cache:
|
| 218 |
+
logger.warning_once("`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...")
|
| 219 |
+
use_cache = False
|
| 220 |
+
|
| 221 |
+
all_hidden_states = () if output_hidden_states else None
|
| 222 |
+
all_attns = () if output_attentions else None
|
| 223 |
+
|
| 224 |
+
if self.config.use_lower_bound:
|
| 225 |
+
lower_bounds = self.lower_bounds.softmax(0)
|
| 226 |
+
lower_bounds = lower_bounds.cumsum(0) - lower_bounds[0]
|
| 227 |
+
for i, layer in enumerate(self.layers):
|
| 228 |
+
if output_hidden_states:
|
| 229 |
+
all_hidden_states += (hidden_states,)
|
| 230 |
+
|
| 231 |
+
lower_bound = lower_bounds[i] if self.config.use_lower_bound else None
|
| 232 |
+
if self.gradient_checkpointing and self.training:
|
| 233 |
+
hidden_states, attentions, past_key_values = self._gradient_checkpointing_func(
|
| 234 |
+
layer.__call__,
|
| 235 |
+
hidden_states,
|
| 236 |
+
attention_mask,
|
| 237 |
+
past_key_values,
|
| 238 |
+
use_cache,
|
| 239 |
+
output_attentions,
|
| 240 |
+
lower_bound,
|
| 241 |
+
**kwargs
|
| 242 |
+
)
|
| 243 |
+
else:
|
| 244 |
+
hidden_states, attentions, past_key_values = layer(
|
| 245 |
+
hidden_states,
|
| 246 |
+
attention_mask=attention_mask,
|
| 247 |
+
past_key_values=past_key_values,
|
| 248 |
+
use_cache=use_cache,
|
| 249 |
+
output_attentions=output_attentions,
|
| 250 |
+
lower_bound=lower_bound,
|
| 251 |
+
**kwargs
|
| 252 |
+
)
|
| 253 |
+
|
| 254 |
+
if output_attentions:
|
| 255 |
+
all_attns += (attentions,)
|
| 256 |
+
|
| 257 |
+
hidden_states = self.norm(hidden_states)
|
| 258 |
+
|
| 259 |
+
# add hidden states from the last decoder layer
|
| 260 |
+
if output_hidden_states:
|
| 261 |
+
all_hidden_states += (hidden_states,)
|
| 262 |
+
|
| 263 |
+
if not return_dict:
|
| 264 |
+
return tuple(i for i in [hidden_states, past_key_values, all_hidden_states, all_attns] if i is not None)
|
| 265 |
+
return BaseModelOutputWithPast(
|
| 266 |
+
last_hidden_state=hidden_states,
|
| 267 |
+
past_key_values=past_key_values,
|
| 268 |
+
hidden_states=all_hidden_states,
|
| 269 |
+
attentions=all_attns
|
| 270 |
+
)
|
| 271 |
+
|
| 272 |
+
|
| 273 |
+
class HGRNForCausalLM(HGRNPreTrainedModel, GenerationMixin):
|
| 274 |
+
|
| 275 |
+
_tied_weights_keys = ["lm_head.weight"]
|
| 276 |
+
|
| 277 |
+
def __init__(self, config):
|
| 278 |
+
super().__init__(config)
|
| 279 |
+
self.model = HGRNModel(config)
|
| 280 |
+
self.vocab_size = config.vocab_size
|
| 281 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
| 282 |
+
self.criterion = None
|
| 283 |
+
|
| 284 |
+
# Initialize weights and apply final processing
|
| 285 |
+
self.post_init()
|
| 286 |
+
|
| 287 |
+
def get_input_embeddings(self):
|
| 288 |
+
return self.model.embeddings
|
| 289 |
+
|
| 290 |
+
def set_input_embeddings(self, value):
|
| 291 |
+
self.model.embeddings = value
|
| 292 |
+
|
| 293 |
+
def get_output_embeddings(self):
|
| 294 |
+
return self.lm_head
|
| 295 |
+
|
| 296 |
+
def set_output_embeddings(self, new_embeddings):
|
| 297 |
+
self.lm_head = new_embeddings
|
| 298 |
+
|
| 299 |
+
def set_decoder(self, decoder):
|
| 300 |
+
self.model = decoder
|
| 301 |
+
|
| 302 |
+
def get_decoder(self):
|
| 303 |
+
return self.model
|
| 304 |
+
|
| 305 |
+
def generate(self, *args, **kwargs):
|
| 306 |
+
try:
|
| 307 |
+
return super().generate(*args, **kwargs)
|
| 308 |
+
except AttributeError as exception:
|
| 309 |
+
if 'past_key_values' in str(exception):
|
| 310 |
+
raise AttributeError(
|
| 311 |
+
f"You tried to call `generate` with a decoding strategy that manipulates `past_key_values`, "
|
| 312 |
+
f"which is not supported for {self.__class__.__name__}. "
|
| 313 |
+
f"Try another generation strategy instead. "
|
| 314 |
+
f"For the available generation strategies, check this doc: "
|
| 315 |
+
f"https://huggingface.co/docs/transformers/en/generation_strategies#decoding-strategies"
|
| 316 |
+
)
|
| 317 |
+
else:
|
| 318 |
+
raise exception
|
| 319 |
+
|
| 320 |
+
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
|
| 321 |
+
def prepare_inputs_for_generation(
|
| 322 |
+
self,
|
| 323 |
+
input_ids: torch.LongTensor = None,
|
| 324 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
| 325 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 326 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 327 |
+
use_cache: bool = True,
|
| 328 |
+
logits_to_keep: Optional[int] = None,
|
| 329 |
+
**kwargs: Unpack[Dict]
|
| 330 |
+
):
|
| 331 |
+
# only last token for `inputs_ids` if the `past_key_values` is not empty.
|
| 332 |
+
if past_key_values is not None and len(past_key_values) > 0:
|
| 333 |
+
input_ids = input_ids[:, -1:]
|
| 334 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
| 335 |
+
if inputs_embeds is not None and len(past_key_values) == 0:
|
| 336 |
+
model_inputs = {'inputs_embeds': inputs_embeds}
|
| 337 |
+
else:
|
| 338 |
+
# The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
|
| 339 |
+
# recompiles graphs as the stride of the inputs is a guard.
|
| 340 |
+
# Ref: https://github.com/huggingface/transformers/pull/29114
|
| 341 |
+
# TODO: use `next_tokens` directly instead.
|
| 342 |
+
model_inputs = {'input_ids': input_ids.contiguous()}
|
| 343 |
+
|
| 344 |
+
if logits_to_keep is not None:
|
| 345 |
+
model_inputs['logits_to_keep'] = logits_to_keep
|
| 346 |
+
|
| 347 |
+
model_inputs.update({
|
| 348 |
+
'past_key_values': past_key_values,
|
| 349 |
+
'use_cache': use_cache,
|
| 350 |
+
'attention_mask': attention_mask,
|
| 351 |
+
})
|
| 352 |
+
return model_inputs
|
| 353 |
+
|
| 354 |
+
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
|
| 355 |
+
def forward(
|
| 356 |
+
self,
|
| 357 |
+
input_ids: torch.LongTensor = None,
|
| 358 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 359 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 360 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
| 361 |
+
labels: Optional[torch.LongTensor] = None,
|
| 362 |
+
use_cache: Optional[bool] = None,
|
| 363 |
+
output_attentions: Optional[bool] = None,
|
| 364 |
+
output_hidden_states: Optional[bool] = None,
|
| 365 |
+
return_dict: Optional[bool] = None,
|
| 366 |
+
logits_to_keep: Optional[int] = 0,
|
| 367 |
+
**kwargs: Unpack[Dict]
|
| 368 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
| 369 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 370 |
+
output_hidden_states = (
|
| 371 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 372 |
+
)
|
| 373 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 374 |
+
|
| 375 |
+
outputs = self.model(
|
| 376 |
+
input_ids=input_ids,
|
| 377 |
+
attention_mask=attention_mask,
|
| 378 |
+
inputs_embeds=inputs_embeds,
|
| 379 |
+
past_key_values=past_key_values,
|
| 380 |
+
use_cache=use_cache,
|
| 381 |
+
output_attentions=output_attentions,
|
| 382 |
+
output_hidden_states=output_hidden_states,
|
| 383 |
+
return_dict=return_dict,
|
| 384 |
+
**kwargs
|
| 385 |
+
)
|
| 386 |
+
|
| 387 |
+
hidden_states = outputs[0]
|
| 388 |
+
fuse_linear_and_cross_entropy = self.config.fuse_cross_entropy and self.training
|
| 389 |
+
|
| 390 |
+
loss, logits = None, None
|
| 391 |
+
if not fuse_linear_and_cross_entropy or labels is None:
|
| 392 |
+
logits = self.lm_head(hidden_states if logits_to_keep is None else hidden_states[:, -logits_to_keep:])
|
| 393 |
+
if labels is not None:
|
| 394 |
+
if getattr(self, 'criterion', None) is None:
|
| 395 |
+
if fuse_linear_and_cross_entropy:
|
| 396 |
+
criterion = FusedLinearCrossEntropyLoss()
|
| 397 |
+
elif self.config.fuse_cross_entropy:
|
| 398 |
+
criterion = FusedCrossEntropyLoss(inplace_backward=True)
|
| 399 |
+
else:
|
| 400 |
+
criterion = nn.CrossEntropyLoss()
|
| 401 |
+
else:
|
| 402 |
+
criterion = self.criterion
|
| 403 |
+
labels = labels.to(hidden_states.device)
|
| 404 |
+
labels = torch.cat((labels[..., 1:], torch.full_like(labels[:, :1], criterion.ignore_index)), 1)
|
| 405 |
+
if fuse_linear_and_cross_entropy:
|
| 406 |
+
loss = criterion(hidden_states, labels, self.lm_head.weight, self.lm_head.bias)
|
| 407 |
+
else:
|
| 408 |
+
loss = criterion(logits.view(labels.numel(), -1), labels.view(-1))
|
| 409 |
+
|
| 410 |
+
if not return_dict:
|
| 411 |
+
output = (logits,) + outputs[1:]
|
| 412 |
+
return (loss,) + output if loss is not None else output
|
| 413 |
+
|
| 414 |
+
return CausalLMOutputWithPast(
|
| 415 |
+
loss=loss,
|
| 416 |
+
logits=logits,
|
| 417 |
+
past_key_values=outputs.past_key_values,
|
| 418 |
+
hidden_states=outputs.hidden_states,
|
| 419 |
+
attentions=outputs.attentions,
|
| 420 |
+
)
|
fla/models/hgrn2/__init__.py
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
|
| 3 |
+
from transformers import AutoConfig, AutoModel, AutoModelForCausalLM
|
| 4 |
+
|
| 5 |
+
from fla.models.hgrn2.configuration_hgrn2 import HGRN2Config
|
| 6 |
+
from fla.models.hgrn2.modeling_hgrn2 import HGRN2ForCausalLM, HGRN2Model
|
| 7 |
+
|
| 8 |
+
AutoConfig.register(HGRN2Config.model_type, HGRN2Config)
|
| 9 |
+
AutoModel.register(HGRN2Config, HGRN2Model)
|
| 10 |
+
AutoModelForCausalLM.register(HGRN2Config, HGRN2ForCausalLM)
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
__all__ = ['HGRN2Config', 'HGRN2ForCausalLM', 'HGRN2Model']
|
fla/models/hgrn2/__pycache__/__init__.cpython-311.pyc
ADDED
|
Binary file (753 Bytes). View file
|
|
|
fla/models/hgrn2/__pycache__/configuration_hgrn2.cpython-311.pyc
ADDED
|
Binary file (3.99 kB). View file
|
|
|
fla/models/hgrn2/__pycache__/modeling_hgrn2.cpython-311.pyc
ADDED
|
Binary file (19.8 kB). View file
|
|
|
fla/models/hgrn2/configuration_hgrn2.py
ADDED
|
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
|
| 3 |
+
from typing import Dict, Optional
|
| 4 |
+
|
| 5 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class HGRN2Config(PretrainedConfig):
|
| 9 |
+
|
| 10 |
+
model_type = 'hgrn2'
|
| 11 |
+
keys_to_ignore_at_inference = ['past_key_values']
|
| 12 |
+
|
| 13 |
+
def __init__(
|
| 14 |
+
self,
|
| 15 |
+
hidden_size: int = 2048,
|
| 16 |
+
num_hidden_layers: int = 24,
|
| 17 |
+
attn_mode: str = "chunk",
|
| 18 |
+
num_heads: Optional[int] = None,
|
| 19 |
+
expand_ratio: Optional[int] = 128,
|
| 20 |
+
use_short_conv: bool = False,
|
| 21 |
+
conv_size: int = 4,
|
| 22 |
+
use_lower_bound: bool = True,
|
| 23 |
+
hidden_ratio: Optional[int] = 4,
|
| 24 |
+
intermediate_size: Optional[int] = None,
|
| 25 |
+
hidden_act: str = "swish",
|
| 26 |
+
max_position_embeddings: int = 2048,
|
| 27 |
+
elementwise_affine: Optional[bool] = True,
|
| 28 |
+
norm_eps: float = 1e-6,
|
| 29 |
+
attn: Optional[Dict] = None,
|
| 30 |
+
use_cache: bool = True,
|
| 31 |
+
pad_token_id: int = None,
|
| 32 |
+
bos_token_id: int = 1,
|
| 33 |
+
eos_token_id: int = 2,
|
| 34 |
+
tie_word_embeddings: bool = False,
|
| 35 |
+
initializer_range: float = 0.006,
|
| 36 |
+
fuse_norm: bool = True,
|
| 37 |
+
fuse_swiglu: bool = True,
|
| 38 |
+
fuse_cross_entropy: bool = True,
|
| 39 |
+
vocab_size: int = 32000,
|
| 40 |
+
**kwargs
|
| 41 |
+
):
|
| 42 |
+
self.hidden_size = hidden_size
|
| 43 |
+
self.num_hidden_layers = num_hidden_layers
|
| 44 |
+
self.attn_mode = attn_mode
|
| 45 |
+
|
| 46 |
+
if expand_ratio is None and num_heads is not None:
|
| 47 |
+
expand_ratio = hidden_size // num_heads
|
| 48 |
+
elif expand_ratio is not None and num_heads is None:
|
| 49 |
+
num_heads = hidden_size // expand_ratio
|
| 50 |
+
elif expand_ratio is None and num_heads is None:
|
| 51 |
+
raise RuntimeError("One of `expand_ratio` or `num_heads` should be provided.")
|
| 52 |
+
self.num_heads = num_heads
|
| 53 |
+
self.expand_ratio = expand_ratio
|
| 54 |
+
|
| 55 |
+
self.use_short_conv = use_short_conv
|
| 56 |
+
self.conv_size = conv_size
|
| 57 |
+
self.use_lower_bound = use_lower_bound
|
| 58 |
+
self.max_position_embeddings = max_position_embeddings
|
| 59 |
+
self.hidden_ratio = hidden_ratio
|
| 60 |
+
self.intermediate_size = intermediate_size
|
| 61 |
+
self.hidden_act = hidden_act
|
| 62 |
+
self.elementwise_affine = elementwise_affine
|
| 63 |
+
self.norm_eps = norm_eps
|
| 64 |
+
self.attn = attn
|
| 65 |
+
self.use_cache = use_cache
|
| 66 |
+
self.initializer_range = initializer_range
|
| 67 |
+
|
| 68 |
+
self.fuse_norm = fuse_norm
|
| 69 |
+
self.fuse_swiglu = fuse_swiglu
|
| 70 |
+
self.fuse_cross_entropy = fuse_cross_entropy
|
| 71 |
+
self.vocab_size = vocab_size
|
| 72 |
+
|
| 73 |
+
if attn is not None:
|
| 74 |
+
if not isinstance(attn, Dict):
|
| 75 |
+
raise ValueError("attn must be a dictionary")
|
| 76 |
+
if 'layers' not in attn:
|
| 77 |
+
raise ValueError("Layer indices must be provided to initialize hybrid attention layers")
|
| 78 |
+
if 'num_heads' not in attn:
|
| 79 |
+
raise ValueError("Number of heads must be provided to initialize hybrid attention layers")
|
| 80 |
+
attn['num_kv_heads'] = attn.get('num_kv_heads', attn['num_heads'])
|
| 81 |
+
attn['qkv_bias'] = attn.get('qkv_bias', False)
|
| 82 |
+
attn['window_size'] = attn.get('window_size', None)
|
| 83 |
+
attn['rope_theta'] = attn.get('rope_theta', 10000.)
|
| 84 |
+
|
| 85 |
+
super().__init__(
|
| 86 |
+
pad_token_id=pad_token_id,
|
| 87 |
+
bos_token_id=bos_token_id,
|
| 88 |
+
eos_token_id=eos_token_id,
|
| 89 |
+
tie_word_embeddings=tie_word_embeddings,
|
| 90 |
+
**kwargs,
|
| 91 |
+
)
|
fla/models/hgrn2/modeling_hgrn2.py
ADDED
|
@@ -0,0 +1,421 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
|
| 3 |
+
from __future__ import annotations
|
| 4 |
+
|
| 5 |
+
import math
|
| 6 |
+
import warnings
|
| 7 |
+
from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union
|
| 8 |
+
|
| 9 |
+
import torch
|
| 10 |
+
import torch.nn as nn
|
| 11 |
+
import torch.utils.checkpoint
|
| 12 |
+
from transformers.generation import GenerationMixin
|
| 13 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
| 14 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 15 |
+
from transformers.utils import logging
|
| 16 |
+
from transformers.utils.deprecation import deprecate_kwarg
|
| 17 |
+
|
| 18 |
+
from fla.layers.attn import Attention
|
| 19 |
+
from fla.layers.hgrn2 import HGRN2Attention
|
| 20 |
+
from fla.models.hgrn2.configuration_hgrn2 import HGRN2Config
|
| 21 |
+
from fla.models.utils import Cache
|
| 22 |
+
from fla.modules import FusedCrossEntropyLoss, FusedLinearCrossEntropyLoss
|
| 23 |
+
from fla.modules import GatedMLP as HGRN2MLP
|
| 24 |
+
from fla.modules import RMSNorm
|
| 25 |
+
|
| 26 |
+
if TYPE_CHECKING:
|
| 27 |
+
from transformers.processing_utils import Unpack
|
| 28 |
+
|
| 29 |
+
logger = logging.get_logger(__name__)
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
class HGRN2Block(nn.Module):
|
| 33 |
+
def __init__(self, config: HGRN2Config, layer_idx: int):
|
| 34 |
+
super().__init__()
|
| 35 |
+
|
| 36 |
+
self.config = config
|
| 37 |
+
self.layer_idx = layer_idx
|
| 38 |
+
|
| 39 |
+
self.attn_norm = (RMSNorm if config.fuse_norm else nn.RMSNorm)(config.hidden_size, eps=config.norm_eps)
|
| 40 |
+
if config.attn is not None and layer_idx in config.attn['layers']:
|
| 41 |
+
self.attn = Attention(
|
| 42 |
+
hidden_size=config.hidden_size,
|
| 43 |
+
num_heads=config.attn['num_heads'],
|
| 44 |
+
num_kv_heads=config.attn['num_kv_heads'],
|
| 45 |
+
qkv_bias=config.attn['qkv_bias'],
|
| 46 |
+
window_size=config.attn['window_size'],
|
| 47 |
+
rope_theta=config.attn['rope_theta'],
|
| 48 |
+
max_position_embeddings=config.max_position_embeddings,
|
| 49 |
+
layer_idx=layer_idx
|
| 50 |
+
)
|
| 51 |
+
else:
|
| 52 |
+
self.attn = HGRN2Attention(
|
| 53 |
+
mode=config.attn_mode,
|
| 54 |
+
hidden_size=config.hidden_size,
|
| 55 |
+
num_heads=config.num_heads,
|
| 56 |
+
expand_ratio=config.expand_ratio,
|
| 57 |
+
use_short_conv=config.use_short_conv,
|
| 58 |
+
conv_size=config.conv_size,
|
| 59 |
+
elementwise_affine=config.elementwise_affine,
|
| 60 |
+
norm_eps=config.norm_eps,
|
| 61 |
+
layer_idx=layer_idx
|
| 62 |
+
)
|
| 63 |
+
self.mlp_norm = (RMSNorm if config.fuse_norm else nn.RMSNorm)(config.hidden_size, eps=config.norm_eps)
|
| 64 |
+
self.mlp = HGRN2MLP(
|
| 65 |
+
hidden_size=config.hidden_size,
|
| 66 |
+
hidden_ratio=config.hidden_ratio,
|
| 67 |
+
intermediate_size=config.intermediate_size,
|
| 68 |
+
hidden_act=config.hidden_act,
|
| 69 |
+
fuse_swiglu=config.fuse_swiglu
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
def forward(
|
| 73 |
+
self,
|
| 74 |
+
hidden_states: torch.Tensor,
|
| 75 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 76 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
| 77 |
+
use_cache: Optional[bool] = False,
|
| 78 |
+
output_attentions: Optional[bool] = False,
|
| 79 |
+
lower_bound: Optional[torch.Tensor] = False,
|
| 80 |
+
**kwargs: Unpack[Dict]
|
| 81 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
| 82 |
+
residual = hidden_states
|
| 83 |
+
hidden_states = self.attn_norm(hidden_states)
|
| 84 |
+
hidden_states, attentions, past_key_values = self.attn(
|
| 85 |
+
hidden_states=hidden_states,
|
| 86 |
+
attention_mask=attention_mask,
|
| 87 |
+
past_key_values=past_key_values,
|
| 88 |
+
use_cache=use_cache,
|
| 89 |
+
output_attentions=output_attentions,
|
| 90 |
+
lower_bound=lower_bound,
|
| 91 |
+
**kwargs
|
| 92 |
+
)
|
| 93 |
+
if self.config.fuse_norm:
|
| 94 |
+
hidden_states, residual = self.mlp_norm(hidden_states, residual, True)
|
| 95 |
+
else:
|
| 96 |
+
hidden_states = residual + hidden_states
|
| 97 |
+
residual = hidden_states
|
| 98 |
+
hidden_states = self.mlp_norm(hidden_states)
|
| 99 |
+
hidden_states = self.mlp(hidden_states, **kwargs)
|
| 100 |
+
hidden_states = residual + hidden_states
|
| 101 |
+
|
| 102 |
+
outputs = (hidden_states, attentions, past_key_values)
|
| 103 |
+
|
| 104 |
+
return outputs
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
class HGRN2PreTrainedModel(PreTrainedModel):
|
| 108 |
+
|
| 109 |
+
config_class = HGRN2Config
|
| 110 |
+
base_model_prefix = 'model'
|
| 111 |
+
supports_gradient_checkpointing = True
|
| 112 |
+
_no_split_modules = ['HGRN2Block']
|
| 113 |
+
_supports_cache_class = True
|
| 114 |
+
|
| 115 |
+
def __init__(self, *inputs, **kwargs):
|
| 116 |
+
super().__init__(*inputs, **kwargs)
|
| 117 |
+
|
| 118 |
+
def _init_weights(
|
| 119 |
+
self,
|
| 120 |
+
module: nn.Module,
|
| 121 |
+
prenorm_residual_strategy: Optional[str] = 'rescale',
|
| 122 |
+
num_residuals_per_layer: int = 2,
|
| 123 |
+
):
|
| 124 |
+
if isinstance(module, (nn.Linear, nn.Conv1d)):
|
| 125 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
| 126 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
| 127 |
+
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
|
| 128 |
+
if module.bias is not None:
|
| 129 |
+
nn.init.zeros_(module.bias)
|
| 130 |
+
elif isinstance(module, nn.Embedding):
|
| 131 |
+
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
|
| 132 |
+
elif hasattr(module, 'reset_parameters'):
|
| 133 |
+
module.reset_parameters()
|
| 134 |
+
|
| 135 |
+
if prenorm_residual_strategy is not None:
|
| 136 |
+
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
|
| 137 |
+
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
|
| 138 |
+
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
|
| 139 |
+
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
|
| 140 |
+
#
|
| 141 |
+
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
|
| 142 |
+
p = None
|
| 143 |
+
if hasattr(module, 'o_proj'):
|
| 144 |
+
p = module.o_proj.weight
|
| 145 |
+
elif hasattr(module, 'down_proj'):
|
| 146 |
+
p = module.down_proj.weight
|
| 147 |
+
if p is not None:
|
| 148 |
+
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
|
| 149 |
+
# Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
|
| 150 |
+
# We need to reinit p since this code could be called multiple times
|
| 151 |
+
# Having just p *= scale would repeatedly scale it down
|
| 152 |
+
if prenorm_residual_strategy == 'rescale':
|
| 153 |
+
nn.init.kaiming_uniform_(p, a=math.sqrt(5))
|
| 154 |
+
with torch.no_grad():
|
| 155 |
+
p /= math.sqrt(num_residuals_per_layer * self.config.num_hidden_layers)
|
| 156 |
+
elif prenorm_residual_strategy == 'zero':
|
| 157 |
+
nn.init.zeros_(p)
|
| 158 |
+
else:
|
| 159 |
+
raise ValueError(f"Invalid prenorm_residual_strategy: {prenorm_residual_strategy}")
|
| 160 |
+
|
| 161 |
+
|
| 162 |
+
class HGRN2Model(HGRN2PreTrainedModel):
|
| 163 |
+
|
| 164 |
+
def __init__(self, config: HGRN2Config):
|
| 165 |
+
super().__init__(config)
|
| 166 |
+
self.padding_idx = config.pad_token_id
|
| 167 |
+
self.vocab_size = config.vocab_size
|
| 168 |
+
|
| 169 |
+
self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
| 170 |
+
if config.use_lower_bound:
|
| 171 |
+
self.lower_bounds = nn.Parameter(torch.zeros(config.num_hidden_layers, config.hidden_size))
|
| 172 |
+
self.layers = nn.ModuleList([HGRN2Block(config, layer_idx) for layer_idx in range(config.num_hidden_layers)])
|
| 173 |
+
self.norm = (RMSNorm if config.fuse_norm else nn.RMSNorm)(config.hidden_size, eps=config.norm_eps)
|
| 174 |
+
|
| 175 |
+
self.gradient_checkpointing = False
|
| 176 |
+
|
| 177 |
+
self.post_init()
|
| 178 |
+
|
| 179 |
+
def get_input_embeddings(self):
|
| 180 |
+
return self.embeddings
|
| 181 |
+
|
| 182 |
+
def set_input_embeddings(self, value):
|
| 183 |
+
self.embeddings = value
|
| 184 |
+
|
| 185 |
+
def forward(
|
| 186 |
+
self,
|
| 187 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 188 |
+
attention_mask: Optional[torch.Tensor] = None, # noqa
|
| 189 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 190 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
| 191 |
+
use_cache: Optional[bool] = None,
|
| 192 |
+
output_attentions: Optional[bool] = None,
|
| 193 |
+
output_hidden_states: Optional[bool] = None,
|
| 194 |
+
return_dict: Optional[bool] = None,
|
| 195 |
+
**kwargs: Unpack[Dict]
|
| 196 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
| 197 |
+
if output_attentions:
|
| 198 |
+
warnings.warn("`HGRN2Model` does not `output_attentions` now, setting it to `False`.")
|
| 199 |
+
output_attentions = False
|
| 200 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 201 |
+
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 202 |
+
use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False)
|
| 203 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 204 |
+
|
| 205 |
+
# retrieve input_ids and inputs_embeds
|
| 206 |
+
if input_ids is not None and inputs_embeds is not None:
|
| 207 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
| 208 |
+
if input_ids is None and inputs_embeds is None:
|
| 209 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
| 210 |
+
|
| 211 |
+
if inputs_embeds is None:
|
| 212 |
+
inputs_embeds = self.embeddings(input_ids)
|
| 213 |
+
hidden_states = inputs_embeds
|
| 214 |
+
|
| 215 |
+
if use_cache and not isinstance(past_key_values, Cache):
|
| 216 |
+
past_key_values = Cache.from_legacy_cache(past_key_values)
|
| 217 |
+
|
| 218 |
+
if self.gradient_checkpointing and self.training and use_cache:
|
| 219 |
+
logger.warning_once("`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...")
|
| 220 |
+
use_cache = False
|
| 221 |
+
|
| 222 |
+
all_hidden_states = () if output_hidden_states else None
|
| 223 |
+
all_attns = () if output_attentions else None
|
| 224 |
+
|
| 225 |
+
if self.config.use_lower_bound:
|
| 226 |
+
lower_bounds = self.lower_bounds.softmax(0)
|
| 227 |
+
lower_bounds = lower_bounds.cumsum(0) - lower_bounds[0]
|
| 228 |
+
for i, layer in enumerate(self.layers):
|
| 229 |
+
if output_hidden_states:
|
| 230 |
+
all_hidden_states += (hidden_states,)
|
| 231 |
+
|
| 232 |
+
lower_bound = lower_bounds[i] if self.config.use_lower_bound else None
|
| 233 |
+
if self.gradient_checkpointing and self.training:
|
| 234 |
+
hidden_states, attentions, past_key_values = self._gradient_checkpointing_func(
|
| 235 |
+
layer.__call__,
|
| 236 |
+
hidden_states,
|
| 237 |
+
attention_mask,
|
| 238 |
+
past_key_values,
|
| 239 |
+
use_cache,
|
| 240 |
+
output_attentions,
|
| 241 |
+
lower_bound,
|
| 242 |
+
**kwargs
|
| 243 |
+
)
|
| 244 |
+
else:
|
| 245 |
+
hidden_states, attentions, past_key_values = layer(
|
| 246 |
+
hidden_states,
|
| 247 |
+
attention_mask=attention_mask,
|
| 248 |
+
past_key_values=past_key_values,
|
| 249 |
+
use_cache=use_cache,
|
| 250 |
+
output_attentions=output_attentions,
|
| 251 |
+
lower_bound=lower_bound,
|
| 252 |
+
**kwargs
|
| 253 |
+
)
|
| 254 |
+
|
| 255 |
+
if output_attentions:
|
| 256 |
+
all_attns += (attentions,)
|
| 257 |
+
|
| 258 |
+
hidden_states = self.norm(hidden_states)
|
| 259 |
+
|
| 260 |
+
# add hidden states from the last decoder layer
|
| 261 |
+
if output_hidden_states:
|
| 262 |
+
all_hidden_states += (hidden_states,)
|
| 263 |
+
|
| 264 |
+
if not return_dict:
|
| 265 |
+
return tuple(i for i in [hidden_states, past_key_values, all_hidden_states, all_attns] if i is not None)
|
| 266 |
+
return BaseModelOutputWithPast(
|
| 267 |
+
last_hidden_state=hidden_states,
|
| 268 |
+
past_key_values=past_key_values,
|
| 269 |
+
hidden_states=all_hidden_states,
|
| 270 |
+
attentions=all_attns
|
| 271 |
+
)
|
| 272 |
+
|
| 273 |
+
|
| 274 |
+
class HGRN2ForCausalLM(HGRN2PreTrainedModel, GenerationMixin):
|
| 275 |
+
|
| 276 |
+
_tied_weights_keys = ["lm_head.weight"]
|
| 277 |
+
|
| 278 |
+
def __init__(self, config):
|
| 279 |
+
super().__init__(config)
|
| 280 |
+
self.model = HGRN2Model(config)
|
| 281 |
+
self.vocab_size = config.vocab_size
|
| 282 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
| 283 |
+
self.criterion = None
|
| 284 |
+
|
| 285 |
+
# Initialize weights and apply final processing
|
| 286 |
+
self.post_init()
|
| 287 |
+
|
| 288 |
+
def get_input_embeddings(self):
|
| 289 |
+
return self.model.embeddings
|
| 290 |
+
|
| 291 |
+
def set_input_embeddings(self, value):
|
| 292 |
+
self.model.embeddings = value
|
| 293 |
+
|
| 294 |
+
def get_output_embeddings(self):
|
| 295 |
+
return self.lm_head
|
| 296 |
+
|
| 297 |
+
def set_output_embeddings(self, new_embeddings):
|
| 298 |
+
self.lm_head = new_embeddings
|
| 299 |
+
|
| 300 |
+
def set_decoder(self, decoder):
|
| 301 |
+
self.model = decoder
|
| 302 |
+
|
| 303 |
+
def get_decoder(self):
|
| 304 |
+
return self.model
|
| 305 |
+
|
| 306 |
+
def generate(self, *args, **kwargs):
|
| 307 |
+
try:
|
| 308 |
+
return super().generate(*args, **kwargs)
|
| 309 |
+
except AttributeError as exception:
|
| 310 |
+
if 'past_key_values' in str(exception):
|
| 311 |
+
raise AttributeError(
|
| 312 |
+
f"You tried to call `generate` with a decoding strategy that manipulates `past_key_values`, "
|
| 313 |
+
f"which is not supported for {self.__class__.__name__}. "
|
| 314 |
+
f"Try another generation strategy instead. "
|
| 315 |
+
f"For the available generation strategies, check this doc: "
|
| 316 |
+
f"https://huggingface.co/docs/transformers/en/generation_strategies#decoding-strategies"
|
| 317 |
+
)
|
| 318 |
+
else:
|
| 319 |
+
raise exception
|
| 320 |
+
|
| 321 |
+
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
|
| 322 |
+
def prepare_inputs_for_generation(
|
| 323 |
+
self,
|
| 324 |
+
input_ids: torch.LongTensor = None,
|
| 325 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
| 326 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 327 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 328 |
+
use_cache: bool = True,
|
| 329 |
+
logits_to_keep: Optional[int] = None,
|
| 330 |
+
**kwargs: Unpack[Dict]
|
| 331 |
+
):
|
| 332 |
+
# only last token for `inputs_ids` if the `past_key_values` is not empty.
|
| 333 |
+
if past_key_values is not None and len(past_key_values) > 0:
|
| 334 |
+
input_ids = input_ids[:, -1:]
|
| 335 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
| 336 |
+
if inputs_embeds is not None and len(past_key_values) == 0:
|
| 337 |
+
model_inputs = {'inputs_embeds': inputs_embeds}
|
| 338 |
+
else:
|
| 339 |
+
# The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
|
| 340 |
+
# recompiles graphs as the stride of the inputs is a guard.
|
| 341 |
+
# Ref: https://github.com/huggingface/transformers/pull/29114
|
| 342 |
+
# TODO: use `next_tokens` directly instead.
|
| 343 |
+
model_inputs = {'input_ids': input_ids.contiguous()}
|
| 344 |
+
|
| 345 |
+
if logits_to_keep is not None:
|
| 346 |
+
model_inputs['logits_to_keep'] = logits_to_keep
|
| 347 |
+
|
| 348 |
+
model_inputs.update({
|
| 349 |
+
'past_key_values': past_key_values,
|
| 350 |
+
'use_cache': use_cache,
|
| 351 |
+
'attention_mask': attention_mask,
|
| 352 |
+
})
|
| 353 |
+
return model_inputs
|
| 354 |
+
|
| 355 |
+
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
|
| 356 |
+
def forward(
|
| 357 |
+
self,
|
| 358 |
+
input_ids: torch.LongTensor = None,
|
| 359 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 360 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 361 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
| 362 |
+
labels: Optional[torch.LongTensor] = None,
|
| 363 |
+
use_cache: Optional[bool] = None,
|
| 364 |
+
output_attentions: Optional[bool] = None,
|
| 365 |
+
output_hidden_states: Optional[bool] = None,
|
| 366 |
+
return_dict: Optional[bool] = None,
|
| 367 |
+
logits_to_keep: Optional[int] = 0,
|
| 368 |
+
**kwargs: Unpack[Dict]
|
| 369 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
| 370 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 371 |
+
output_hidden_states = (
|
| 372 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 373 |
+
)
|
| 374 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 375 |
+
|
| 376 |
+
outputs = self.model(
|
| 377 |
+
input_ids=input_ids,
|
| 378 |
+
attention_mask=attention_mask,
|
| 379 |
+
inputs_embeds=inputs_embeds,
|
| 380 |
+
past_key_values=past_key_values,
|
| 381 |
+
use_cache=use_cache,
|
| 382 |
+
output_attentions=output_attentions,
|
| 383 |
+
output_hidden_states=output_hidden_states,
|
| 384 |
+
return_dict=return_dict,
|
| 385 |
+
**kwargs
|
| 386 |
+
)
|
| 387 |
+
|
| 388 |
+
hidden_states = outputs[0]
|
| 389 |
+
fuse_linear_and_cross_entropy = self.config.fuse_cross_entropy and self.training
|
| 390 |
+
|
| 391 |
+
loss, logits = None, None
|
| 392 |
+
if not fuse_linear_and_cross_entropy or labels is None:
|
| 393 |
+
logits = self.lm_head(hidden_states if logits_to_keep is None else hidden_states[:, -logits_to_keep:])
|
| 394 |
+
if labels is not None:
|
| 395 |
+
if getattr(self, 'criterion', None) is None:
|
| 396 |
+
if fuse_linear_and_cross_entropy:
|
| 397 |
+
criterion = FusedLinearCrossEntropyLoss()
|
| 398 |
+
elif self.config.fuse_cross_entropy:
|
| 399 |
+
criterion = FusedCrossEntropyLoss(inplace_backward=True)
|
| 400 |
+
else:
|
| 401 |
+
criterion = nn.CrossEntropyLoss()
|
| 402 |
+
else:
|
| 403 |
+
criterion = self.criterion
|
| 404 |
+
labels = labels.to(hidden_states.device)
|
| 405 |
+
labels = torch.cat((labels[..., 1:], torch.full_like(labels[:, :1], criterion.ignore_index)), 1)
|
| 406 |
+
if fuse_linear_and_cross_entropy:
|
| 407 |
+
loss = criterion(hidden_states, labels, self.lm_head.weight, self.lm_head.bias)
|
| 408 |
+
else:
|
| 409 |
+
loss = criterion(logits.view(labels.numel(), -1), labels.view(-1))
|
| 410 |
+
|
| 411 |
+
if not return_dict:
|
| 412 |
+
output = (logits,) + outputs[1:]
|
| 413 |
+
return (loss,) + output if loss is not None else output
|
| 414 |
+
|
| 415 |
+
return CausalLMOutputWithPast(
|
| 416 |
+
loss=loss,
|
| 417 |
+
logits=logits,
|
| 418 |
+
past_key_values=outputs.past_key_values,
|
| 419 |
+
hidden_states=outputs.hidden_states,
|
| 420 |
+
attentions=outputs.attentions,
|
| 421 |
+
)
|
fla/models/lightnet/__init__.py
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
|
| 3 |
+
from transformers import AutoConfig, AutoModel, AutoModelForCausalLM
|
| 4 |
+
|
| 5 |
+
from fla.models.lightnet.configuration_lightnet import LightNetConfig
|
| 6 |
+
from fla.models.lightnet.modeling_lightnet import LightNetForCausalLM, LightNetModel
|
| 7 |
+
|
| 8 |
+
AutoConfig.register(LightNetConfig.model_type, LightNetConfig)
|
| 9 |
+
AutoModel.register(LightNetConfig, LightNetModel)
|
| 10 |
+
AutoModelForCausalLM.register(LightNetConfig, LightNetForCausalLM)
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
__all__ = ['LightNetConfig', 'LightNetForCausalLM', 'LightNetModel']
|
fla/models/lightnet/__pycache__/__init__.cpython-311.pyc
ADDED
|
Binary file (778 Bytes). View file
|
|
|