Fine-Tuned Emotion Classification Model
Model Information
- Base Model: unsloth/Meta-Llama-3.1-8B-Instruct
- Training Method: LoRA (Low-Rank Adaptation)
- LoRA Rank: 32
- Training Samples: 56,400
- Datasets Used: GoEmotions, Emotion, TweetEval
How to Load This Model
from unsloth import FastLanguageModel
# Load the fine-tuned model
model, tokenizer = FastLanguageModel.from_pretrained(
model_name="emotion_model_finetuned",
max_seq_length=2048,
dtype=None,
load_in_4bit=True,
)
# Enable inference mode
FastLanguageModel.for_inference(model)
# Use the model
prompt = """<|im_start|>system
You are a compassionate mental health support assistant.<|im_end|>
<|im_start|>user
I'm feeling anxious about tomorrow.<|im_end|>
<|im_start|>assistant
"""
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens=128)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)
Files Included
adapter_config.json- LoRA adapter configurationadapter_model.safetensors- Fine-tuned weightstokenizer.json- Tokenizer filestraining_config.json- Training hyperparameters
Model tree for RockyBai/Mirari
Base model
meta-llama/Llama-3.1-8B
Finetuned
meta-llama/Llama-3.1-8B-Instruct
Finetuned
unsloth/Meta-Llama-3.1-8B-Instruct