File size: 3,789 Bytes
09f4f17 3383da4 09f4f17 3383da4 09f4f17 3383da4 09f4f17 3383da4 09f4f17 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
---
license: apache-2.0
license_link: >-
https://github.st.com/AIS/stm32ai-modelzoo/raw/master/neural-style-transfer/LICENSE.md
---
# Xinet_picasso_muse
## **Use case** : `Neural style transfer`
# Model description
Xinet_picasso_muse is a lightweight Neural Style Transfer approach based on [XiNets](https://openaccess.thecvf.com/content/ICCV2023/papers/Ancilotto_XiNet_Efficient_Neural_Networks_for_tinyML_ICCV_2023_paper.pdf), neural networks especially developed for microcontrollers and embedded applications. It has been trained using the COCO dataset for content images and the painting *La Muse* of **Pablo Picasso** for style image. This model achieves an extremely lightweight transfer style mechanism and high-quality stylized outputs, significantly reducing computational complexity.
Xinet_picasso_muse is implemented initially in Pytorch and is quantized in int8 format using tensorflow lite converter. To reach a better performances, the mirror padding ops have been replaced with zero padding ops.
## Network information
| Network Information | Value |
|-------------------------|--------------------------------------|
| Framework | Tensorflow |
| Quantization | int8 |
| Paper | [Link to Paper](https://www.computer.org/csdl/proceedings-article/percom-workshops/2024/10502435/1Wnrsw29p5e) |
## Recommended platform
| Platform | Supported | Recommended |
|----------|-----------|-------------|
| STM32L0 | [] | [] |
| STM32L4 | [] | [] |
| STM32U5 | [] | [] |
| STM32MP1 | [] | [] |
| STM32MP2 | [] | [] |
| STM32N6| [x] | [x] |
---
# Performances
## Metrics
Measures are done with default STEdgeAI Core configuration with enabled input / output allocated option.
### Reference **NPU** memory footprint based on COCO dataset
|Model | Dataset | Format | Resolution | Series | Internal RAM (KiB)| External RAM (KiB)| Weights Flash (KiB) | STEdgeAI Core version |
|----------|------------------|--------|-------------|------------------|------------------|---------------------|-------|-------------------------|
| [Xinet picasso muse](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/neural_style_transfer/xinet_picasso_muse/Public_pretrainedmodel_public_dataset/coco_2017_80_classes_picasso/xinet_a75_picasso_muse_160/xinet_a75_picasso_muse_160_nomp.tflite) | COCO/Picasso | Int8 | 160x160x3 | STM32N6 | 2568.12 | 1200 | 851.86 | 3.0.0
### Reference **NPU** inference time based on COCO Person dataset
| Model | Dataset | Format | Resolution | Board | Execution Engine | Inference time (ms) | Inf / sec | STEdgeAI Core version |
|--------|------------------|--------|-------------|------------------|------------------|---------------------|-------|-------------------------|
| [Xinet picasso muse](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/neural_style_transfer/xinet_picasso_muse/Public_pretrainedmodel_public_dataset/coco_2017_80_classes_picasso/xinet_a75_picasso_muse_160/xinet_a75_picasso_muse_160_nomp.tflite) | COCO/Picasso | Int8 | 160x160x3 | STM32N6570-DK | NPU/MCU | 93.83 | 10.65 | 3.0.0 |
## Retraining and Integration in a Simple Example
Retraining and deployment services are currently not provided for this model. They should be supported in the future releases.
## References
<a id="1">[1]</a> "Painting the Starry Night using XiNets" Alberto Ancilotto, Elisabetta Farella - 2024 IEEE International Conference on Pervasive Computing [Link](https://www.computer.org/csdl/proceedings-article/percom-workshops/2024/10502435/1Wnrsw29p5e)
|