SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-MiniLM-L6-v2
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False, 'architecture': 'BertModel'})
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'Pollen-mediated gene flow can have significant implications for the management of invasive species.',
'If an invasive species is able to hybridize with a native species through pollen-mediated gene flow, it may gain a competitive advantage, leading to the displacement of the native species and altered ecosystem dynamics.',
'A condition that occurs when glucocorticoids are abruptly discontinued, leading to symptoms such as adrenal insufficiency and fatigue.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[ 1.0000, 0.7669, -0.0300],
# [ 0.7669, 1.0000, 0.0155],
# [-0.0300, 0.0155, 1.0000]])
Training Details
Training Dataset
Unnamed Dataset
- Size: 33,038 training samples
- Columns:
sentence_0andsentence_1 - Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 type string string details - min: 4 tokens
- mean: 18.77 tokens
- max: 75 tokens
- min: 6 tokens
- mean: 31.75 tokens
- max: 67 tokens
- Samples:
sentence_0 sentence_1 In terrestrial ecosystems, detrital storage can significantly influence soil formation and fertility.The accumulation of detritus can lead to the formation of humus, a rich source of nutrients for plants, while also affecting soil structure and water-holding capacity.Rebound anxietyA phenomenon where individuals experiencing protracted withdrawal syndrome from anxiolytic medications exhibit intensified anxiety symptoms, often exceeding pre-treatment levels.Synchrony BreakdownA phenomenon where population synchrony is disrupted, often due to changes in environmental conditions, species interactions, or other factors that affect the populations' dynamics. - Loss:
MultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim", "gather_across_devices": false }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size: 64per_device_eval_batch_size: 64num_train_epochs: 100multi_dataset_batch_sampler: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: noprediction_loss_only: Trueper_device_train_batch_size: 64per_device_eval_batch_size: 64per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1num_train_epochs: 100max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}parallelism_config: Nonedeepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torch_fusedoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthproject: huggingfacetrackio_space_id: trackioddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: noneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Trueprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: round_robinrouter_mapping: {}learning_rate_mapping: {}
Training Logs
Click to expand
| Epoch | Step | Training Loss |
|---|---|---|
| 0.9671 | 500 | 0.2396 |
| 1.9342 | 1000 | 0.1298 |
| 2.9014 | 1500 | 0.0946 |
| 3.8685 | 2000 | 0.0726 |
| 4.8356 | 2500 | 0.0589 |
| 5.8027 | 3000 | 0.0479 |
| 6.7698 | 3500 | 0.043 |
| 7.7369 | 4000 | 0.037 |
| 8.7041 | 4500 | 0.0349 |
| 9.6712 | 5000 | 0.03 |
| 10.6383 | 5500 | 0.0286 |
| 11.6054 | 6000 | 0.0269 |
| 12.5725 | 6500 | 0.0248 |
| 13.5397 | 7000 | 0.0232 |
| 14.5068 | 7500 | 0.0223 |
| 15.4739 | 8000 | 0.0212 |
| 16.4410 | 8500 | 0.0202 |
| 17.4081 | 9000 | 0.0186 |
| 18.3752 | 9500 | 0.0172 |
| 19.3424 | 10000 | 0.018 |
| 20.3095 | 10500 | 0.0159 |
| 21.2766 | 11000 | 0.0155 |
| 22.2437 | 11500 | 0.016 |
| 23.2108 | 12000 | 0.0144 |
| 24.1779 | 12500 | 0.0142 |
| 25.1451 | 13000 | 0.0141 |
| 26.1122 | 13500 | 0.0127 |
| 27.0793 | 14000 | 0.0138 |
| 28.0464 | 14500 | 0.0123 |
| 29.0135 | 15000 | 0.0117 |
| 29.9807 | 15500 | 0.0118 |
| 30.9478 | 16000 | 0.0117 |
| 31.9149 | 16500 | 0.0121 |
| 32.8820 | 17000 | 0.0111 |
| 33.8491 | 17500 | 0.0105 |
| 34.8162 | 18000 | 0.0104 |
| 35.7834 | 18500 | 0.0107 |
| 36.7505 | 19000 | 0.0107 |
| 37.7176 | 19500 | 0.0098 |
| 38.6847 | 20000 | 0.01 |
| 39.6518 | 20500 | 0.0104 |
| 40.6190 | 21000 | 0.0099 |
| 41.5861 | 21500 | 0.0094 |
| 42.5532 | 22000 | 0.0091 |
| 43.5203 | 22500 | 0.0096 |
| 44.4874 | 23000 | 0.0086 |
| 45.4545 | 23500 | 0.0087 |
| 46.4217 | 24000 | 0.0081 |
| 47.3888 | 24500 | 0.008 |
| 48.3559 | 25000 | 0.0078 |
| 49.3230 | 25500 | 0.0087 |
| 50.2901 | 26000 | 0.0075 |
| 51.2573 | 26500 | 0.0077 |
| 52.2244 | 27000 | 0.0076 |
| 53.1915 | 27500 | 0.0076 |
| 54.1586 | 28000 | 0.0074 |
| 55.1257 | 28500 | 0.0072 |
| 56.0928 | 29000 | 0.0076 |
| 57.0600 | 29500 | 0.0066 |
| 58.0271 | 30000 | 0.0073 |
| 58.9942 | 30500 | 0.0075 |
| 59.9613 | 31000 | 0.0064 |
| 60.9284 | 31500 | 0.0069 |
| 61.8956 | 32000 | 0.0071 |
| 62.8627 | 32500 | 0.0073 |
| 63.8298 | 33000 | 0.0071 |
| 64.7969 | 33500 | 0.0068 |
| 65.7640 | 34000 | 0.0065 |
| 66.7311 | 34500 | 0.0069 |
| 67.6983 | 35000 | 0.0063 |
| 68.6654 | 35500 | 0.0067 |
| 69.6325 | 36000 | 0.0059 |
| 70.5996 | 36500 | 0.0061 |
| 71.5667 | 37000 | 0.0061 |
| 72.5338 | 37500 | 0.0065 |
| 73.5010 | 38000 | 0.0056 |
| 74.4681 | 38500 | 0.0057 |
| 75.4352 | 39000 | 0.0063 |
| 76.4023 | 39500 | 0.0059 |
| 77.3694 | 40000 | 0.006 |
| 78.3366 | 40500 | 0.0066 |
| 79.3037 | 41000 | 0.0061 |
| 80.2708 | 41500 | 0.0062 |
| 81.2379 | 42000 | 0.0057 |
| 82.2050 | 42500 | 0.0057 |
| 83.1721 | 43000 | 0.0055 |
| 84.1393 | 43500 | 0.0054 |
| 85.1064 | 44000 | 0.0048 |
| 86.0735 | 44500 | 0.0051 |
| 87.0406 | 45000 | 0.006 |
| 88.0077 | 45500 | 0.0055 |
| 88.9749 | 46000 | 0.0057 |
| 89.9420 | 46500 | 0.0052 |
| 90.9091 | 47000 | 0.0054 |
| 91.8762 | 47500 | 0.0052 |
| 92.8433 | 48000 | 0.0053 |
| 93.8104 | 48500 | 0.0051 |
| 94.7776 | 49000 | 0.006 |
| 95.7447 | 49500 | 0.005 |
| 96.7118 | 50000 | 0.0058 |
| 97.6789 | 50500 | 0.005 |
| 98.6460 | 51000 | 0.0052 |
| 99.6132 | 51500 | 0.0056 |
Framework Versions
- Python: 3.12.12
- Sentence Transformers: 5.1.2
- Transformers: 4.57.2
- PyTorch: 2.9.0+cu126
- Accelerate: 1.12.0
- Datasets: 4.0.0
- Tokenizers: 0.22.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 397
Model tree for amanrajput/MiniLM-L6-v2-biology-finetuned
Base model
sentence-transformers/all-MiniLM-L6-v2