metadata
dataset_info:
features:
- name: sentence
dtype: string
- name: simplification
dtype: string
- name: dataset
dtype: string
splits:
- name: train
num_bytes: 339019973
num_examples: 781801
- name: validation
num_bytes: 972654
num_examples: 2385
- name: test
num_bytes: 753090
num_examples: 1439
download_size: 218816945
dataset_size: 340745717
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
- split: test
path: data/test-*
language:
- fra
task_categories:
- text-generation
pretty_name: frenchSIMPLIFICATION
Dataset information
Dataset concatenating Simplification datasets, available in French and open-source.
There are a total of 785,625 rows, of which 781,801 are for training, 2,385 for validation and 1,439 for testing.
Usage
from datasets import load_dataset
dataset = load_dataset("CATIE-AQ/frenchSIMPLIFICATION")
Dataset
Details of rows
| Dataset Original | Splits | Note |
|---|---|---|
| clear | 4,196 train / 300 validation / 100 test | |
| wikilarge | 296,402 train / 992 validation / 359 test | |
| GEM/BiSECT | 491,035 train / 2,400 validation / 1,036 test | We keep only the data in French (fr) |
| alector | 1,108 train | We cut the 79 original texts into sentences to obtain 1,108 data instead of 79. |
Removing duplicate data and leaks
The sum of the values of the datasets listed here gives the following result:
DatasetDict({
train: Dataset({
features: ['sentence', 'simplification', 'dataset'],
num_rows: 792741
})
validation: Dataset({
features: ['sentence', 'simplification', 'dataset'],
num_rows: 3692
})
test: Dataset({
features: ['sentence', 'simplification', 'dataset'],
num_rows: 1495
})
})
However, a data item in training split A may not be in A's test split, but may be present in B's test set, creating a leak when we create the A+B dataset.
The same logic applies to duplicate data. So we need to make sure we remove them.
After our clean-up, we finally have the following numbers:
DatasetDict({
train: Dataset({
features: ['sentence', 'simplification', 'dataset'],
num_rows: 781801
})
validation: Dataset({
features: ['sentence', 'simplification', 'dataset'],
num_rows: 2385
})
test: Dataset({
features: ['sentence', 'simplification', 'dataset'],
num_rows: 1439
})
})
Columns
- the
sentencecolumn contains the text - the
simplificationcolumn contains the simplification of thesentence - the
datasetcolumn identifies the row's original dataset (if you wish to apply filters to it)
Split
traincorresponds to the concatenation ofclear+wikilarge+bisect+alectorvalidationcorresponds to the concatenation ofclear+wikilarge+bisecttestcorresponds toclear+wikilarge+bisect
Citations
Alector
@inproceedings{gala-etal-2020-alector,
title = "{A}lector: A Parallel Corpus of Simplified {F}rench Texts with Alignments of Misreadings by Poor and Dyslexic Readers",
author = {Gala, N{\'u}ria and Tack, Ana{\"\i}s and Javourey-Drevet, Ludivine and Fran{\c{c}}ois, Thomas and Ziegler, Johannes C.},
editor = "Calzolari, Nicoletta and B{\'e}chet, Fr{\'e}d{\'e}ric and Blache, Philippe and Choukri, Khalid and Cieri, Christopher and Declerck, Thierry and Goggi, Sara and Isahara, Hitoshi and Maegaard, Bente and Mariani, Joseph and Mazo, H{\'e}l{\`e}ne and Moreno, Asuncion and Odijk, Jan and Piperidis, Stelios",
booktitle = "Proceedings of the Twelfth Language Resources and Evaluation Conference",
month = may,
year = "2020",
address = "Marseille, France",
publisher = "European Language Resources Association",
url = "https://aclanthology.org/2020.lrec-1.169",
pages = "1353--1361",
language = "English",
ISBN = "979-10-95546-34-4",}
BiSECT
@inproceedings{bisect2021,
title={BiSECT: Learning to Split and Rephrase Sentences with Bitexts},
author={Kim, Joongwon and Maddela, Mounica and Kriz, Reno and Xu, Wei and Callison-Burch, Chris},
booktitle={Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP)},
year={2021}}
CLEAR
@inproceedings{grabar-cardon-2018-clear,
title = "{CLEAR} {--} Simple Corpus for Medical {F}rench",
author = "Grabar, Natalia and Cardon, R{\'e}mi",
editor = {J{\"o}nsson, Arne and Rennes, Evelina and Saggion, Horacio and Stajner, Sanja and Yaneva, Victoria},
booktitle = "Proceedings of the 1st Workshop on Automatic Text Adaptation ({ATA})",
month = nov,
year = "2018",
address = "Tilburg, the Netherlands",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-7002",
doi = "10.18653/v1/W18-7002",
pages = "3--9",
}
Wikilarge
@inproceedings{cardon-grabar-2020-french,
title = "{F}rench Biomedical Text Simplification: When Small and Precise Helps",
author = "Cardon, R{\'e}mi and Grabar, Natalia",
editor = "Scott, Donia and Bel, Nuria and Zong, Chengqing",
booktitle = "Proceedings of the 28th International Conference on Computational Linguistics",
month = dec,
year = "2020",
address = "Barcelona, Spain (Online)",
publisher = "International Committee on Computational Linguistics",
url = "https://aclanthology.org/2020.coling-main.62",
doi = "10.18653/v1/2020.coling-main.62",
pages = "710--716",
}
frenchSIMPLIFICATION
@misc{frenchSIMPLIFICATION_2025,
author = { {BOURDOIS, Loïck} },
organization = { {Centre Aquitain des Technologies de l'Information et Electroniques} },
year = 2025,
url = { https://huggingface.co/datasets/CATIE-AQ/frenchSIMPLIFICATION },
doi = { 10.57967/hf/7134 },
publisher = { Hugging Face }
}