Dataset Viewer
Duplicate
The dataset viewer is not available for this split.
Cannot extract the features (columns) for the split 'train' of the config 'default' of the dataset.
Error code:   FeaturesError
Exception:    ArrowInvalid
Message:      JSON parse error: Column() changed from object to string in row 0
Traceback:    Traceback (most recent call last):
                File "/usr/local/lib/python3.12/site-packages/datasets/packaged_modules/json/json.py", line 174, in _generate_tables
                  df = pandas_read_json(f)
                       ^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/packaged_modules/json/json.py", line 38, in pandas_read_json
                  return pd.read_json(path_or_buf, **kwargs)
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/pandas/io/json/_json.py", line 815, in read_json
                  return json_reader.read()
                         ^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/pandas/io/json/_json.py", line 1014, in read
                  obj = self._get_object_parser(self.data)
                        ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/pandas/io/json/_json.py", line 1040, in _get_object_parser
                  obj = FrameParser(json, **kwargs).parse()
                        ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/pandas/io/json/_json.py", line 1176, in parse
                  self._parse()
                File "/usr/local/lib/python3.12/site-packages/pandas/io/json/_json.py", line 1391, in _parse
                  self.obj = DataFrame(
                             ^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/pandas/core/frame.py", line 778, in __init__
                  mgr = dict_to_mgr(data, index, columns, dtype=dtype, copy=copy, typ=manager)
                        ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/pandas/core/internals/construction.py", line 503, in dict_to_mgr
                  return arrays_to_mgr(arrays, columns, index, dtype=dtype, typ=typ, consolidate=copy)
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/pandas/core/internals/construction.py", line 114, in arrays_to_mgr
                  index = _extract_index(arrays)
                          ^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/pandas/core/internals/construction.py", line 677, in _extract_index
                  raise ValueError("All arrays must be of the same length")
              ValueError: All arrays must be of the same length
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/split/first_rows.py", line 249, in compute_first_rows_from_streaming_response
                  iterable_dataset = iterable_dataset._resolve_features()
                                     ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 3496, in _resolve_features
                  features = _infer_features_from_batch(self.with_format(None)._head())
                                                        ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2257, in _head
                  return next(iter(self.iter(batch_size=n)))
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2461, in iter
                  for key, example in iterator:
                                      ^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 1952, in __iter__
                  for key, pa_table in self._iter_arrow():
                                       ^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 1974, in _iter_arrow
                  yield from self.ex_iterable._iter_arrow()
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 503, in _iter_arrow
                  for key, pa_table in iterator:
                                       ^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 350, in _iter_arrow
                  for key, pa_table in self.generate_tables_fn(**gen_kwags):
                                       ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/packaged_modules/json/json.py", line 177, in _generate_tables
                  raise e
                File "/usr/local/lib/python3.12/site-packages/datasets/packaged_modules/json/json.py", line 151, in _generate_tables
                  pa_table = paj.read_json(
                             ^^^^^^^^^^^^^^
                File "pyarrow/_json.pyx", line 342, in pyarrow._json.read_json
                File "pyarrow/error.pxi", line 155, in pyarrow.lib.pyarrow_internal_check_status
                File "pyarrow/error.pxi", line 92, in pyarrow.lib.check_status
              pyarrow.lib.ArrowInvalid: JSON parse error: Column() changed from object to string in row 0

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/datasets-cards)

MeViS: A Multi-Modal Dataset for Referring Motion Expression Video Segmentation

🏠[Project page]  πŸ“„[arXiv]   πŸ’Ύ[Evaluation Server v1 (legacy)]  πŸ”₯[Evaluation Server v2]

This repository contains code for ICCV2023 and TPAMI 2025 paper:

MeViS: A Multi-Modal Dataset for Referring Motion Expression Video Segmentation
Henghui Ding, Chang Liu, Shuting He, Kaining Ying, Xudong Jiang, Chen Change Loy, Yu-Gang Jiang TPAMI 2025

MeViS: A Large-scale Benchmark for Video Segmentation with Motion Expressions
Henghui Ding, Chang Liu, Shuting He, Xudong Jiang, Chen Change Loy
ICCV 2023

Abstract

This paper proposes a large-scale multi-modal dataset for referring motion expression video segmentation, focusing on segmenting and tracking target objects in videos based on language description of objects’ motions. Existing referring video segmentation datasets often focus on salient objects and use language expressions rich in static attributes, potentially allowing the target object to be identified in a single frame. Such datasets underemphasize the role of motion in both videos and languages. To explore the feasibility of using motion expressions and motion reasoning clues for pixel-level video understanding, we introduce MeViS, a dataset containing 33,072 human-annotated motion expressions in both text and audio, covering 8,171 objects in 2,006 videos of complex scenarios. We benchmark 15 existing methods across 4 tasks supported by MeViS, including 6 referring video object segmentation (RVOS) methods, 3 audio-guided video object segmentation (AVOS) methods, 2 referring multi-object tracking (RMOT) methods, and 4 video captioning methods for the newly introduced referring motion expression generation (RMEG) task. The results demonstrate weaknesses and limitations of existing methods in addressing motion expression-guided video understanding. We further analyze the challenges and propose an approach LMPM++ for RVOS/AVOS/RMOT that achieves new state-of-the-art results. Our dataset provides a platform that facilitates the development of motion expression-guided video understanding algorithms in complex video scenes.

teaser

Figure 1. Examples from Motion expressions Video Segmentation (MeViS) showing the dataset’s nature and complexity. The selected target objects are masked in orange β–‡. The expressions in MeViS primarily focus on motion attributes, making it impossible to identify the target object from a single frame. For example, the first example has three parrots with similar appearances, and the target object is identified as β€œThe bird flying away”. This object can only be recognized by capturing its motion throughout the video. The updated MeViS 2024 further provides motion-reasoning and no-target expressions, adds audio expressions alongside text, and provides mask and bounding box trajectory annotations.

TABLE 1. Scale comparison between MeViS and existing language-guided video segmentation datasets.
Dataset Pub.&Year Videos Object Expression Mask Obj/Video Obj/Expn Target Multi-target No-target Audio
A2D Sentence CVPR 2018 3,782 4,825 6,656 58k 1.28 1 Actor - - -
DAVIS17-RVOS ACCV 2018 90 205 205 13.5k 2.27 1 Object - - -
ReferYoutubeVOS ECCV 2020 3,978 7,451 15,009 131k 1.86 1 Object - - -
MeViS 2023 ICCV 2023 2,006 8,171 28,570 443k 4.28 1.59 Object(s) 7,539 - -
MeViS 2024 TPAMI 2,006 8,171 33,072 443k 4.28 1.58 Object(s) 8,028 3,503 33,072

MeViS v2 Dataset

Dataset Split

  • 2,006 videos & 33,458 sentences in total;
  • Train set: 1662 videos & 27,502 sentences, used for training;
  • Valu set: 50 videos & 907 sentences, ground-truth provided, used for offline self-evaluation (e.g., ablation study) during training;
  • Val set: 140 videos & 2,523 sentences, ground-truth not provided, used for CodaLab online evaluation;
  • Test set: Will be progressively and selectively released and used for evaluation during the competition periods (PVUW, LSVOS);

It is suggested to report the results on Valu set and Val set.

Online Evaluation

Please submit your results of Val set on

It is strongly suggested to first evaluate your model locally using the Valu set before submitting your results of the Val to the online evaluation system.

File Structure

The dataset follows a similar structure as Refer-YouTube-VOS. Each split of the dataset consists of three parts: JPEGImages, which holds the frame images, meta_expressions.json, which provides referring expressions and metadata of videos, and mask_dict.json, which contains the ground-truth masks of objects. Ground-truth segmentation masks are saved in the format of COCO RLE, and expressions are organized similarly like Refer-Youtube-VOS.

Please note that while annotations for all frames in the Train set and the Valu set are provided, the Val set only provide frame images and referring expressions for inference.

mevis
β”œβ”€β”€ train                       // Split Train
β”‚   β”œβ”€β”€ JPEGImages
β”‚   β”‚   β”œβ”€β”€ <video #1  >
β”‚   β”‚   β”œβ”€β”€ <video #2  >
β”‚   β”‚   └── <video #...>
β”‚   β”‚
β”‚   β”œβ”€β”€ mask_dict.json
β”‚   └── meta_expressions.json
β”‚
β”œβ”€β”€ valid_u                     // Split Val^u
β”‚   β”œβ”€β”€ JPEGImages
β”‚   β”‚   └── <video ...>
β”‚   β”‚
β”‚   β”œβ”€β”€ mask_dict.json
β”‚   └── meta_expressions.json
β”‚
└── valid                       // Split Val
    β”œβ”€β”€ JPEGImages
    β”‚   └── <video ...>
    β”‚
    └── meta_expressions.json

BibTeX

Please consider to cite MeViS if it helps your research.

@inproceedings{MeViS,
  title={{MeViS}: A Large-scale Benchmark for Video Segmentation with Motion Expressions},
  author={Ding, Henghui and Liu, Chang and He, Shuting and Jiang, Xudong and Loy, Chen Change},
  booktitle={ICCV},
  year={2023}
}
@inproceedings{GRES,
  title={{GRES}: Generalized Referring Expression Segmentation},
  author={Liu, Chang and Ding, Henghui and Jiang, Xudong},
  booktitle={CVPR},
  year={2023}
}
@article{VLT,
  title={{VLT}: Vision-language transformer and query generation for referring segmentation},
  author={Ding, Henghui and Liu, Chang and Wang, Suchen and Jiang, Xudong},
  journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
  year={2023},
  publisher={IEEE}
}

A majority of videos in MeViS are from MOSE: Complex Video Object Segmentation Dataset.

@inproceedings{MOSE,
  title={{MOSE}: A New Dataset for Video Object Segmentation in Complex Scenes},
  author={Ding, Henghui and Liu, Chang and He, Shuting and Jiang, Xudong and Torr, Philip HS and Bai, Song},
  booktitle={ICCV},
  year={2023}
}

MeViS is licensed under a CC BY-NC-SA 4.0 License. The data of MeViS is released for non-commercial research purpose only.

Downloads last month
31

Collection including FudanCVL/MeViSv2