Datasets:
The dataset viewer is not available for this dataset.
Error code: ConfigNamesError
Exception: KeyError
Message: 'feature'
Traceback: Traceback (most recent call last):
File "/src/services/worker/src/worker/job_runners/dataset/config_names.py", line 66, in compute_config_names_response
config_names = get_dataset_config_names(
^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/inspect.py", line 161, in get_dataset_config_names
dataset_module = dataset_module_factory(
^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/load.py", line 1031, in dataset_module_factory
raise e1 from None
File "/usr/local/lib/python3.12/site-packages/datasets/load.py", line 1004, in dataset_module_factory
).get_module()
^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/load.py", line 605, in get_module
dataset_infos = DatasetInfosDict.from_dataset_card_data(dataset_card_data)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/info.py", line 386, in from_dataset_card_data
dataset_info = DatasetInfo._from_yaml_dict(dataset_card_data["dataset_info"])
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/info.py", line 317, in _from_yaml_dict
yaml_data["features"] = Features._from_yaml_list(yaml_data["features"])
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/features/features.py", line 2031, in _from_yaml_list
return cls.from_dict(from_yaml_inner(yaml_data))
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/features/features.py", line 1876, in from_dict
obj = generate_from_dict(dic)
^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/features/features.py", line 1463, in generate_from_dict
return {key: generate_from_dict(value) for key, value in obj.items()}
^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/features/features.py", line 1478, in generate_from_dict
feature = obj.pop("feature")
^^^^^^^^^^^^^^^^^^
KeyError: 'feature'Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
SemEval-2018 Task 1 (Preprocessed)
Dataset Description
This dataset contains a preprocessed and standardized version of SemEval-2018 Task 1: Affect in Tweets for multi-label emotion classification.
The original SemEval task focuses on emotion detection in tweets.
This version has been adapted to support multi-label learning and aligned with a unified emotion encoding scheme used across multiple benchmark datasets in this project.
Supported Tasks
- Multi-label emotion classification
- Emotion analysis in short social media texts
- Cross-dataset benchmarking
- Emotion representation learning
Dataset Structure
The dataset is split into:
trainvalidationtest
All splits follow the same schema.
Data Format
Each example consists of:
text(string): Preprocessed tweet textlabels(List[int]): Multi-one-hot encoded emotion labels
The label vector is 28-dimensional to maintain compatibility with other datasets.
Only 11 emotions are present in SemEval; all other emotion positions are set to 0.
Each label is binary:
1→ emotion present0→ emotion absent
Multiple emotions may be active for a single sample.
Emotion Label Mapping
SemEval Emotion Set (11 Emotions)
| Index | Emotion |
|---|---|
| 0 | Anger |
| 1 | Anticipation |
| 2 | Disgust |
| 3 | Fear |
| 4 | Joy |
| 5 | Love |
| 6 | Optimism |
| 7 | Pessimism |
| 8 | Sadness |
| 9 | Surprise |
| 10 | Trust |
Unified Encoding Note
To support cross-dataset training and evaluation, SemEval labels are embedded into a 28-class emotion space.
Emotion classes not present in SemEval are encoded as absent (0).
Preprocessing Details
The following preprocessing steps were applied:
- Conversion to multi-one-hot label encoding
- Mapping to a unified 28-class emotion space
- Removal of unused metadata and tweet-specific fields
- Text normalization
- Preprocessing applied prior to tokenization
Intended Use
This dataset is intended for:
- Training and evaluating multi-label emotion classifiers
- Emotion analysis of social media content
- Cross-dataset generalization experiments
- Benchmarking emotion representations
Limitations
- The dataset contains preprocessed text only
- Raw SemEval data is not included
- Tweets may contain noise, slang, or informal language
- Emotion annotations reflect annotator perception and task-specific definitions
Citation
If you use this dataset, please cite the original SemEval-2018 Task 1 paper:
@inproceedings{SemEval2018Task1,
author = {Mohammad, Saif M. and Bravo-Marquez, Felipe and Salameh, Mohammad and Kiritchenko, Svetlana},
title = {SemEval-2018 {T}ask 1: {A}ffect in Tweets},
booktitle = {Proceedings of the International Workshop on Semantic Evaluation (SemEval-2018)},
address = {New Orleans, LA, USA},
year = {2018}
}
- Downloads last month
- 7