Dataset Viewer
The dataset viewer is not available for this dataset.
Cannot get the config names for the dataset.
Error code:   ConfigNamesError
Exception:    KeyError
Message:      'feature'
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/dataset/config_names.py", line 66, in compute_config_names_response
                  config_names = get_dataset_config_names(
                                 ^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/inspect.py", line 161, in get_dataset_config_names
                  dataset_module = dataset_module_factory(
                                   ^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/load.py", line 1031, in dataset_module_factory
                  raise e1 from None
                File "/usr/local/lib/python3.12/site-packages/datasets/load.py", line 1004, in dataset_module_factory
                  ).get_module()
                    ^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/load.py", line 605, in get_module
                  dataset_infos = DatasetInfosDict.from_dataset_card_data(dataset_card_data)
                                  ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/info.py", line 386, in from_dataset_card_data
                  dataset_info = DatasetInfo._from_yaml_dict(dataset_card_data["dataset_info"])
                                 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/info.py", line 317, in _from_yaml_dict
                  yaml_data["features"] = Features._from_yaml_list(yaml_data["features"])
                                          ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/features/features.py", line 2031, in _from_yaml_list
                  return cls.from_dict(from_yaml_inner(yaml_data))
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/features/features.py", line 1876, in from_dict
                  obj = generate_from_dict(dic)
                        ^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/features/features.py", line 1463, in generate_from_dict
                  return {key: generate_from_dict(value) for key, value in obj.items()}
                               ^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/features/features.py", line 1478, in generate_from_dict
                  feature = obj.pop("feature")
                            ^^^^^^^^^^^^^^^^^^
              KeyError: 'feature'

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

SemEval-2018 Task 1 (Preprocessed)

Dataset Description

This dataset contains a preprocessed and standardized version of SemEval-2018 Task 1: Affect in Tweets for multi-label emotion classification.

The original SemEval task focuses on emotion detection in tweets.
This version has been adapted to support multi-label learning and aligned with a unified emotion encoding scheme used across multiple benchmark datasets in this project.


Supported Tasks

  • Multi-label emotion classification
  • Emotion analysis in short social media texts
  • Cross-dataset benchmarking
  • Emotion representation learning

Dataset Structure

The dataset is split into:

  • train
  • validation
  • test

All splits follow the same schema.


Data Format

Each example consists of:

  • text (string): Preprocessed tweet text
  • labels (List[int]): Multi-one-hot encoded emotion labels

The label vector is 28-dimensional to maintain compatibility with other datasets.
Only 11 emotions are present in SemEval; all other emotion positions are set to 0.

Each label is binary:

  • 1 → emotion present
  • 0 → emotion absent

Multiple emotions may be active for a single sample.


Emotion Label Mapping

SemEval Emotion Set (11 Emotions)

Index Emotion
0 Anger
1 Anticipation
2 Disgust
3 Fear
4 Joy
5 Love
6 Optimism
7 Pessimism
8 Sadness
9 Surprise
10 Trust

Unified Encoding Note

To support cross-dataset training and evaluation, SemEval labels are embedded into a 28-class emotion space.
Emotion classes not present in SemEval are encoded as absent (0).


Preprocessing Details

The following preprocessing steps were applied:

  • Conversion to multi-one-hot label encoding
  • Mapping to a unified 28-class emotion space
  • Removal of unused metadata and tweet-specific fields
  • Text normalization
  • Preprocessing applied prior to tokenization

Intended Use

This dataset is intended for:

  • Training and evaluating multi-label emotion classifiers
  • Emotion analysis of social media content
  • Cross-dataset generalization experiments
  • Benchmarking emotion representations

Limitations

  • The dataset contains preprocessed text only
  • Raw SemEval data is not included
  • Tweets may contain noise, slang, or informal language
  • Emotion annotations reflect annotator perception and task-specific definitions

Citation

If you use this dataset, please cite the original SemEval-2018 Task 1 paper:

@inproceedings{SemEval2018Task1,
  author    = {Mohammad, Saif M. and Bravo-Marquez, Felipe and Salameh, Mohammad and Kiritchenko, Svetlana},
  title     = {SemEval-2018 {T}ask 1: {A}ffect in Tweets},
  booktitle = {Proceedings of the International Workshop on Semantic Evaluation (SemEval-2018)},
  address   = {New Orleans, LA, USA},
  year      = {2018}
}
Downloads last month
7